mirror of
https://github.com/boostorg/units.git
synced 2026-01-19 16:52:14 +00:00
87 lines
2.2 KiB
C++
87 lines
2.2 KiB
C++
// mcs::units - A C++ library for zero-overhead dimensional analysis and
|
|
// unit/quantity manipulation and conversion
|
|
//
|
|
// Copyright (C) 2003-2007 Matthias Christian Schabel
|
|
// Copyright (C) 2007 Steven Watanabe
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
/**
|
|
\file
|
|
|
|
\brief tutorial.cpp
|
|
|
|
\detailed
|
|
Basic tutorial using SI units.
|
|
|
|
Output:
|
|
@verbatim
|
|
|
|
//[tutorial_output
|
|
F = 2 m kg s^(-2)
|
|
dx = 2 m
|
|
E = 4 m^2 kg s^(-2)
|
|
|
|
V = (12.5,0) m^2 kg s^(-3) A^(-1)
|
|
I = (3,4) A
|
|
Z = (1.5,-2) m^2 kg s^(-3) A^(-2)
|
|
I*Z = (12.5,0) m^2 kg s^(-3) A^(-1)
|
|
I*Z == V? true
|
|
//]
|
|
|
|
@endverbatim
|
|
**/
|
|
|
|
//[tutorial_code
|
|
#include <complex>
|
|
#include <iostream>
|
|
|
|
#include <boost/units/io.hpp>
|
|
#include <boost/units/systems/si/energy.hpp>
|
|
#include <boost/units/systems/si/force.hpp>
|
|
#include <boost/units/systems/si/length.hpp>
|
|
#include <boost/units/systems/si/electric_potential.hpp>
|
|
#include <boost/units/systems/si/current.hpp>
|
|
#include <boost/units/systems/si/resistance.hpp>
|
|
|
|
using namespace boost::units;
|
|
using namespace boost::units::SI;
|
|
|
|
quantity<energy>
|
|
work(const quantity<force>& F,const quantity<length>& dx)
|
|
{
|
|
return F*dx;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
/// test calcuation of work
|
|
quantity<force> F(2.0*newton);
|
|
quantity<length> dx(2.0*meter);
|
|
quantity<energy> E(work(F,dx));
|
|
|
|
std::cout << "F = " << F << std::endl
|
|
<< "dx = " << dx << std::endl
|
|
<< "E = " << E << std::endl
|
|
<< std::endl;
|
|
|
|
/// check complex quantities
|
|
typedef std::complex<double> complex_type;
|
|
|
|
quantity<electric_potential,complex_type> v = complex_type(12.5,0.0)*volts;
|
|
quantity<current,complex_type> i = complex_type(3.0,4.0)*amperes;
|
|
quantity<resistance,complex_type> z = complex_type(1.5,-2.0)*ohms;
|
|
|
|
std::cout << "V = " << v << std::endl
|
|
<< "I = " << i << std::endl
|
|
<< "Z = " << z << std::endl
|
|
<< "I*Z = " << i*z << std::endl
|
|
<< "I*Z == V? " << std::boolalpha << (i*z == v) << std::endl
|
|
<< std::endl;
|
|
|
|
return 0;
|
|
}
|
|
//]
|