2
0
mirror of https://github.com/boostorg/atomic.git synced 2026-01-19 04:02:09 +00:00
Files
atomic/test/wait_test_helpers.hpp
Andrey Semashev 1fa02d93f0 Removed BOOST_ATOMIC_NO_ATOMIC_FLAG_INIT macro definition.
Since the library now requires C++11, BOOST_ATOMIC_FLAG_INIT is always
supported.
2025-06-12 00:54:03 +03:00

692 lines
21 KiB
C++

// Copyright (c) 2020-2025 Andrey Semashev
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ATOMIC_TEST_WAIT_TEST_HELPERS_HPP_INCLUDED_
#define BOOST_ATOMIC_TEST_WAIT_TEST_HELPERS_HPP_INCLUDED_
#include <boost/atomic/atomic_flag.hpp>
#include <boost/atomic/wait_result.hpp>
#include <cstdlib>
#include <cstring>
#include <chrono>
#include <thread>
#include <memory>
#include <utility>
#include <iostream>
#include <boost/config.hpp>
#include <boost/current_function.hpp>
#include "atomic_wrapper.hpp"
#include "lightweight_test_stream.hpp"
#include "test_thread.hpp"
#include "test_barrier.hpp"
//! Since some of the tests below are allowed to fail, we retry up to this many times to pass the test
constexpr unsigned int test_retry_count = 10u;
//! The test verifies that the wait operation returns immediately if the passed value does not match the atomic value
template< template< typename > class Wrapper, typename T >
inline void test_wait_value_mismatch(T value1, T value2)
{
Wrapper< T > m_wrapper(value1);
{
T received_value = m_wrapper.a.wait(value2);
BOOST_TEST(received_value == value1);
}
{
boost::atomics::wait_result< T > result = m_wrapper.a.wait_until(value2, std::chrono::steady_clock::now());
BOOST_TEST(result.value == value1);
BOOST_TEST(!result.timeout);
}
{
boost::atomics::wait_result< T > result = m_wrapper.a.wait_until(value2, std::chrono::steady_clock::now() + std::chrono::milliseconds(200));
BOOST_TEST(result.value == value1);
BOOST_TEST(!result.timeout);
}
{
boost::atomics::wait_result< T > result = m_wrapper.a.wait_for(value2, std::chrono::milliseconds::zero());
BOOST_TEST(result.value == value1);
BOOST_TEST(!result.timeout);
}
{
boost::atomics::wait_result< T > result = m_wrapper.a.wait_for(value2, std::chrono::milliseconds(200));
BOOST_TEST(result.value == value1);
BOOST_TEST(!result.timeout);
}
}
/*!
* The test verifies that notify_one releases one blocked thread and that the released thread receives the modified atomic value.
*
* Technically, this test is allowed to fail since wait() is allowed to return spuriously. However, normally this should not happen.
*/
template< template< typename > class Wrapper, typename T >
class notify_one_test
{
private:
struct thread_state
{
T m_received_value;
std::chrono::steady_clock::time_point m_wakeup_time;
explicit thread_state(T value) : m_received_value(value)
{
}
};
private:
Wrapper< T > m_wrapper;
char m_padding[1024];
T m_value1, m_value2, m_value3;
test_barrier m_barrier;
thread_state m_thread1_state;
thread_state m_thread2_state;
public:
explicit notify_one_test(T value1, T value2, T value3) :
m_wrapper(value1),
m_value1(value1),
m_value2(value2),
m_value3(value3),
m_barrier(3),
m_thread1_state(value1),
m_thread2_state(value1)
{
}
bool run()
{
test_thread thread1([this]() { this->thread_func(&this->m_thread1_state); });
test_thread thread2([this]() { this->thread_func(&this->m_thread2_state); });
m_barrier.arrive_and_wait();
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
std::this_thread::sleep_until(start_time + std::chrono::milliseconds(200));
m_wrapper.a.store(m_value2);
m_wrapper.a.notify_one();
std::this_thread::sleep_until(start_time + std::chrono::milliseconds(500));
m_wrapper.a.store(m_value3);
m_wrapper.a.notify_one();
if (!thread1.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 1 failed to join");
std::abort();
}
if (!thread2.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 2 failed to join");
std::abort();
}
thread_state* first_state = &m_thread1_state;
thread_state* second_state = &m_thread2_state;
if (second_state->m_wakeup_time < first_state->m_wakeup_time)
std::swap(first_state, second_state);
if ((first_state->m_wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": first thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(first_state->m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
if ((first_state->m_wakeup_time - start_time) >= std::chrono::milliseconds(500))
{
std::cout << BOOST_CURRENT_FUNCTION << ": first thread woke up too late: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(first_state->m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
if ((second_state->m_wakeup_time - start_time) < std::chrono::milliseconds(500))
{
std::cout << BOOST_CURRENT_FUNCTION << ": second thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(second_state->m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
// Sometimes, even with the time check above, the second thread receives value2. This mostly happens in VMs.
