2
0
mirror of https://github.com/boostorg/atomic.git synced 2026-01-19 16:12:09 +00:00
Files
atomic/test/ordering.cpp
2025-06-08 04:37:51 +03:00

278 lines
8.4 KiB
C++

// Copyright (c) 2011 Helge Bahmann
// Copyright (c) 2012 Tim Blechmann
// Copyright (c) 2023-2025 Andrey Semashev
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Attempt to determine whether the memory ordering/ fence operations
// work as expected:
// Let two threads race accessing multiple shared variables and
// verify that "observable" order of operations matches with the
// ordering constraints specified.
//
// We assume that "memory ordering violation" events are exponentially
// distributed, with unknown "average time between violations"
// (which is just the reciprocal of exp distribution parameter lambda).
// Use a "relaxed ordering" implementation that intentionally exhibits
// a (hopefully observable) such violation to compute the maximum-likelihood
// estimate for this time. From this, compute an estimate that covers the
// unknown value with 0.995 confidence (using chi square quantile).
//
// Use this estimate to pick a timeout for the race tests of the
// atomic implementations such that under the assumed distribution
// we get 0.995 probability to detect a race (if there is one).
//
// Overall this yields 0.995 * 0.995 > 0.99 confidence that the
// fences work as expected if this test program does not
// report an error.
#include <boost/memory_order.hpp>
#include <boost/atomic/atomic.hpp>
#include <cstddef>
#include <cstdlib>
#include <chrono>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <boost/config.hpp>
#include <boost/core/lightweight_test.hpp>
#include "test_barrier.hpp"
// Two threads perform the following operations:
//
// thread # 1 thread # 2
// store(a, 1) store(b, 1)
// x = read(b) y = read(a)
//
// Under relaxed memory ordering, the case (x, y) == (0, 0) is
// possible. Under sequential consistency, this case is impossible.
//
// This "problem" is reproducible on all platforms, even x86.
template<boost::memory_order store_order, boost::memory_order load_order>
class total_store_order_test
{
public:
total_store_order_test(void);
void run(std::chrono::steady_clock::duration& timeout);
bool detected_conflict(void) const { return detected_conflict_; }
private:
void thread1fn(void);
void thread2fn(void);
void check_conflict(void);
private:
boost::atomic<int> a_;
/* insert a bit of padding to push the two variables into
different cache lines and increase the likelihood of detecting
a conflict */
char pad1_[512];
boost::atomic<int> b_;
char pad2_[512];
test_barrier barrier_;
int vrfyb1_, vrfya2_;
boost::atomic<bool> terminate_threads_;
boost::atomic<int> termination_consensus_;
bool detected_conflict_;
std::mutex m_;
std::condition_variable c_;
};
template<boost::memory_order store_order, boost::memory_order load_order>
total_store_order_test<store_order, load_order>::total_store_order_test(void) :
a_(0), b_(0), barrier_(2),
vrfyb1_(0), vrfya2_(0),
terminate_threads_(false), termination_consensus_(0),
detected_conflict_(false)
{
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::run(std::chrono::steady_clock::duration& timeout)
{
std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
std::chrono::steady_clock::time_point end = start + timeout;
std::thread t1([this]() { this->thread1fn(); });
std::thread t2([this]() { this->thread2fn(); });
{
std::unique_lock< std::mutex > lock(m_);
while (!detected_conflict_)
{
if (c_.wait_until(lock, end) == std::cv_status::timeout)
break;
}
}
terminate_threads_.store(true, boost::memory_order_relaxed);
t2.join();
t1.join();
std::chrono::steady_clock::duration duration = std::chrono::steady_clock::now() - start;
if (duration < timeout)
timeout = duration;
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::thread1fn(void)
{
BOOST_ATTRIBUTE_UNUSED volatile int backoff_dummy;
while (true)
{
a_.store(1, store_order);
int b = b_.load(load_order);
barrier_.arrive_and_wait();
vrfyb1_ = b;
barrier_.arrive_and_wait();
check_conflict();
/* both threads synchronize via barriers, so either
both threads must exit here, or they must both do
another round, otherwise one of them will wait forever */
if (terminate_threads_.load(boost::memory_order_relaxed))
{
while (true)
{
int tmp = termination_consensus_.fetch_or(1, boost::memory_order_relaxed);
if (tmp == 3)
return;
if (tmp & 4)
break;
}
}
termination_consensus_.fetch_xor(4, boost::memory_order_relaxed);
unsigned int delay = std::rand() % 10000;
a_.store(0, boost::memory_order_relaxed);
barrier_.arrive_and_wait();
while (delay--)
backoff_dummy = delay;
}
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::thread2fn(void)
{
BOOST_ATTRIBUTE_UNUSED volatile int backoff_dummy;
while (true)
{
b_.store(1, store_order);
int a = a_.load(load_order);
barrier_.arrive_and_wait();
vrfya2_ = a;
barrier_.arrive_and_wait();
check_conflict();
/* both threads synchronize via barriers, so either
both threads must exit here, or they must both do
another round, otherwise one of them will wait forever */
if (terminate_threads_.load(boost::memory_order_relaxed))
{
while (true)
{
int tmp = termination_consensus_.fetch_or(2, boost::memory_order_relaxed);
if (tmp == 3)
return;
if (tmp & 4)
break;
}
}
termination_consensus_.fetch_xor(4, boost::memory_order_relaxed);
unsigned int delay = std::rand() % 10000;
b_.store(0, boost::memory_order_relaxed);
barrier_.arrive_and_wait();
while (delay--)
backoff_dummy = delay;
}
}
template<boost::memory_order store_order, boost::memory_order load_order>
void total_store_order_test<store_order, load_order>::check_conflict(void)
{
if (vrfyb1_ == 0 && vrfya2_ == 0)
{
std::lock_guard< std::mutex > guard(m_);
detected_conflict_ = true;
terminate_threads_.store(true, boost::memory_order_relaxed);
c_.notify_all();
}
}
void test_seq_cst(void)
{
double sum = 0.0;
/* take 10 samples */
for (std::size_t n = 0; n < 10; n++)
{
std::chrono::steady_clock::duration timeout = std::chrono::seconds(10);
total_store_order_test<boost::memory_order_relaxed, boost::memory_order_relaxed> test;
test.run(timeout);
if (!test.detected_conflict())
{
std::cout << "Failed to detect order=seq_cst violation while ith order=relaxed -- intrinsic ordering too strong for this test\n";
return;
}
std::chrono::microseconds timeout_us = std::chrono::duration_cast< std::chrono::microseconds >(timeout);
std::cout << "seq_cst violation with order=relaxed after " << timeout_us.count() << " us\n";
sum += timeout_us.count();
}
/* determine maximum likelihood estimate for average time between
race observations */
double avg_race_time_mle = (sum / 10);
/* pick 0.995 confidence (7.44 = chi square 0.995 confidence) */
double avg_race_time_995 = avg_race_time_mle * 2 * 10 / 7.44;
/* 5.298 = 0.995 quantile of exponential distribution */
std::chrono::microseconds timeout_us(static_cast< std::chrono::microseconds::rep >(5.298 * avg_race_time_995));
std::chrono::steady_clock::duration timeout = timeout_us;
std::cout << "run seq_cst for " << timeout_us.count() << " us\n";
total_store_order_test<boost::memory_order_seq_cst, boost::memory_order_seq_cst> test;
test.run(timeout);
BOOST_TEST(!test.detected_conflict()); // sequential consistency error
}
int main(int, char *[])
{
test_seq_cst();
return boost::report_errors();
}