2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-14 01:02:16 +00:00
Files
ublas/include/boost/numeric/ublas/functional.hpp
Jörg Walter b9564a6faa Fewer warnings with gcc -W, bugfix for sparse_matrix.
svn path=/trunk/boost/boost/numeric/ublas/; revision=20982
2003-11-28 07:58:57 +00:00

2026 lines
73 KiB
C++

//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_FUNCTIONAL_H
#define BOOST_UBLAS_FUNCTIONAL_H
#include <functional>
#ifdef BOOST_UBLAS_HAVE_BINDINGS
#include <boost/numeric/bindings/traits/std_vector.hpp>
#include <boost/numeric/bindings/traits/ublas_vector.hpp>
#include <boost/numeric/bindings/traits/ublas_matrix.hpp>
#include <boost/numeric/bindings/atlas/cblas.hpp>
#endif
#include <boost/numeric/ublas/config.hpp>
#include <boost/numeric/ublas/exception.hpp>
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/duff.hpp>
#include <boost/numeric/ublas/raw.hpp>
namespace boost { namespace numeric { namespace ublas {
// Scalar functors
// Unary
template<class T>
struct scalar_unary_functor {
typedef T value_type;
typedef typename type_traits<T>::const_reference argument_type;
typedef typename type_traits<T>::value_type result_type;
};
template<class T>
struct scalar_identity:
public scalar_unary_functor<T> {
typedef typename scalar_unary_functor<T>::argument_type argument_type;
typedef typename scalar_unary_functor<T>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type t) const {
return t;
}
};
template<class T>
struct scalar_negate:
public scalar_unary_functor<T> {
typedef typename scalar_unary_functor<T>::argument_type argument_type;
typedef typename scalar_unary_functor<T>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type t) const {
return - t;
}
};
template<class T>
struct scalar_conj:
public scalar_unary_functor<T> {
typedef typename scalar_unary_functor<T>::value_type value_type;
typedef typename scalar_unary_functor<T>::argument_type argument_type;
typedef typename scalar_unary_functor<T>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type t) const {
return type_traits<value_type>::conj (t);
}
};
// Unary returning real
template<class T>
struct scalar_real_unary_functor {
typedef T value_type;
typedef typename type_traits<T>::const_reference argument_type;
typedef typename type_traits<T>::real_type result_type;
};
template<class T>
struct scalar_real:
public scalar_real_unary_functor<T> {
typedef typename scalar_real_unary_functor<T>::value_type value_type;
typedef typename scalar_real_unary_functor<T>::argument_type argument_type;
typedef typename scalar_real_unary_functor<T>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type t) const {
return type_traits<value_type>::real (t);
}
};
template<class T>
struct scalar_imag:
public scalar_real_unary_functor<T> {
typedef typename scalar_real_unary_functor<T>::value_type value_type;
typedef typename scalar_real_unary_functor<T>::argument_type argument_type;
typedef typename scalar_real_unary_functor<T>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type t) const {
return type_traits<value_type>::imag (t);
}
};
// Binary
template<class T1, class T2>
struct scalar_binary_functor {
typedef typename type_traits<T1>::const_reference argument1_type;
typedef typename type_traits<T2>::const_reference argument2_type;
typedef typename promote_traits<T1, T2>::promote_type result_type;
};
template<class T1, class T2>
struct scalar_plus:
public scalar_binary_functor<T1, T2> {
typedef typename scalar_binary_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_functor<T1, T2>::argument2_type argument2_type;
typedef typename scalar_binary_functor<T1, T2>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument1_type t1, argument2_type t2) const {
return t1 + t2;
}
};
template<class T1, class T2>
struct scalar_minus:
public scalar_binary_functor<T1, T2> {
typedef typename scalar_binary_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_functor<T1, T2>::argument2_type argument2_type;
typedef typename scalar_binary_functor<T1, T2>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument1_type t1, argument2_type t2) const {
return t1 - t2;
}
};
template<class T1, class T2>
struct scalar_multiplies:
public scalar_binary_functor<T1, T2> {
typedef typename scalar_binary_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_functor<T1, T2>::argument2_type argument2_type;
typedef typename scalar_binary_functor<T1, T2>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument1_type t1, argument2_type t2) const {
return t1 * t2;
}
};
template<class T1, class T2>
struct scalar_divides:
public scalar_binary_functor<T1, T2> {
typedef typename scalar_binary_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_functor<T1, T2>::argument2_type argument2_type;
typedef typename scalar_binary_functor<T1, T2>::result_type result_type;
BOOST_UBLAS_INLINE
result_type operator () (argument1_type t1, argument2_type t2) const {
return t1 / t2;
}
};
template<class T1, class T2>
struct scalar_binary_assign_functor {
typedef typename type_traits<typename boost::remove_reference<T1>::type>::reference argument1_type;
typedef typename type_traits<T2>::const_reference argument2_type;
};
struct assign_tag {};
struct computed_assign_tag {};
template<class T1, class T2>
struct scalar_assign:
public scalar_binary_assign_functor<T1, T2> {
typedef typename scalar_binary_assign_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor<T1, T2>::argument2_type argument2_type;
typedef assign_tag assign_category;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
t1 = t2;
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_assign<U1, U2> make_debug_functor () {
return scalar_assign<U1, U2> ();
}
};
template<class T1, class T2>
struct scalar_plus_assign:
public scalar_binary_assign_functor<T1, T2> {
typedef typename scalar_binary_assign_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor<T1, T2>::argument2_type argument2_type;
