Files
CLI11/include/CLI/ExtraValidators.hpp
Philip Top f10ee369ee Issue #1258 (#1261)
fix an issue where an enumeration with a stream output method would
generate strings that could not be converted back to the original
enumeration value.

Fixes Issue #1258 

recent changes fixed a few issues with the default_val method. The
method used the to_string, which in cases where a user supplied a
streaming operation to enumerations they could not be converted back to
the enumeration properly resulting in some errors and confusing help
output.

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-11-29 05:49:47 -08:00

624 lines
26 KiB
C++

// Copyright (c) 2017-2025, University of Cincinnati, developed by Henry Schreiner
// under NSF AWARD 1414736 and by the respective contributors.
// All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause
#pragma once
#if (defined(CLI11_ENABLE_EXTRA_VALIDATORS) && CLI11_ENABLE_EXTRA_VALIDATORS == 1) || \
(!defined(CLI11_DISABLE_EXTRA_VALIDATORS) || CLI11_DISABLE_EXTRA_VALIDATORS == 0)
// IWYU pragma: private, include "CLI/CLI.hpp"
#include "Error.hpp"
#include "Macros.hpp"
#include "StringTools.hpp"
#include "Validators.hpp"
// [CLI11:public_includes:set]
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
// [CLI11:public_includes:end]
namespace CLI {
// [CLI11:extra_validators_hpp:verbatim]
// The implementation of the extra validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail {
/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator {
public:
IPV4Validator();
};
} // namespace detail
/// Validate the input as a particular type
template <typename DesiredType> class TypeValidator : public Validator {
public:
explicit TypeValidator(const std::string &validator_name)
: Validator(validator_name, [](std::string &input_string) {
using CLI::detail::lexical_cast;
auto val = DesiredType();
if(!lexical_cast(input_string, val)) {
return std::string("Failed parsing ") + input_string + " as a " + detail::type_name<DesiredType>();
}
return std::string{};
}) {}
TypeValidator() : TypeValidator(detail::type_name<DesiredType>()) {}
};
/// Check for a number
const TypeValidator<double> Number("NUMBER");
/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator {
public:
/// This bounds a value with min and max inclusive.
///
/// Note that the constructor is templated, but the struct is not, so C++17 is not
/// needed to provide nice syntax for Range(a,b).
template <typename T> Bound(T min_val, T max_val) {
std::stringstream out;
out << detail::type_name<T>() << " bounded to [" << min_val << " - " << max_val << "]";
description(out.str());
func_ = [min_val, max_val](std::string &input) {
using CLI::detail::lexical_cast;
T val;
bool converted = lexical_cast(input, val);
if(!converted) {
return std::string("Value ") + input + " could not be converted";
}
if(val < min_val)
input = detail::to_string(min_val);
else if(val > max_val)
input = detail::to_string(max_val);
return std::string{};
};
}
/// Range of one value is 0 to value
template <typename T> explicit Bound(T max_val) : Bound(static_cast<T>(0), max_val) {}
};
// Static is not needed here, because global const implies static.
/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;
namespace detail {
template <typename T,
enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value) {
return *value;
}
template <
typename T,
enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type &smart_deref(T &value) {
// NOLINTNEXTLINE
return value;
}
/// Generate a string representation of a set
template <typename T> std::string generate_set(const T &set) {
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(set),
[](const iteration_type_t &v) { return detail::pair_adaptor<element_t>::first(v); },
","));
out.push_back('}');
return out;
}
/// Generate a string representation of a map
template <typename T> std::string generate_map(const T &map, bool key_only = false) {
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(map),
[key_only](const iteration_type_t &v) {
std::string res{detail::to_string(detail::pair_adaptor<element_t>::first(v))};
if(!key_only) {
res.append("->");
res += detail::to_string(detail::pair_adaptor<element_t>::second(v));
}
return res;
},
","));
out.push_back('}');
return out;
}
template <typename C, typename V> struct has_find {
template <typename CC, typename VV>
static auto test(int) -> decltype(std::declval<CC>().find(std::declval<VV>()), std::true_type());
template <typename, typename> static auto test(...) -> decltype(std::false_type());
static const auto value = decltype(test<C, V>(0))::value;
using type = std::integral_constant<bool, value>;
};
/// A search function
template <typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
using element_t = typename detail::element_type<T>::type;
auto &setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
return (detail::pair_adaptor<element_t>::first(v) == val);
});
return {(it != std::end(setref)), it};
}
/// A search function that uses the built in find function
template <typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
auto &setref = detail::smart_deref(set);
auto it = setref.find(val);
return {(it != std::end(setref)), it};
}
/// A search function with a filter function
template <typename T, typename V>
auto search(const T &set, const V &val, const std::function<V(V)> &filter_function)
-> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
using element_t = typename detail::element_type<T>::type;
// do the potentially faster first search
auto res = search(set, val);