if (second_state->m_received_value == m_value2)
{
std::cout << BOOST_CURRENT_FUNCTION << ": second thread received value2 after waiting for "
<< std::chrono::duration_cast< std::chrono::milliseconds >(second_state->m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(first_state->m_received_value, m_value2);
BOOST_TEST_EQ(second_state->m_received_value, m_value3);
return true;
}
private:
void thread_func(thread_state* state)
{
m_barrier.arrive_and_wait();
state->m_received_value = m_wrapper.a.wait(m_value1);
state->m_wakeup_time = std::chrono::steady_clock::now();
}
};
template< template< typename > class Wrapper, typename T >
inline void test_notify_one(T value1, T value2, T value3)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
notify_one_test< Wrapper, T > test(value1, value2, value3);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("notify_one_test could not complete because of the timing issues");
}
/*!
* The test verifies that notify_all releases all blocked threads and that the released threads receive the modified atomic value.
*
* Technically, this test is allowed to fail since wait() is allowed to return spuriously. However, normally this should not happen.
*/
template< template< typename > class Wrapper, typename T >
class notify_all_test
{
private:
struct thread_state
{
T m_received_value;
std::chrono::steady_clock::time_point m_wakeup_time;
explicit thread_state(T value) : m_received_value(value)
{
}
};
private:
Wrapper< T > m_wrapper;
char m_padding[1024];
T m_value1, m_value2;
test_barrier m_barrier;
thread_state m_thread1_state;
thread_state m_thread2_state;
public:
explicit notify_all_test(T value1, T value2) :
m_wrapper(value1),
m_value1(value1),
m_value2(value2),
m_barrier(3),
m_thread1_state(value1),
m_thread2_state(value1)
{
}
bool run()
{
test_thread thread1([this]() { this->thread_func(&this->m_thread1_state); });
test_thread thread2([this]() { this->thread_func(&this->m_thread2_state); });
m_barrier.arrive_and_wait();
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
std::this_thread::sleep_until(start_time + std::chrono::milliseconds(200));
m_wrapper.a.store(m_value2);
m_wrapper.a.notify_all();
if (!thread1.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 1 failed to join");
std::abort();
}
if (!thread2.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 2 failed to join");
std::abort();
}
if ((m_thread1_state.m_wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": first thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(m_thread1_state.m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
if ((m_thread2_state.m_wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": second thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(m_thread2_state.m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(m_thread1_state.m_received_value, m_value2);
BOOST_TEST_EQ(m_thread2_state.m_received_value, m_value2);
return true;
}
private:
void thread_func(thread_state* state)
{
m_barrier.arrive_and_wait();
state->m_received_value = m_wrapper.a.wait(m_value1);
state->m_wakeup_time = std::chrono::steady_clock::now();
}
};
template< template< typename > class Wrapper, typename T >
inline void test_notify_all(T value1, T value2)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
notify_all_test< Wrapper, T > test(value1, value2);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("notify_all_test could not complete because blocked thread wake up too soon");
}
/*!
* The test verifies that absolute timeout expiry is correctly registered.
*/
template< template< typename > class Wrapper, typename T, typename Clock >
class abs_timeout_test
{
private:
Wrapper< T > m_wrapper;
T m_value1;
public:
explicit abs_timeout_test(T value1) :
m_wrapper(value1),
m_value1(value1)
{
}
bool run()
{
typename Clock::time_point start_time = Clock::now();
boost::atomics::wait_result< T > result = m_wrapper.a.wait_until(m_value1, start_time + std::chrono::milliseconds(200));
typename Clock::time_point wakeup_time = Clock::now();
if ((wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(result.value, m_value1);
BOOST_TEST(result.timeout);
return true;
}
};
template< template< typename > class Wrapper, typename Clock, typename T >
inline void test_abs_timeout(T value1)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
abs_timeout_test< Wrapper, T, Clock > test(value1);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("abs_timeout_test could not complete because blocked thread wake up too soon");
}
/*!