typedef computed_assign_tag assign_category;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
t1 += t2;
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_plus_assign<U1, U2> make_debug_functor () {
return scalar_plus_assign<U1, U2> ();
}
};
template<class T1, class T2>
struct scalar_minus_assign:
public scalar_binary_assign_functor<T1, T2> {
typedef typename scalar_binary_assign_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor<T1, T2>::argument2_type argument2_type;
typedef computed_assign_tag assign_category;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
t1 -= t2;
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_minus_assign<U1, U2> make_debug_functor () {
return scalar_minus_assign<U1, U2> ();
}
};
template<class T1, class T2>
struct scalar_multiplies_assign:
public scalar_binary_assign_functor<T1, T2> {
typedef typename scalar_binary_assign_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor<T1, T2>::argument2_type argument2_type;
typedef computed_assign_tag assign_category;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
t1 *= t2;
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_multiplies_assign<U1, U2> make_debug_functor () {
return scalar_multiplies_assign<U1, U2> ();
}
};
template<class T1, class T2>
struct scalar_divides_assign:
public scalar_binary_assign_functor<T1, T2> {
typedef typename scalar_binary_assign_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_assign_functor<T1, T2>::argument2_type argument2_type;
typedef computed_assign_tag assign_category;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
t1 /= t2;
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_divides_assign<U1, U2> make_debug_functor () {
return scalar_divides_assign<U1, U2> ();
}
};
template<class T1, class T2>
struct scalar_binary_swap_functor {
typedef typename type_traits<typename boost::remove_reference<T1>::type>::reference argument1_type;
typedef typename type_traits<typename boost::remove_reference<T2>::type>::reference argument2_type;
};
template<class T1, class T2>
struct scalar_swap:
public scalar_binary_swap_functor<T1, T2> {
typedef typename scalar_binary_swap_functor<T1, T2>::argument1_type argument1_type;
typedef typename scalar_binary_swap_functor<T1, T2>::argument2_type argument2_type;
BOOST_UBLAS_INLINE
void operator () (argument1_type t1, argument2_type t2) const {
std::swap (t1, t2);
}
template<class U1, class U2>
static
BOOST_UBLAS_INLINE
scalar_swap<U1, U2> make_debug_functor () {
return scalar_swap<U1, U2> ();
}
};
// Vector functors
// Unary returning scalar
template<class T>
struct vector_scalar_unary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T result_type;
};
template<class T>
struct vector_sum:
public vector_scalar_unary_functor<T> {
typedef typename vector_scalar_unary_functor<T>::size_type size_type;
typedef typename vector_scalar_unary_functor<T>::difference_type difference_type;
typedef typename vector_scalar_unary_functor<T>::value_type value_type;
typedef typename vector_scalar_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E> &e) const {
result_type t = result_type ();
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i)
t += e () (i);
return t;
}
// Dense case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I it) const {
result_type t = result_type ();
while (-- size >= 0)
t += *it, ++ it;
return t;
}
// Sparse case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (I it, const I &it_end) const {
result_type t = result_type ();
while (it != it_end)
t += *it, ++ it;
return t;
}
};
// Unary returning real scalar
template<class T>
struct vector_scalar_real_unary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef typename type_traits<T>::real_type real_type;
typedef real_type result_type;
};
template<class T>
struct vector_norm_1:
public vector_scalar_real_unary_functor<T> {
typedef typename vector_scalar_real_unary_functor<T>::size_type size_type;
typedef typename vector_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename vector_scalar_real_unary_functor<T>::value_type value_type;
typedef typename vector_scalar_real_unary_functor<T>::real_type real_type;
typedef typename vector_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E> &e) const {
real_type t = real_type ();
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i) {
real_type u (type_traits<value_type>::norm_1 (e () (i)));
t += u;
}
return t;
}
// Dense case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I it) const {
real_type t = real_type ();
while (-- size >= 0) {
real_type u (type_traits<value_type>::norm_1 (*it));
t += u;
++ it;
}
return t;
}
// Sparse case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (I it, const I &it_end) const {
real_type t = real_type ();
while (it != it_end) {
real_type u (type_traits<value_type>::norm_1 (*it));
t += u;
++ it;
}
return t;
}
};
template<class T>
struct vector_norm_2:
public vector_scalar_real_unary_functor<T> {
typedef typename vector_scalar_real_unary_functor<T>::size_type size_type;
typedef typename vector_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename vector_scalar_real_unary_functor<T>::value_type value_type;
typedef typename vector_scalar_real_unary_functor<T>::real_type real_type;
typedef typename vector_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E> &e) const {
#ifndef BOOST_UBLAS_SCALED_NORM
real_type t = real_type ();
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i) {
real_type u (type_traits<value_type>::norm_2 (e () (i)));
t += u * u;
}
return type_traits<real_type>::sqrt (t);
#else
real_type scale = real_type ();
real_type sum_squares (1);
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i) {
real_type u (type_traits<value_type>::norm_2 (e () (i)));
if (scale < u) {
real_type v (scale / u);
