2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-22 03:42:19 +00:00
Files
ublas/blas.hpp
David Bellot 85c82b057a blas level 1 done
svn path=/branches/ublas-doxygen/; revision=62293
2010-05-28 13:02:47 +00:00

321 lines
12 KiB
C++

//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_BLAS_
#define _BOOST_UBLAS_BLAS_
#include <boost/numeric/ublas/traits.hpp>
namespace boost { namespace numeric { namespace ublas {
/// \brief Interface and implementation of BLAS level 1
/// Interface and implementation of BLAS level 1. This includes functions which perform vector-vector operations.
/// More information about BLAS can be found at <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
namespace blas_1 {
/// \brief 1-Norm: \f$\sum_i |x_i|\f$ (also called \f$\f$mathcal{L}_1 or Manhattan norm)
/// \tparam V type of the vector (not needed by default)
/// \param v a vector or vector expression
/// \return the 1-Norm with type of the vector's type
template<class V>
typename type_traits<typename V::value_type>::real_type
asum (const V &v) {
return norm_1 (v);
}
/// \brief 2-Norm: \f$\sum_i |x_i|^2\f$ (also called \f$\f$mathcal{L}_2 or Euclidean norm)
/// \tparam V type of the vector (not needed by default)
/// \param v a vector or vector expression
/// \return the 2-Norm with type of the vector's type
template<class V>
typename type_traits<typename V::value_type>::real_type
nrm2 (const V &v) {
return norm_2 (v);
}
/// \brief Infinite-norm: \f$\max_i |x_i|\f$ (also called \f$\f$mathcal{L}_\infty norm)
/// \tparam V type of the vector (not needed by default)
/// \param v a vector or vector expression
/// \return the Infinite-Norm with type of the vector's type
template<class V>
typename type_traits<typename V::value_type>::real_type
amax (const V &v) {
return norm_inf (v);
}
/// \brief Inner product of vectors \a v1 and \a v2
/// \tparam V1 type of first vector (not needed by default)
/// \tparam V2 type of second vector (not needed by default)
/// \param v1 first vector of the inner product
/// \param v2 second vector of the inner product
/// \return the inner product of the type of the most generic type of the 2 vectors
template<class V1, class V2>
typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
dot (const V1 &v1, const V2 &v2) {
return inner_prod (v1, v2);
}
/// \brief Copy vector \a v2 to \a v1
/// \tparam V1 type of first vector (not needed by default)
/// \tparam V2 type of second vector (not needed by default)
/// \param v1 target vector
/// \param v2 source vector
/// \return a reference to the target vector
template<class V1, class V2>
V1 &
copy (V1 &v1, const V2 &v2) {
return v1.assign (v2);
}
/// \brief swap vectors \a v1 and \a v2
/// \tparam V1 type of first vector (not needed by default)
/// \tparam V2 type of second vector (not needed by default)
/// \param v1 first vector
/// \param v2 second vector
template<class V1, class V2>
void swap (V1 &v1, V2 &v2) {
v1.swap (v2);
}
/// \brief scale vector \a v with scalar \a t
/// \tparam V type of the vector (not needed by default)
/// \tparam T type of the scalar (not needed by default)
/// \param v vector to be scaled
/// \param t the scalar
/// \return \c t*v
template<class V, class T>
V &
scal (V &v, const T &t) {
return v *= t;
}
/// \brief Compute \f$v_1= v_1 + t.v_2\f$
/// \tparam V1 type of the first vector (not needed by default)
/// \tparam V2 type of the second vector (not needed by default)
/// \tparam T type of the scalar (not needed by default)
/// \param v1 target and first vector
/// \param v2 second vector
/// \param t the scalar
/// \return a reference to the first and target vector
template<class V1, class T, class V2>
V1 &
axpy (V1 &v1, const T &t, const V2 &v2) {
return v1.plus_assign (t * v2);
}
/// \brief Apply plane rotation
/// \tparam T1 type of the first scalar (not needed by default)
/// \tparam V1 type of the first vector (not needed by default)
/// \tparam T2 type of the second scalar (not needed by default)
/// \tparam V2 type of the second vector (not needed by default)
/// \param t1 first scalar
/// \param v1 first vector
/// \param t2 second scalar
/// \param v2 second vector
template<class T1, class V1, class T2, class V2>
void
rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) {
typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
vector<promote_type> vt (t1 * v1 + t2 * v2);
v2.assign (- t2 * v1 + t1 * v2);
v1.assign (vt);
}
}
/// \brief Interface and implementation of BLAS level 2
/// Interface and implementation of BLAS level 2. This includes functions which perform matrix-vector operations.
/// More information about BLAS can be found at <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
namespace blas_2 {
/** \brief multiply vector \a v with triangular matrix \a m
\ingroup blas2
\todo: check that matrix is really triangular
*/
template<class V, class M>
V &
tmv (V &v, const M &m) {
return v = prod (m, v);
}
/** \brief solve \a m \a x = \a v in place, \a m is triangular matrix
\ingroup blas2
*/
template<class V, class M, class C>
V &
tsv (V &v, const M &m, C) {
return v = solve (m, v, C ());
}
/** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2)
\ingroup blas2
*/
template<class V1, class T1, class T2, class M, class V2>
V1 &
gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) {
return v1 = t1 * v1 + t2 * prod (m, v2);
}
/** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
gr (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, v2);
#else
return m = m + t * outer_prod (v1, v2);
#endif
}
/** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V>
M &
sr (M &m, const T &t, const V &v) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, v);
#else
return m = m + t * outer_prod (v, v);
#endif
}
/** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>)
\ingroup blas2
*/
template<class M, class T, class V>
M &
hr (M &m, const T &t, const V &v) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, conj (v));
#else
return m = m + t * outer_prod (v, conj (v));
#endif
}
/** \brief symmetric rank 2 update: \a m = \a m + \a t *
(\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#else
return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#endif
}
/** \brief hermitian rank 2 update: \a m = \a m +
\a t * (\a v1 * \a v2<sup>H</sup>)
+ \a v2 * (\a t * \a v1)<sup>H</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#else
return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#endif
}
}
/// \brief Interface and implementation of BLAS level 3
/// Interface and implementation of BLAS level 3. This includes functions which perform matrix-matrix operations.
/// More information about BLAS can be found at <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
namespace blas_3 {
/** \brief triangular matrix multiplication
\ingroup blas3
*/
template<class M1, class T, class M2, class M3>
M1 &
tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) {
return m1 = t * prod (m2, m3);
}
/** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place,
\a m2 is a triangular matrix
\ingroup blas3
*/
template<class M1, class T, class M2, class C>
M1 &
tsm (M1 &m1, const T &t, const M2 &m2, C) {
return m1 = solve (m2, t * m1, C ());
}
/** \brief general matrix multiplication
\ingroup blas3
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * prod (m2, m3);
}
/** \brief symmetric rank k update: \a m1 = \a t * \a m1 +
\a t2 * (\a m2 * \a m2<sup>T</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 &
srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
}
/** \brief hermitian rank k update: \a m1 = \a t * \a m1 +
\a t2 * (\a m2 * \a m2<sup>H</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 &
hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
}
/** \brief generalized symmetric rank k update:
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>)
+ \a t2 * (\a m3 * \a m2<sup>T</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
}
/** \brief generalized hermitian rank k update:
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>)
+ (\a m3 * (\a t2 * \a m2)<sup>H</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
}
}
}}}
#endif