* The test verifies that relative timeout expiry is correctly registered.
*/
template< template< typename > class Wrapper, typename T >
class rel_timeout_test
{
private:
Wrapper< T > m_wrapper;
T m_value1;
public:
explicit rel_timeout_test(T value1) :
m_wrapper(value1),
m_value1(value1)
{
}
bool run()
{
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
boost::atomics::wait_result< T > result = m_wrapper.a.wait_for(m_value1, std::chrono::milliseconds(200));
std::chrono::steady_clock::time_point wakeup_time = std::chrono::steady_clock::now();
if ((wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(result.value, m_value1);
BOOST_TEST(result.timeout);
return true;
}
};
template< template< typename > class Wrapper, typename T >
inline void test_rel_timeout(T value1)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
rel_timeout_test< Wrapper, T > test(value1);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("rel_timeout_test could not complete because blocked thread wake up too soon");
}
/*!
* The test verifies that notifying interrupts a waiting operation with an absolute timeout.
*/
template< template< typename > class Wrapper, typename T, typename Clock >
class notify_abs_timeout_test
{
private:
struct thread_state
{
boost::atomics::wait_result< T > m_received_result;
typename Clock::time_point m_wakeup_time;
explicit thread_state(T value)
{
m_received_result.value = value;
m_received_result.timeout = true;
}
};
private:
Wrapper< T > m_wrapper;
char m_padding[1024];
T m_value1, m_value2;
test_barrier m_barrier;
thread_state m_thread1_state;
public:
explicit notify_abs_timeout_test(T value1, T value2) :
m_wrapper(value1),
m_value1(value1),
m_value2(value2),
m_barrier(2),
m_thread1_state(value1)
{
}
bool run()
{
test_thread thread1([this]() { this->thread_func(&this->m_thread1_state); });
m_barrier.arrive_and_wait();
typename Clock::time_point start_time = Clock::now();
std::this_thread::sleep_until(start_time + std::chrono::milliseconds(200));
m_wrapper.a.store(m_value2);
m_wrapper.a.notify_all();
if (!thread1.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 1 failed to join");
std::abort();
}
if ((m_thread1_state.m_wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": first thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(m_thread1_state.m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(m_thread1_state.m_received_result.value, m_value2);
BOOST_TEST(!m_thread1_state.m_received_result.timeout);
return true;
}
private:
void thread_func(thread_state* state)
{
m_barrier.arrive_and_wait();
state->m_received_result = m_wrapper.a.wait_until(m_value1, Clock::now() + std::chrono::seconds(2));
state->m_wakeup_time = Clock::now();
}
};
template< template< typename > class Wrapper, typename Clock, typename T >
inline void test_notify_abs_timeout(T value1, T value2)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
notify_abs_timeout_test< Wrapper, T, Clock > test(value1, value2);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("notify_abs_timeout_test could not complete because blocked thread wake up too soon");
}
/*!
* The test verifies that notifying interrupts a waiting operation with a relative timeout.