sum_squares = sum_squares * v * v + real_type (1);
scale = u;
} else {
real_type v (u / scale);
sum_squares += v * v;
}
}
return scale * type_traits<real_type>::sqrt (sum_squares);
#endif
}
// Dense case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I it) const {
#ifndef BOOST_UBLAS_SCALED_NORM
real_type t = real_type ();
while (-- size >= 0) {
real_type u (type_traits<value_type>::norm_2 (*it));
t += u * u;
++ it;
}
return type_traits<real_type>::sqrt (t);
#else
real_type scale = real_type ();
real_type sum_squares (1);
while (-- size >= 0) {
real_type u (type_traits<value_type>::norm_2 (*it));
if (scale < u) {
real_type v (scale / u);
sum_squares = sum_squares * v * v + real_type (1);
scale = u;
} else {
real_type v (u / scale);
sum_squares += v * v;
}
++ it;
}
return scale * type_traits<real_type>::sqrt (sum_squares);
#endif
}
// Sparse case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (I it, const I &it_end) const {
#ifndef BOOST_UBLAS_SCALED_NORM
real_type t = real_type ();
while (it != it_end) {
real_type u (type_traits<value_type>::norm_2 (*it));
t += u * u;
++ it;
}
return type_traits<real_type>::sqrt (t);
#else
real_type scale = real_type ();
real_type sum_squares (1);
while (it != it_end) {
real_type u (type_traits<value_type>::norm_2 (*it));
if (scale < u) {
real_type v (scale / u);
sum_squares = sum_squares * v * v + real_type (1);
scale = u;
} else {
real_type v (u / scale);
sum_squares += v * v;
}
++ it;
}
return scale * type_traits<real_type>::sqrt (sum_squares);
#endif
}
};
template<class T>
struct vector_norm_inf:
public vector_scalar_real_unary_functor<T> {
typedef typename vector_scalar_real_unary_functor<T>::size_type size_type;
typedef typename vector_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename vector_scalar_real_unary_functor<T>::value_type value_type;
typedef typename vector_scalar_real_unary_functor<T>::real_type real_type;
typedef typename vector_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E> &e) const {
real_type t = real_type ();
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i) {
real_type u (type_traits<value_type>::norm_inf (e () (i)));
if (u > t)
t = u;
}
return t;
}
// Dense case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I it) const {
real_type t = real_type ();
while (-- size >= 0) {
real_type u (type_traits<value_type>::norm_inf (*it));
if (u > t)
t = u;
++ it;
}
return t;
}
// Sparse case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (I it, const I &it_end) const {
real_type t = real_type ();
while (it != it_end) {
real_type u (type_traits<value_type>::norm_inf (*it));
if (u > t)
t = u;
++ it;
}
return t;
}
};
// Unary returning index
template<class T>
struct vector_scalar_index_unary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef typename type_traits<T>::real_type real_type;
typedef difference_type result_type;
};
template<class T>
struct vector_index_norm_inf:
public vector_scalar_index_unary_functor<T> {
typedef typename vector_scalar_index_unary_functor<T>::size_type size_type;
typedef typename vector_scalar_index_unary_functor<T>::difference_type difference_type;
typedef typename vector_scalar_index_unary_functor<T>::value_type value_type;
typedef typename vector_scalar_index_unary_functor<T>::real_type real_type;
typedef typename vector_scalar_index_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E> &e) const {
// Here we'd better guarantee a valid return value to achieve BLAS compatibility
// result_type i_norm_inf (-1);
result_type i_norm_inf (e ().size () == 0 ? -1 : 0);
real_type t = real_type ();
size_type size (e ().size ());
for (size_type i = 0; i < size; ++ i) {
real_type u (type_traits<value_type>::norm_inf (e () (i)));
if (u > t) {
i_norm_inf = i;
t = u;
}
}
return i_norm_inf;
}
// Dense case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I it) const {
// Here we'd better guarantee a valid return value to achieve BLAS compatibility
// result_type i_norm_inf (-1);
result_type i_norm_inf (size == 0 ? -1 : 0);
real_type t = real_type ();
while (-- size >= 0) {
real_type u (type_traits<value_type>::norm_inf (*it));
if (u > t) {
i_norm_inf = it.index ();
t = u;
}
++ it;
}
return i_norm_inf;
}
// Sparse case
template<class I>
BOOST_UBLAS_INLINE
result_type operator () (I it, const I &it_end) const {
// Here we'd better guarantee a valid return value to achieve BLAS compatibility
// result_type i_norm_inf (-1);
result_type i_norm_inf (it ().size () == 0 ? -1 : 0);
real_type t = real_type ();
while (it != it_end) {
real_type u (type_traits<value_type>::norm_inf (*it));
if (u > t) {
i_norm_inf = it.index ();
t = u;
}
++ it;
}
return i_norm_inf;
}
};
// Binary returning scalar
template<class T1, class T2, class TR>
struct vector_scalar_binary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef TR value_type;
typedef TR result_type;
};
template<class T1, class T2, class TR>
struct vector_inner_prod:
public vector_scalar_binary_functor<T1, T2, TR> {
typedef typename vector_scalar_binary_functor<T1, T2, TR>::size_type size_type ;
typedef typename vector_scalar_binary_functor<T1, T2, TR>::difference_type difference_type;
typedef typename vector_scalar_binary_functor<T1, T2, TR>::value_type value_type;
typedef typename vector_scalar_binary_functor<T1, T2, TR>::result_type result_type;
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const vector_expression<E2> &e2,
concrete_tag) const {
#ifndef BOOST_UBLAS_HAVE_BINDINGS
size_type size (BOOST_UBLAS_SAME (e1 ().size (), e2 ().size ()));
const T1 *data1 = data_const (e1 ());
const T2 *data2 = data_const (e2 ());
size_type s1 = stride (e1 ());
size_type s2 = stride (e2 ());
result_type t = result_type ();
if (s1 == 1 && s2 == 1) {
for (size_type i = 0; i < size; ++ i)
t += data1 [i] * data2 [i];
} else if (s2 == 1) {
for (size_type i = 0, i1 = 0; i < size; ++ i, i1 += s1)
