2
0
mirror of https://github.com/boostorg/atomic.git synced 2026-01-19 04:02:09 +00:00
Files
atomic/test/atomicity_ref.cpp
2025-06-08 04:37:51 +03:00

291 lines
9.0 KiB
C++

// Copyright (c) 2020-2025 Andrey Semashev
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This test is based on atomicity.cpp by Helge Bahmann. The test
// Was modified to use atomic_ref template instead of atomic.
// Attempt to determine whether the operations on atomic variables
// do in fact behave atomically: Let multiple threads race modifying
// a shared atomic variable and verify that it behaves as expected.
//
// We assume that "observable race condition" events are exponentially
// distributed, with unknown "average time between observable races"
// (which is just the reciprocal of exp distribution parameter lambda).
// Use a non-atomic implementation that intentionally exhibits a
// (hopefully tight) race to compute the maximum-likelihood estimate
// for this time. From this, compute an estimate that covers the
// unknown value with 0.995 confidence (using chi square quantile).
//
// Use this estimate to pick a timeout for the race tests of the
// atomic implementations such that under the assumed distribution
// we get 0.995 probability to detect a race (if there is one).
//
// Overall this yields 0.995 * 0.995 > 0.99 confidence that the
// operations truly behave atomic if this test program does not
// report an error.
#include <boost/memory_order.hpp>
#include <boost/atomic/atomic.hpp>
#include <boost/atomic/atomic_ref.hpp>
#include <cstddef>
#include <chrono>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <boost/config.hpp>
#include <boost/core/lightweight_test.hpp>
#include "test_config.hpp"
/* helper class to let two instances of a function race against each
other, with configurable timeout and early abort on detection of error */
class concurrent_runner
{
public:
/* concurrently run the function in two threads, until either timeout
or one of the functions returns "false"; returns true if timeout
was reached, or false if early abort and updates timeout accordingly */
static bool execute(std::function< bool (std::size_t) > const& fn, std::chrono::steady_clock::duration& timeout)
{
concurrent_runner runner(fn);
runner.wait_finish(timeout);
return !runner.failure();
}
concurrent_runner(std::function< bool (std::size_t) > const& fn) :
finished_(false), failure_(false)
{
first_thread_ = std::thread([this, fn]() { thread_function(fn, 0); });
second_thread_ = std::thread([this, fn]() { thread_function(fn, 1); });
}
void wait_finish(std::chrono::steady_clock::duration& timeout)
{
std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
std::chrono::steady_clock::time_point end = start + timeout;
{
std::unique_lock< std::mutex > guard(m_);
while (!finished())
{
if (c_.wait_until(guard, end) == std::cv_status::timeout)
break;
}
}
finished_.store(true, boost::memory_order_relaxed);
first_thread_.join();
second_thread_.join();
std::chrono::steady_clock::duration duration = std::chrono::steady_clock::now() - start;
if (duration < timeout)
timeout = duration;
}
bool finished(void) const BOOST_NOEXCEPT_OR_NOTHROW
{
return finished_.load(boost::memory_order_relaxed);
}
bool failure(void) const BOOST_NOEXCEPT_OR_NOTHROW
{
return failure_;
}
private:
void thread_function(std::function< bool (std::size_t) > const& function, std::size_t instance)
{
while (!finished())
{
if (!function(instance))
{
std::lock_guard< std::mutex > guard(m_);
failure_ = true;
finished_.store(true, boost::memory_order_relaxed);
c_.notify_all();
break;
}
}
}
private:
std::mutex m_;
std::condition_variable c_;
boost::atomic<bool> finished_;
bool failure_;
std::thread first_thread_;
std::thread second_thread_;
};
BOOST_ATOMIC_TEST_NO_SANITIZE_THREAD
bool racy_add(unsigned int volatile& value, std::size_t instance)
{
std::size_t shift = instance * 8;