if((res.first) || (!(filter_function))) {
return res;
}
// if we haven't found it do the longer linear search with all the element translations
auto &setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
V a{detail::pair_adaptor<element_t>::first(v)};
a = filter_function(a);
return (a == val);
});
return {(it != std::end(setref)), it};
}
} // namespace detail
/// Verify items are in a set
class IsMember : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction using an initializer list
template <typename T, typename... Args>
IsMember(std::initializer_list<T> values, Args &&...args)
: IsMember(std::vector<T>(values), std::forward<Args>(args)...) {}
/// This checks to see if an item is in a set (empty function)
template <typename T> explicit IsMember(T &&set) : IsMember(std::forward<T>(set), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit IsMember(T set, F filter_function) {
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };
// This is the function that validates
// It stores a copy of the set pointer-like, so shared_ptr will stay alive
func_ = [set, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
if(!lexical_cast(input, b)) {
throw ValidationError(input); // name is added later
}
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(set, b, filter_fn);
if(res.first) {
// Make sure the version in the input string is identical to the one in the set
if(filter_fn) {
input = detail::value_string(detail::pair_adaptor<element_t>::first(*(res.second)));
}
// Return empty error string (success)
return std::string{};
}
// If you reach this point, the result was not found
return input + " not in " + detail::generate_set(detail::smart_deref(set));
};
}
/// You can pass in as many filter functions as you like, they nest (string only currently)
template <typename T, typename... Args>
IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: IsMember(
std::forward<T>(set),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// definition of the default transformation object
template <typename T> using TransformPairs = std::vector<std::pair<std::string, T>>;
/// Translate named items to other or a value set
class Transformer : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template <typename... Args>
Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
: Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}
/// direct map of std::string to std::string
template <typename T> explicit Transformer(T &&mapping) : Transformer(std::forward<T>(mapping), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit Transformer(T mapping, F filter_function) {
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // Will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };
func_ = [mapping, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
if(!lexical_cast(input, b)) {
return std::string();
// there is no possible way we can match anything in the mapping if we can't convert so just return
}
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if(res.first) {
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
}
return std::string{};
};
}
/// You can pass in as many filter functions as you like, they nest
template <typename T, typename... Args>
Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: Transformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// translate named items to other or a value set
class CheckedTransformer : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template <typename... Args>
CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
: CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}
/// direct map of std::string to std::string
template <typename T> explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit CheckedTransformer(T mapping, F filter_function) {
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // Will convert bad types to good ones
// (const char * to std::string)
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
auto tfunc = [mapping]() {
std::string out("value in ");
out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
out += detail::join(
detail::smart_deref(mapping),
[](const iteration_type_t &v) {
return detail::value_string(detail::pair_adaptor<element_t>::second(v));
},
",");
out.push_back('}');
return out;
};
desc_function_ = tfunc;
func_ = [mapping, tfunc, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
bool converted = lexical_cast(input, b);
if(converted) {
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if(res.first) {
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
return std::string{};
}
}
for(const auto &v : detail::smart_deref(mapping)) {
auto output_string = detail::value_string(detail::pair_adaptor<element_t>::second(v));
if(output_string == input) {
return std::string();
}
}
return "Check " + input + " " + tfunc() + " FAILED";
};
}
/// You can pass in as many filter functions as you like, they nest
template <typename T, typename... Args>
CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: CheckedTransformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }
/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }
/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item) {
item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
return item;
}
/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
/// With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
/// one can recognize inputs like "100", "12kb", "100 MB",
/// that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator {
public:
/// Adjust AsNumberWithUnit behavior.
/// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
/// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
/// if UNIT_REQUIRED is set and unit literal is not found.
enum Options : std::uint8_t {
CASE_SENSITIVE = 0,
CASE_INSENSITIVE = 1,
UNIT_OPTIONAL = 0,
UNIT_REQUIRED = 2,
DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
};
template <typename Number>
explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
Options opts = DEFAULT,
const std::string &unit_name = "UNIT") {
description(generate_description<Number>(unit_name, opts));
validate_mapping(mapping, opts);
// transform function
func_ = [mapping, opts](std::string &input) -> std::string {
Number num{};
detail::rtrim(input);
if(input.empty()) {
throw ValidationError("Input is empty");
}
// Find split position between number and prefix
auto unit_begin = input.end();
while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) {
--unit_begin;
}
std::string unit{unit_begin, input.end()};
input.resize(static_cast<std::size_t>(std::distance(input.begin(), unit_begin)));
detail::trim(input);
if(opts & UNIT_REQUIRED && unit.empty()) {
throw ValidationError("Missing mandatory unit");
}
if(opts & CASE_INSENSITIVE) {
unit = detail::to_lower(unit);
}
if(unit.empty()) {
using CLI::detail::lexical_cast;
if(!lexical_cast(input, num)) {
throw ValidationError(std::string("Value ") + input + " could not be converted to " +
detail::type_name<Number>());
}
// No need to modify input if no unit passed
return {};
}
// find corresponding factor
auto it = mapping.find(unit);
if(it == mapping.end()) {
throw ValidationError(unit +
" unit not recognized. "
"Allowed values: " +
detail::generate_map(mapping, true));
}
if(!input.empty()) {
using CLI::detail::lexical_cast;
bool converted = lexical_cast(input, num);
if(!converted) {
throw ValidationError(std::string("Value ") + input + " could not be converted to " +
detail::type_name<Number>());
}
// perform safe multiplication
bool ok = detail::checked_multiply(num, it->second);
if(!ok) {
throw ValidationError(detail::to_string(num) + " multiplied by " + unit +
" factor would cause number overflow. Use smaller value.");
}
} else {
num = static_cast<Number>(it->second);
}
input = detail::to_string(num);
return {};
};
}
private:
/// Check that mapping contains valid units.
/// Update mapping for CASE_INSENSITIVE mode.
template <typename Number> static void validate_mapping(std::map<std::string, Number> &mapping, Options opts) {
for(auto &kv : mapping) {
if(kv.first.empty()) {
throw ValidationError("Unit must not be empty.");
}
if(!detail::isalpha(kv.first)) {
throw ValidationError("Unit must contain only letters.");
}
}
// make all units lowercase if CASE_INSENSITIVE
if(opts & CASE_INSENSITIVE) {
std::map<std::string, Number> lower_mapping;
for(auto &kv : mapping) {
auto s = detail::to_lower(kv.first);
if(lower_mapping.count(s)) {
throw ValidationError(std::string("Several matching lowercase unit representations are found: ") +
s);
}
lower_mapping[detail::to_lower(kv.first)] = kv.second;
}
mapping = std::move(lower_mapping);
}
}
/// Generate description like this: NUMBER [UNIT]
template <typename Number> static std::string generate_description(const std::string &name, Options opts) {
std::stringstream out;
out << detail::type_name<Number>() << ' ';
if(opts & UNIT_REQUIRED) {
out << name;
} else {
out << '[' << name << ']';
}
return out.str();
}
};
inline AsNumberWithUnit::Options operator|(const AsNumberWithUnit::Options &a, const AsNumberWithUnit::Options &b) {
return static_cast<AsNumberWithUnit::Options>(static_cast<int>(a) | static_cast<int>(b));
}
/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
/// "100" => 100
/// "1 b" => 100
/// "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
/// "10 KB" => 10240
/// "10 kb" => 10240
/// "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
/// "10kb" => 10240
/// "2 MB" => 2097152
/// "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit {
public:
using result_t = std::uint64_t;
/// If kb_is_1000 is true,
/// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
/// (same applies to higher order units as well).
/// Otherwise, interpret all literals as factors of 1024.
/// The first option is formally correct, but
/// the second interpretation is more wide-spread
/// (see https://en.wikipedia.org/wiki/Binary_prefix).
explicit AsSizeValue(bool kb_is_1000);
private:
/// Get <size unit, factor> mapping
static std::map<std::string, result_t> init_mapping(bool kb_is_1000);
/// Cache calculated mapping
static std::map<std::string, result_t> get_mapping(bool kb_is_1000);
};
#if defined(CLI11_ENABLE_EXTRA_VALIDATORS) && CLI11_ENABLE_EXTRA_VALIDATORS != 0
// new extra validators
#if CLI11_HAS_FILESYSTEM
namespace detail {
enum class Permission : std::uint8_t { none = 0, read = 1, write = 2, exec = 4 };
class PermissionValidator : public Validator {
public:
explicit PermissionValidator(Permission permission);
};
} // namespace detail
/// Check that the file exist and available for read
const detail::PermissionValidator ReadPermissions(detail::Permission::read);
/// Check that the file exist and available for write
const detail::PermissionValidator WritePermissions(detail::Permission::write);
/// Check that the file exist and available for write
const detail::PermissionValidator ExecPermissions(detail::Permission::exec);
#endif
#endif
// [CLI11:extra_validators_hpp:end]
} // namespace CLI
#ifndef CLI11_COMPILE
#include "impl/ExtraValidators_inl.hpp" // IWYU pragma: export
#endif
#endif