t += data1 [i1] * data2 [i];
} else if (s1 == 1) {
for (size_type i = 0, i2 = 0; i < size; ++ i, i2 += s2)
t += data1 [i] * data2 [i2];
} else {
for (size_type i = 0, i1 = 0, i2 = 0; i < size; ++ i, i1 += s1, i2 += s2)
t += data1 [i1] * data2 [i2];
}
return t;
#else
return boost::numeric::bindings::atlas::dot (e1 (), e2 ());
#endif
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const vector_expression<E2> &e2,
abstract_tag) const {
size_type size (BOOST_UBLAS_SAME (e1 ().size (), e2 ().size ()));
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type i = 0; i < size; ++ i)
t += e1 () (i) * e2 () (i);
#else
size_type i (0);
DD (size, 4, r, (t += e1 () (i) * e2 () (i), ++ i));
#endif
return t;
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) const {
#ifdef BOOST_UBLAS_USE_SIMD
typedef typename boost::mpl::if_c<
boost::mpl::and_<boost::is_same<typename E1::simd_category, concrete_tag>,
boost::is_same<typename E2::simd_category, concrete_tag> >::value,
concrete_tag,
abstract_tag>::type simd_category;
#else
typedef abstract_tag simd_category;
#endif
return operator () (e1, e2, simd_category ());
}
// Dense case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I1 it1, I2 it2) const {
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
#else
DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
return t;
}
// Packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) const {
result_type t = result_type ();
difference_type it1_size (it1_end - it1);
difference_type it2_size (it2_end - it2);
difference_type diff (0);
if (it1_size > 0 && it2_size > 0)
diff = it2.index () - it1.index ();
if (diff != 0) {
difference_type size = std::min (diff, it1_size);
if (size > 0) {
it1 += size;
it1_size -= size;
diff -= size;
}
size = std::min (- diff, it2_size);
if (size > 0) {
it2 += size;
it2_size -= size;
diff += size;
}
}
difference_type size (std::min (it1_size, it2_size));
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
return t;
}
// Sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end && it2 != it2_end) {
difference_type compare = it1.index () - it2.index ();
if (compare < 0)
++ it1;
else if (compare == 0)
t += *it1 * *it2, ++ it1, ++ it2;
else if (compare > 0)
++ it2;
}
return t;
}
};
// Matrix functors
// Binary returning vector
template<class T1, class T2, class TR>
struct matrix_vector_binary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef TR value_type;
typedef TR result_type;
};
template<class T1, class T2, class TR>
struct matrix_vector_prod1:
public matrix_vector_binary_functor<T1, T2, TR> {
typedef typename matrix_vector_binary_functor<T1, T2, TR>::size_type size_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::difference_type difference_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::value_type value_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::result_type result_type;
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
size_type i, concrete_tag) const {
#ifndef BOOST_UBLAS_HAVE_BINDINGS
size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());
const T1 *data1 = data_const (e1 ()) + i * stride1 (e1 ());
const T2 *data2 = data_const (e2 ());
size_type s1 = stride2 (e1 ());
size_type s2 = stride (e2 ());
result_type t = result_type ();
if (s1 == 1 && s2 == 1) {
for (size_type j = 0; j < size; ++ j)
t += data1 [j] * data2 [j];
} else if (s2 == 1) {
for (size_type j = 0, j1 = 0; j < size; ++ j, j1 += s1)
t += data1 [j1] * data2 [j];
} else if (s1 == 1) {
for (size_type j = 0, j2 = 0; j < size; ++ j, j2 += s2)
t += data1 [j] * data2 [j2];
} else {
for (size_type j = 0, j1 = 0, j2 = 0; j < size; ++ j, j1 += s1, j2 += s2)
t += data1 [j1] * data2 [j2];
}
return t;
#else
return boost::numeric::bindings::atlas::dot (e1 ().row (i), e2 ());
#endif
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
size_type i, abstract_tag) const {
size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type j = 0; j < size; ++ j)
t += e1 () (i, j) * e2 () (j);
#else
size_type j (0);
DD (size, 4, r, (t += e1 () (i, j) * e2 () (j), ++ j));
#endif
return t;
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
size_type i) const {
#ifdef BOOST_UBLAS_USE_SIMD
typedef typename boost::mpl::if_c<
boost::mpl::and_<boost::is_same<typename E1::simd_category, concrete_tag>,
boost::is_same<typename E2::simd_category, concrete_tag> >::value,
concrete_tag,
abstract_tag>::type simd_category;
#else
typedef abstract_tag simd_category;
#endif
return operator () (e1, e2, i, simd_category ());
}
// Dense case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I1 it1, I2 it2) const {
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
#else
DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
return t;
}
// Packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) const {
result_type t = result_type ();
difference_type it1_size (it1_end - it1);
difference_type it2_size (it2_end - it2);
difference_type diff (0);
if (it1_size > 0 && it2_size > 0)
diff = it2.index () - it1.index2 ();
if (diff != 0) {
difference_type size = std::min (diff, it1_size);
if (size > 0) {
it1 += size;
it1_size -= size;
diff -= size;
}
size = std::min (- diff, it2_size);
if (size > 0) {
it2 += size;
it2_size -= size;
diff += size;
}
}
difference_type size (std::min (it1_size, it2_size));
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
return t;
}
// Sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end && it2 != it2_end) {
difference_type compare = it1.index2 () - it2.index ();
if (compare < 0)
++ it1;
else if (compare == 0)
t += *it1 * *it2, ++ it1, ++ it2;
else if (compare > 0)
++ it2;
}
return t;
}
// Sparse packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &/* it2_end */,
sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end) {
t += *it1 * it2 () (it1.index2 ());
++ it1;
}
return t;
}