*/
template< template< typename > class Wrapper, typename T >
class notify_rel_timeout_test
{
private:
struct thread_state
{
boost::atomics::wait_result< T > m_received_result;
std::chrono::steady_clock::time_point m_wakeup_time;
explicit thread_state(T value)
{
m_received_result.value = value;
m_received_result.timeout = true;
}
};
private:
Wrapper< T > m_wrapper;
char m_padding[1024];
T m_value1, m_value2;
test_barrier m_barrier;
thread_state m_thread1_state;
public:
explicit notify_rel_timeout_test(T value1, T value2) :
m_wrapper(value1),
m_value1(value1),
m_value2(value2),
m_barrier(2),
m_thread1_state(value1)
{
}
bool run()
{
test_thread thread1([this]() { this->thread_func(&this->m_thread1_state); });
m_barrier.arrive_and_wait();
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
std::this_thread::sleep_until(start_time + std::chrono::milliseconds(200));
m_wrapper.a.store(m_value2);
m_wrapper.a.notify_all();
if (!thread1.try_join_for(std::chrono::seconds(5)))
{
BOOST_ERROR("Thread 1 failed to join");
std::abort();
}
if ((m_thread1_state.m_wakeup_time - start_time) < std::chrono::milliseconds(200))
{
std::cout << BOOST_CURRENT_FUNCTION << ": first thread woke up too soon: "
<< std::chrono::duration_cast< std::chrono::milliseconds >(m_thread1_state.m_wakeup_time - start_time).count() << " ms" << std::endl;
return false;
}
BOOST_TEST_EQ(m_thread1_state.m_received_result.value, m_value2);
BOOST_TEST(!m_thread1_state.m_received_result.timeout);
return true;
}
private:
void thread_func(thread_state* state)
{
m_barrier.arrive_and_wait();
state->m_received_result = m_wrapper.a.wait_for(m_value1, std::chrono::seconds(2));
state->m_wakeup_time = std::chrono::steady_clock::now();
}
};
template< template< typename > class Wrapper, typename T >
inline void test_notify_rel_timeout(T value1, T value2)
{
for (unsigned int i = 0u; i < test_retry_count; ++i)
{
notify_rel_timeout_test< Wrapper, T > test(value1, value2);
if (test.run())
return;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
BOOST_ERROR("notify_rel_timeout_test could not complete because blocked thread wake up too soon");
}
//! Invokes all wait/notify tests
template< template< typename > class Wrapper, typename T >
void test_wait_notify_api(T value1, T value2, T value3)
{
test_wait_value_mismatch< Wrapper >(value1, value2);
test_notify_one< Wrapper >(value1, value2, value3);
test_notify_all< Wrapper >(value1, value2);
test_abs_timeout< Wrapper, std::chrono::system_clock >(value1);
test_abs_timeout< Wrapper, std::chrono::steady_clock >(value1);
test_rel_timeout< Wrapper >(value1);
test_notify_abs_timeout< Wrapper, std::chrono::system_clock >(value1, value2);
test_notify_abs_timeout< Wrapper, std::chrono::steady_clock >(value1, value2);
test_notify_rel_timeout< Wrapper >(value1, value2);
}
//! Invokes all wait/notify tests
template< template< typename > class Wrapper, typename T >
void test_wait_notify_api(T value1, T value2, T value3, int has_native_wait_notify_macro)
{
BOOST_TEST_EQ(Wrapper< T >::atomic_type::always_has_native_wait_notify, (has_native_wait_notify_macro == 2));
test_wait_notify_api< Wrapper >(value1, value2, value3);
}
inline void test_flag_wait_notify_api()
{
boost::atomic_flag f = BOOST_ATOMIC_FLAG_INIT;
bool received_value = f.wait(true);
BOOST_TEST(!received_value);
f.notify_one();
f.notify_all();
}
struct struct_3_bytes
{
unsigned char data[3u];
inline bool operator==(struct_3_bytes const& c) const
{
return std::memcmp(data, &c.data, sizeof(data)) == 0;
}
inline bool operator!=(struct_3_bytes const& c) const
{
return std::memcmp(data, &c.data, sizeof(data)) != 0;
}
};
template< typename Char, typename Traits >
inline std::basic_ostream< Char, Traits >& operator<< (std::basic_ostream< Char, Traits >& strm, struct_3_bytes const& val)
{
strm << "[struct_3_bytes{ " << static_cast< unsigned int >(val.data[0])
<< ", " << static_cast< unsigned int >(val.data[1]) << ", " << static_cast< unsigned int >(val.data[2]) << " }]";
return strm;
}
struct large_struct
{
unsigned char data[256u];
inline bool operator==(large_struct const& c) const
{
return std::memcmp(data, &c.data, sizeof(data)) == 0;
}
inline bool operator!=(large_struct const& c) const
{
return std::memcmp(data, &c.data, sizeof(data)) != 0;
}
};
template< typename Char, typename Traits >
inline std::basic_ostream< Char, Traits >& operator<< (std::basic_ostream< Char, Traits >& strm, large_struct const&)
{
strm << "[large_struct]";
return strm;
}
#endif // BOOST_ATOMIC_TEST_WAIT_TEST_HELPERS_HPP_INCLUDED_