unsigned int mask = 0xff << shift;
for (std::size_t n = 0; n < 255; ++n)
{
unsigned int tmp = value;
value = tmp + (1 << shift);
if ((tmp & mask) != (n << shift))
return false;
}
unsigned int tmp = value;
value = tmp & ~mask;
if ((tmp & mask) != mask)
return false;
return true;
}
/* compute estimate for average time between races being observable, in usecs */
BOOST_ATOMIC_TEST_NO_SANITIZE_THREAD
double estimate_avg_race_time(void)
{
double sum = 0.0;
/* take 10 samples */
for (std::size_t n = 0; n < 10; ++n)
{
std::chrono::steady_clock::duration timeout = std::chrono::seconds(10);
volatile unsigned int value(0);
bool success = concurrent_runner::execute(
[&value](std::size_t instance) { return racy_add(value, instance); },
timeout
);
if (success)
{
BOOST_ERROR("Failed to establish baseline time for reproducing race condition");
}
sum += std::chrono::duration_cast< std::chrono::microseconds >(timeout).count();
}
/* determine maximum likelihood estimate for average time between
race observations */
double avg_race_time_mle = (sum / 10);
/* pick 0.995 confidence (7.44 = chi square 0.995 confidence) */
double avg_race_time_995 = avg_race_time_mle * 2 * 10 / 7.44;
return avg_race_time_995;
}
template<typename value_type, std::size_t shift_>
bool test_arithmetic(value_type& shared_value, std::size_t instance)
{
std::size_t shift = instance * 8;
value_type mask = 0xff << shift;
value_type increment = 1 << shift;
value_type expected = 0;
boost::atomic_ref<value_type> shared_value_ref(shared_value);
for (std::size_t n = 0; n < 255; ++n)
{
value_type tmp = shared_value_ref.fetch_add(increment, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
++expected;
}
for (std::size_t n = 0; n < 255; ++n)
{
value_type tmp = shared_value_ref.fetch_sub(increment, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
--expected;
}
return true;
}
template<typename value_type, std::size_t shift_>
bool test_bitops(value_type& shared_value, std::size_t instance)
{
std::size_t shift = instance * 8;
value_type mask = 0xff << shift;
value_type expected = 0;
boost::atomic_ref<value_type> shared_value_ref(shared_value);
for (std::size_t k = 0; k < 8; ++k)
{
value_type mod = 1u << k;
value_type tmp = shared_value_ref.fetch_or(mod << shift, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected | mod;
}
for (std::size_t k = 0; k < 8; ++k)
{
value_type tmp = shared_value_ref.fetch_and(~(1u << (shift + k)), boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected & ~(1u << k);
}
for (std::size_t k = 0; k < 8; ++k)
{
value_type mod = 255u ^ (1u << k);
value_type tmp = shared_value_ref.fetch_xor(mod << shift, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected ^ mod;
}
value_type tmp = shared_value_ref.fetch_and(~mask, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
return true;
}
int main(int, char *[])
{
double avg_race_time = estimate_avg_race_time();
/* 5.298 = 0.995 quantile of exponential distribution */
const std::chrono::steady_clock::duration timeout = std::chrono::microseconds(static_cast< std::chrono::microseconds::rep >(5.298 * avg_race_time));
{
unsigned int value = 0;
/* testing two different operations in this loop, therefore
enlarge timeout */
std::chrono::steady_clock::duration tmp(timeout * 2);
bool success = concurrent_runner::execute(
[&value](std::size_t instance) { return test_arithmetic< unsigned int, 0 >(value, instance); },
tmp
);
BOOST_TEST(success); // concurrent arithmetic error
}
{
unsigned int value = 0;
/* testing three different operations in this loop, therefore
enlarge timeout */
std::chrono::steady_clock::duration tmp(timeout * 3);
bool success = concurrent_runner::execute(
[&value](std::size_t instance) { return test_bitops< unsigned int, 0 >(value, instance); },
tmp
);
BOOST_TEST(success); // concurrent bit operations error
}
return boost::report_errors();
}