// Packed sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &/* it1_end */, I2 it2, const I2 &it2_end,
packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it2 != it2_end) {
t += it1 () (it1.index1 (), it2.index ()) * *it2;
++ it2;
}
return t;
}
// Another dispatcher
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
sparse_bidirectional_iterator_tag) const {
typedef typename I1::iterator_category iterator1_category;
typedef typename I2::iterator_category iterator2_category;
return operator () (it1, it1_end, it2, it2_end, iterator1_category (), iterator2_category ());
}
};
template<class T1, class T2, class TR>
struct matrix_vector_prod2:
public matrix_vector_binary_functor<T1, T2, TR> {
typedef typename matrix_vector_binary_functor<T1, T2, TR>::size_type size_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::difference_type difference_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::value_type value_type;
typedef typename matrix_vector_binary_functor<T1, T2, TR>::result_type result_type;
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i, concrete_tag) const {
#ifndef BOOST_UBLAS_HAVE_BINDINGS
size_type size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ());
const T1 *data1 = data_const (e1 ());
const T2 *data2 = data_const (e2 ()) + i * stride2 (e2 ());
size_type s1 = stride (e1 ());
size_type s2 = stride1 (e2 ());
result_type t = result_type ();
if (s1 == 1 && s2 == 1) {
for (size_type j = 0; j < size; ++ j)
t += data1 [j] * data2 [j];
} else if (s2 == 1) {
for (size_type j = 0, j1 = 0; j < size; ++ j, j1 += s1)
t += data1 [j1] * data2 [j];
} else if (s1 == 1) {
for (size_type j = 0, j2 = 0; j < size; ++ j, j2 += s2)
t += data1 [j] * data2 [j2];
} else {
for (size_type j = 0, j1 = 0, j2 = 0; j < size; ++ j, j1 += s1, j2 += s2)
t += data1 [j1] * data2 [j2];
}
return t;
#else
return boost::numeric::bindings::atlas::dot (e1 (), e2 ().column (i));
#endif
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i, abstract_tag) const {
size_type size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ());
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type j = 0; j < size; ++ j)
t += e1 () (j) * e2 () (j, i);
#else
size_type j (0);
DD (size, 4, r, (t += e1 () (j) * e2 () (j, i), ++ j));
#endif
return t;
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i) const {
#ifdef BOOST_UBLAS_USE_SIMD
typedef typename boost::mpl::if_c<
boost::mpl::and_<boost::is_same<typename E1::simd_category, concrete_tag>,
boost::is_same<typename E2::simd_category, concrete_tag> >::value,
concrete_tag,
abstract_tag>::type simd_category;
#else
typedef abstract_tag simd_category;
#endif
return operator () (e1, e2, i, simd_category ());
}
// Dense case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I1 it1, I2 it2) const {
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
#else
DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
return t;
}
// Packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end) const {
result_type t = result_type ();
difference_type it1_size (it1_end - it1);
difference_type it2_size (it2_end - it2);
difference_type diff (0);
if (it1_size > 0 && it2_size > 0)
diff = it2.index1 () - it1.index ();
if (diff != 0) {
difference_type size = std::min (diff, it1_size);
if (size > 0) {
it1 += size;
it1_size -= size;
diff -= size;
}
size = std::min (- diff, it2_size);
if (size > 0) {
it2 += size;
it2_size -= size;
diff += size;
}
}
difference_type size (std::min (it1_size, it2_size));
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
return t;
}
// Sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end && it2 != it2_end) {
difference_type compare = it1.index () - it2.index1 ();
if (compare < 0)
++ it1;
else if (compare == 0)
t += *it1 * *it2, ++ it1, ++ it2;
else if (compare > 0)
++ it2;
}
return t;
}
// Packed sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &/* it1_end */, I2 it2, const I2 &it2_end,
packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it2 != it2_end) {
t += it1 () (it2.index1 ()) * *it2;
++ it2;
}
return t;
}
// Sparse packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &/* it2_end */,
sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end) {
t += *it1 * it2 () (it1.index (), it2.index2 ());
++ it1;
}
return t;
}
// Another dispatcher
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end,
sparse_bidirectional_iterator_tag) const {
typedef typename I1::iterator_category iterator1_category;
typedef typename I2::iterator_category iterator2_category;
return operator () (it1, it1_end, it2, it2_end, iterator1_category (), iterator2_category ());
}
};
// Binary returning matrix
template<class T1, class T2, class TR>
struct matrix_matrix_binary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef TR value_type;
typedef TR result_type;
};
template<class T1, class T2, class TR>
struct matrix_matrix_prod:
public matrix_matrix_binary_functor<T1, T2, TR> {
typedef typename matrix_matrix_binary_functor<T1, T2, TR>::size_type size_type;
typedef typename matrix_matrix_binary_functor<T1, T2, TR>::difference_type difference_type;
typedef typename matrix_matrix_binary_functor<T1, T2, TR>::value_type value_type;
typedef typename matrix_matrix_binary_functor<T1, T2, TR>::result_type result_type;
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i, size_type j, concrete_tag) const {
#ifndef BOOST_UBLAS_HAVE_BINDINGS
size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
const T1 *data1 = data_const (e1 ()) + i * stride1 (e1 ());
const T2 *data2 = data_const (e2 ()) + j * stride2 (e2 ());
size_type s1 = stride2 (e1 ());
size_type s2 = stride1 (e2 ());
result_type t = result_type ();
if (s1 == 1 && s2 == 1) {
for (size_type k = 0; k < size; ++ k)
t += data1 [k] * data2 [k];
} else if (s2 == 1) {
for (size_type k = 0, k1 = 0; k < size; ++ k, k1 += s1)
t += data1 [k1] * data2 [k];
} else if (s1 == 1) {
for (size_type k = 0, k2 = 0; k < size; ++ k, k2 += s2)
t += data1 [k] * data2 [k2];
} else {
for (size_type k = 0, k1 = 0, k2 = 0; k < size; ++ k, k1 += s1, k2 += s2)
t += data1 [k1] * data2 [k2];
}
return t;
#else
return boost::numeric::bindings::atlas::dot (e1 ().row (i), e2 ().column (j));
#endif
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i, size_type j, abstract_tag) const {
size_type size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type k = 0; k < size; ++ k)
t += e1 () (i, k) * e2 () (k, j);
#else
size_type k (0);
DD (size, 4, r, (t += e1 () (i, k) * e2 () (k, j), ++ k));
#endif
return t;
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
size_type i, size_type j) const {
#ifdef BOOST_UBLAS_USE_SIMD
typedef typename boost::mpl::if_c<
boost::mpl::and_<boost::is_same<typename E1::simd_category, concrete_tag>,
boost::is_same<typename E2::simd_category, concrete_tag> >::value,
concrete_tag,
abstract_tag>::type simd_category;
#else
typedef abstract_tag simd_category;
#endif
return operator () (e1, e2, i, j, simd_category ());
}
// Dense case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (difference_type size, I1 it1, I2 it2) const {
result_type t = result_type ();
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
#else
DD (size, 4, r, (t += *it1 * *it2, ++ it1, ++ it2));
#endif
return t;
}
// Packed case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, packed_random_access_iterator_tag) const {
result_type t = result_type ();
difference_type it1_size (it1_end - it1);
difference_type it2_size (it2_end - it2);
difference_type diff (0);
if (it1_size > 0 && it2_size > 0)
diff = it2.index1 () - it1.index2 ();
if (diff != 0) {
difference_type size = std::min (diff, it1_size);
if (size > 0) {
it1 += size;
it1_size -= size;
diff -= size;
}
size = std::min (- diff, it2_size);
if (size > 0) {
it2 += size;
it2_size -= size;
diff += size;
}
}
difference_type size (std::min (it1_size, it2_size));
while (-- size >= 0)
t += *it1 * *it2, ++ it1, ++ it2;
return t;
}
// Sparse case
template<class I1, class I2>
BOOST_UBLAS_INLINE
result_type operator () (I1 it1, const I1 &it1_end, I2 it2, const I2 &it2_end, sparse_bidirectional_iterator_tag) const {
result_type t = result_type ();
while (it1 != it1_end && it2 != it2_end) {
difference_type compare = it1.index2 () - it2.index1 ();
if (compare < 0)
++ it1;
else if (compare == 0)
t += *it1 * *it2, ++ it1, ++ it2;
else if (compare > 0)
++ it2;
}
return t;
}
};
// Unary returning scalar norm
template<class T>
struct matrix_scalar_real_unary_functor {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef typename type_traits<T>::real_type real_type;
typedef real_type result_type;
};
template<class T>
struct matrix_norm_1:
public matrix_scalar_real_unary_functor<T> {
typedef typename matrix_scalar_real_unary_functor<T>::size_type size_type;
typedef typename matrix_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename matrix_scalar_real_unary_functor<T>::value_type value_type;
typedef typename matrix_scalar_real_unary_functor<T>::real_type real_type;
typedef typename matrix_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E> &e) const {
real_type t = real_type ();
size_type size2 (e ().size2 ());
for (size_type j = 0; j < size2; ++ j) {
real_type u = real_type ();
size_type size1 (e ().size1 ());
for (size_type i = 0; i < size1; ++ i) {
real_type v (type_traits<value_type>::norm_1 (e () (i, j)));
u += v;
}
if (u > t)
t = u;
}
return t;
}
};
template<class T>
struct matrix_norm_frobenius:
public matrix_scalar_real_unary_functor<T> {
typedef typename matrix_scalar_real_unary_functor<T>::size_type size_type;
typedef typename matrix_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename matrix_scalar_real_unary_functor<T>::value_type value_type;
typedef typename matrix_scalar_real_unary_functor<T>::real_type real_type;
typedef typename matrix_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E> &e) const {
real_type t = real_type ();
size_type size1 (e ().size1 ());
for (size_type i = 0; i < size1; ++ i) {
size_type size2 (e ().size2 ());
for (size_type j = 0; j < size2; ++ j) {
real_type u (type_traits<value_type>::norm_2 (e () (i, j)));
t += u * u;
}
}
return type_traits<real_type>::sqrt (t);
}
};
template<class T>
struct matrix_norm_inf:
public matrix_scalar_real_unary_functor<T> {
typedef typename matrix_scalar_real_unary_functor<T>::size_type size_type;
typedef typename matrix_scalar_real_unary_functor<T>::difference_type difference_type;
typedef typename matrix_scalar_real_unary_functor<T>::value_type value_type;
typedef typename matrix_scalar_real_unary_functor<T>::real_type real_type;
typedef typename matrix_scalar_real_unary_functor<T>::result_type result_type;
template<class E>
BOOST_UBLAS_INLINE
result_type operator () (const matrix_expression<E> &e) const {
real_type t = real_type ();
size_type size1 (e ().size1 ());
for (size_type i = 0; i < size1; ++ i) {
real_type u = real_type ();
size_type size2 (e ().size2 ());
for (size_type j = 0; j < size2; ++ j) {
real_type v (type_traits<value_type>::norm_inf (e () (i, j)));
u += v;
}
if (u > t)
t = u;
}
return t;
}
};
// This functor computes the address translation
// matrix [i] [j] -> storage [i * size2 + j]
struct row_major {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef row_major_tag orientation_category;
// Indexing
static
BOOST_UBLAS_INLINE
size_type element (size_type i, size_type size1, size_type j, size_type size2) {
// Guarding against overflow.
BOOST_UBLAS_CHECK ((size1 * size2) / size1 == size2, bad_size ());
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
return i * size2 + j;
}
static
BOOST_UBLAS_INLINE
size_type address (size_type i, size_type size1, size_type j, size_type size2) {
// Guarding against overflow.
BOOST_UBLAS_CHECK (size1 == 0 || (size1 * size2) / size1 == size2, bad_size ());
BOOST_UBLAS_CHECK (i <= size1, bad_index ());
BOOST_UBLAS_CHECK (j <= size2, bad_index ());
return i * size2 + j;
}
static
BOOST_UBLAS_INLINE
difference_type distance1 (difference_type k, size_type /* size1 */, size_type size2) {
return size2 != 0 ? k / size2 : 0;
}
static
BOOST_UBLAS_INLINE
difference_type distance2 (difference_type k, size_type /* size1 */, size_type /* size2 */) {
return k;
}
static
BOOST_UBLAS_INLINE
size_type index1 (difference_type k, size_type /* size1 */, size_type size2) {
return size2 != 0 ? k / size2 : 0;
}
static
BOOST_UBLAS_INLINE
size_type index2 (difference_type k, size_type /* size1 */, size_type size2) {
return size2 != 0 ? k % size2 : 0;
}
static
BOOST_UBLAS_INLINE
bool fast1 () {
return false;
}
static
BOOST_UBLAS_INLINE
size_type one1 (size_type /* size1 */, size_type size2) {
return size2;
}
static
BOOST_UBLAS_INLINE
bool fast2 () {
return true;
}
static
BOOST_UBLAS_INLINE
size_type one2 (size_type /* size1 */, size_type /* size2 */) {
return 1;
}
static
BOOST_UBLAS_INLINE
size_type lower_element (size_type i, size_type size1, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
BOOST_UBLAS_CHECK (i >= j, bad_index ());
// sigma_i (i + 1) = (i + 1) * i / 2
// i = 0 1 2 3, sigma = 0 1 3 6
return ((i + 1) * i) / 2 + j;
}
static
BOOST_UBLAS_INLINE
size_type upper_element (size_type i, size_type size1, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
BOOST_UBLAS_CHECK (i <= j, bad_index ());
// sigma_i (size - i) = size * i - i * (i - 1) / 2
// i = 0 1 2 3, sigma = 0 4 7 9
return (i * (2 * std::max (size1, size2) - i + 1)) / 2 + j - i;
}
static
BOOST_UBLAS_INLINE
size_type element1 (size_type i, size_type size1, size_type /* j */, size_type /* size2 */) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
return i;
}
static
BOOST_UBLAS_INLINE
size_type element2 (size_type /* i */, size_type /* size1 */, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (j < size2, bad_index ());
return j;
}
static
BOOST_UBLAS_INLINE
size_type address1 (size_type i, size_type size1, size_type /* j */, size_type /* size2 */) {
BOOST_UBLAS_CHECK (i <= size1, bad_index ());
return i;
}
static
BOOST_UBLAS_INLINE
size_type address2 (size_type /* i */, size_type /* size1 */, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (j <= size2, bad_index ());
return j;
}
static
BOOST_UBLAS_INLINE
size_type index1 (size_type index1, size_type /* index2 */) {
return index1;
}
static
BOOST_UBLAS_INLINE
size_type index2 (size_type /* index1 */, size_type index2) {
return index2;
}
static
BOOST_UBLAS_INLINE
size_type size1 (size_type size1, size_type /* size2 */) {
return size1;
}
static
BOOST_UBLAS_INLINE
size_type size2 (size_type /* size1 */, size_type size2) {
return size2;
}
// Iterating
template<class I>
static
BOOST_UBLAS_INLINE
void increment1 (I &it, size_type /* size1 */, size_type size2) {
it += size2;
}
template<class I>
static
BOOST_UBLAS_INLINE
void decrement1 (I &it, size_type /* size1 */, size_type size2) {
it -= size2;
}
template<class I>
static
BOOST_UBLAS_INLINE
void increment2 (I &it, size_type /* size1 */, size_type /* size2 */) {
++ it;
}
template<class I>
static
BOOST_UBLAS_INLINE
void decrement2 (I &it, size_type /* size1 */, size_type /* size2 */) {
-- it;
}
};
// This functor computes the address translation
// matrix [i] [j] -> storage [i + j * size1]
struct column_major {
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef column_major_tag orientation_category;
// Indexing
static
BOOST_UBLAS_INLINE
size_type element (size_type i, size_type size1, size_type j, size_type size2) {
// Guarding against overflow.
BOOST_UBLAS_CHECK ((size1 * size2) / size1 == size2, bad_size ());
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
return i + j * size1;
}
static
BOOST_UBLAS_INLINE
size_type address (size_type i, size_type size1, size_type j, size_type size2) {
// Guarding against overflow.
BOOST_UBLAS_CHECK (size1 == 0 || (size1 * size2) / size1 == size2, bad_size ());
BOOST_UBLAS_CHECK (i <= size1, bad_index ());
BOOST_UBLAS_CHECK (j <= size2, bad_index ());
return i + j * size1;
}
static
BOOST_UBLAS_INLINE
difference_type distance1 (difference_type k, size_type /* size1 */, size_type /* size2 */) {
return k;
}
static
BOOST_UBLAS_INLINE
difference_type distance2 (difference_type k, size_type size1, size_type /* size2 */) {
return size1 != 0 ? k / size1 : 0;
}
static
BOOST_UBLAS_INLINE
size_type index1 (difference_type k, size_type size1, size_type /* size2 */) {
return size1 != 0 ? k % size1 : 0;
}
static
BOOST_UBLAS_INLINE
size_type index2 (difference_type k, size_type size1, size_type /* size2 */) {
return size1 != 0 ? k / size1 : 0;
}
static
BOOST_UBLAS_INLINE
bool fast1 () {
return true;
}
static
BOOST_UBLAS_INLINE
size_type one1 (size_type /* size1 */, size_type /* size2 */) {
return 1;
}
static
BOOST_UBLAS_INLINE
bool fast2 () {
return false;
}
static
BOOST_UBLAS_INLINE
size_type one2 (size_type size1, size_type /* size2 */) {
return size1;
}
static
BOOST_UBLAS_INLINE
size_type lower_element (size_type i, size_type size1, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
BOOST_UBLAS_CHECK (i >= j, bad_index ());
// sigma_j (size - j) = size * j - j * (j - 1) / 2
// j = 0 1 2 3, sigma = 0 4 7 9
return i - j + (j * (2 * std::max (size1, size2) - j + 1)) / 2;
}
static
BOOST_UBLAS_INLINE
size_type upper_element (size_type i, size_type size1, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
BOOST_UBLAS_CHECK (j < size2, bad_index ());
BOOST_UBLAS_CHECK (i <= j, bad_index ());
// sigma_j (j + 1) = (j + 1) * j / 2
// j = 0 1 2 3, sigma = 0 1 3 6
return i + ((j + 1) * j) / 2;
}
static
BOOST_UBLAS_INLINE
size_type element1 (size_type /* i */, size_type /* size1 */, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (j < size2, bad_index ());
return j;
}
static
BOOST_UBLAS_INLINE
size_type element2 (size_type i, size_type size1, size_type /* j */, size_type /* size2 */) {
BOOST_UBLAS_CHECK (i < size1, bad_index ());
return i;
}
static
BOOST_UBLAS_INLINE
size_type address1 (size_type /* i */, size_type /* size1 */, size_type j, size_type size2) {
BOOST_UBLAS_CHECK (j <= size2, bad_index ());
return j;
}
static
BOOST_UBLAS_INLINE
size_type address2 (size_type i, size_type size1, size_type /* j */, size_type /* size2 */) {
BOOST_UBLAS_CHECK (i <= size1, bad_index ());
return i;
}
static
BOOST_UBLAS_INLINE
size_type index1 (size_type /* index1 */, size_type index2) {
return index2;
}
static
BOOST_UBLAS_INLINE
size_type index2 (size_type index1, size_type /* index2 */) {
return index1;
}
static
BOOST_UBLAS_INLINE
size_type size1 (size_type /* size1 */, size_type size2) {
return size2;
}
static
BOOST_UBLAS_INLINE
size_type size2 (size_type size1, size_type /* size2 */) {
return size1;
}
// Iterating
template<class I>
static
BOOST_UBLAS_INLINE
void increment1 (I &it, size_type /* size1 */, size_type /* size2 */) {
++ it;
}
template<class I>
static
BOOST_UBLAS_INLINE
void decrement1 (I &it, size_type /* size1 */, size_type /* size2 */) {
-- it;
}
template<class I>
static
BOOST_UBLAS_INLINE
void increment2 (I &it, size_type size1, size_type /* size2 */) {
it += size1;
}
template<class I>
static
BOOST_UBLAS_INLINE
void decrement2 (I &it, size_type size1, size_type /* size2 */) {
it -= size1;
}
};
struct full {
typedef std::size_t size_type;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
return size1 * size2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type /* i */, size_type /* j */) {
return false;
}
static
BOOST_UBLAS_INLINE
bool one (size_type /* i */, size_type /* j */) {
return false;
}
static
BOOST_UBLAS_INLINE
bool other (size_type /* i */, size_type /* j */) {
return true;
}
};
struct lower {
typedef std::size_t size_type;
typedef lower_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j > i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type /* i */, size_type /* j */) {
return false;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j <= i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::lower_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::min (i + 1, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::min (i + 1, j);
}
};
struct upper {
typedef std::size_t size_type;
typedef upper_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j < i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type /* i */, size_type /* j */) {
return false;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j >= i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::upper_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::min (i, j + 1);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::min (i, j + 1);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
};
struct unit_lower {
typedef std::size_t size_type;
typedef unit_lower_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j > i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type i, size_type j) {
return j == i;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j < i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::lower_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::min (i + 1, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::min (i, j);
}
};
struct unit_upper {
typedef std::size_t size_type;
typedef unit_upper_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j < i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type i, size_type j) {
return j == i;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j > i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::upper_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::min (i, j + 1);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::min (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
};
struct strict_lower {
typedef std::size_t size_type;
typedef unit_lower_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j >= i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type i, size_type j) {
return false;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j < i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::lower_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::min (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::min (i, j);
}
};
struct strict_upper {
typedef std::size_t size_type;
typedef unit_upper_tag packed_category;
static
BOOST_UBLAS_INLINE
size_type packed_size (size_type size1, size_type size2) {
size_type size = std::max (size1, size2);
return ((size + 1) * size) / 2;
}
static
BOOST_UBLAS_INLINE
bool zero (size_type i, size_type j) {
return j <= i;
}
static
BOOST_UBLAS_INLINE
bool one (size_type i, size_type j) {
return false;
}
static
BOOST_UBLAS_INLINE
bool other (size_type i, size_type j) {
return j > i;
}
template<class F>
static
BOOST_UBLAS_INLINE
size_type element (F, size_type i, size_type size1, size_type j, size_type size2) {
return F::upper_element (i, size1, j, size2);
}
static
BOOST_UBLAS_INLINE
size_type restrict1 (size_type i, size_type j) {
return std::min (i, j);
}
static
BOOST_UBLAS_INLINE
size_type restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict1 (size_type i, size_type j) {
return std::min (i, j);
}
static
BOOST_UBLAS_INLINE
size_type mutable_restrict2 (size_type i, size_type j) {
return std::max (i, j);
}
};
}}}
#endif