2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-14 01:02:16 +00:00
Files
ublas/doc/expression.htm
Jörg Walter 058e8a8820 Merge.
svn path=/trunk/boost/libs/numeric/ublas/; revision=15321
2002-09-14 09:48:41 +00:00

1034 lines
32 KiB
HTML
Raw Blame History

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Expression Concepts</title>
</head>
<body bgcolor="#FFFFFF">
<h1><img src="c++boost.gif" alt="c++boost.gif" align="center">Expression Concepts</h1>
<h2><a name="scalar_expression"></a>Scalar Expression</h2>
<h4>Description</h4>
<p>A Scalar Expression is an expression convertible to a scalar
type. </p>
<h4>Refinement of </h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1">
<tr>
<td>Value type </td>
<td><code>value_type</code> </td>
<td>The type of the scalar expression. </td>
</tr>
</table>
<h4>Notation</h4>
<table border="0">
<tr>
<td><code>S</code> </td>
<td>A type that is a model of Scalar Expression</td>
</tr>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default
Constructible the following expressions must be valid. </p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Type requirements </th>
<th>Return type </th>
</tr>
<tr>
<td>Evaluation </td>
<td><code>operator value_type () const</code></td>
<td>&nbsp; </td>
<td><code>value_type</code></td>
</tr>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Precondition </th>
<th>Semantics </th>
<th>Postcondition </th>
</tr>
<tr>
<td>Evaluation </td>
<td><code>operator value_type () const</code></td>
<td>&nbsp; </td>
<td>&nbsp; Evaluates the scalar expression.</td>
<td>&nbsp;</td>
</tr>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the evaluation is specific for the
evaluated scalar expression. </p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>vector_scalar_unary&lt;E, F&gt;</code></li>
<li><code>vector_scalar_binary&lt;E1, E2, F&gt;</code></li>
</ul>
<h2><a name="vector_expression"></a>Vector Expression</h2>
<h4>Description</h4>
<p>A Vector Expression is an expression evaluatable to a vector.
Vector Expression provides an <a
href="iterator.htm#indexed_bidirectional_iterator">Indexed
Bidirectional Iterator</a> or an <a
href="iterator.htm#indexed_random_access_iterator">Indexed Random
Access Iterator</a>.</p>
<h4>Refinement of </h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1">
<tr>
<td>Value type </td>
<td><code>value_type</code> </td>
<td>The type of the vector expression. </td>
</tr>
<tr>
<td>Const iterator type </td>
<td><code>const_iterator</code> </td>
<td>A type of iterator that may be used to examine a
vector expression's elements. </td>
</tr>
<tr>
<td>Iterator type </td>
<td><code>iterator</code> </td>
<td>A type of iterator that may be used to modify a
vector expression's elements. </td>
</tr>
<tr>
<td>Distance type </td>
<td><code>difference_type</code> </td>
<td>A signed integral type used to represent the distance
between two of the vector expression's iterators. </td>
</tr>
<tr>
<td>Size type </td>
<td><code>size_type</code> </td>
<td>An unsigned integral type that can represent any
nonnegative value of the vector expression's distance
type. </td>
</tr>
<tr>
<td>Const reverse iterator type </td>
<td><code>const_reverse_iterator</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the vector expression's const iterator type. </td>
</tr>
<tr>
<td>Reverse iterator type </td>
<td><code>reverse_iterator</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the vector expression's iterator type. </td>
</tr>
</table>
<h4>Notation</h4>
<table border="0">
<tr>
<td><code>V</code> </td>
<td>A type that is a model of Vector Expression</td>
</tr>
<tr>
<td><code>v, v1, v2</code></td>
<td>Object of type <code>V</code> </td>
</tr>
<tr>
<td><code>i</code></td>
<td>Object of a type convertible to <code>size_type</code>
</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default
Constructible the following expressions must be valid. </p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Type requirements </th>
<th>Return type </th>
</tr>
<tr>
<td rowspan="2">Beginning of range </td>
<td><code>v.begin ()</code> </td>
<td>&nbsp; </td>
<td><code>const_iterator</code></td>
</tr>
<tr>
<td><code>v.begin ()</code></td>
<td><code>v</code> is mutable. </td>
<td><code>iterator</code></td>
</tr>
<tr>
<td rowspan="2">End of range </td>
<td><code>v.end ()</code> </td>
<td>&nbsp; </td>
<td><code>const_iterator</code></td>
</tr>
<tr>
<td><code>v.end ()</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>iterator</code></td>
</tr>
<tr>
<td>Size </td>
<td><code>v.size ()</code> </td>
<td>&nbsp; </td>
<td><code>size_type</code> </td>
</tr>
<tr>
<td>Swap </td>
<td><code>v1.swap (v2)</code> </td>
<td><code>v1</code> and <code>v2</code> are mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td rowspan="2">Beginning of reverse range </td>
<td><code>v.rbegin ()</code> </td>
<td>&nbsp; </td>
<td><code>const_reverse_iterator</code></td>
</tr>
<tr>
<td><code>v.rbegin ()</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>reverse_iterator</code></td>
</tr>
<tr>
<td rowspan="2">End of reverse range </td>
<td><code>v.rend ()</code> </td>
<td>&nbsp; </td>
<td><code>const_reverse_iterator</code></td>
</tr>
<tr>
<td><code>v.rend ()</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>reverse_iterator</code></td>
</tr>
<tr>
<td>Element access </td>
<td><code>v (i)</code> </td>
<td><code>i</code> is convertible to <code>size_type</code>.
</td>
<td>Convertible to <code>value_type</code>.</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>v2 = v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>. </td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>v2 += v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.plus_assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2 -= v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.minus_assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is
convertible to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v *= t</code></td>
<td><code>v</code> is mutable and <code>t</code> is
convertible to <code>value_type</code>.</td>
<td><code>V &amp;</code></td>
</tr>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Precondition </th>
<th>Semantics </th>
<th>Postcondition </th>
</tr>
<tr>
<td>Beginning of range </td>
<td><code>v.begin ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing to the first element in
the vector expression. </td>
<td><code>v.begin ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>v.size
() == 0</code>. </td>
</tr>
<tr>
<td>End of range </td>
<td><code>v.end ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing one past the last
element in the vector expression. </td>
<td><code>v.end ()</code> is past-the-end. </td>
</tr>
<tr>
<td>Size </td>
<td><code>v.size ()</code> </td>
<td>&nbsp; </td>
<td>Returns the size of the vector expression, that is,
its number of elements. </td>
<td><code>v.size () &gt;= 0 </code></td>
</tr>
<tr>
<td>Swap </td>
<td><code>v1.swap (v2)</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>swap (v1, v2)</code>. </td>
<td>&nbsp;</td>
</tr>
<tr>
<td>Beginning of reverse range </td>
<td><code>v.rbegin ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator (v.end ())</code>.
</td>
<td><code>v.rbegin ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>v.size
() == 0</code>. </td>
</tr>
<tr>
<td>End of reverse range </td>
<td><code>v.rend ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator (v.begin ())</code>.
</td>
<td><code>v.rend ()</code> is past-the-end.</td>
</tr>
<tr>
<td>Element access </td>
<td><code>v (i)</code> </td>
<td><code>0 &lt;= i &lt; v.size ()</code> </td>
<td>Returns the <code>i</code>-th element of the vector
expression. </td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>v2 = v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Assigns every element of the evaluated vector
expression <code>v1</code> to the corresponding element
of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Assigns every element of <code>v1 </code>to the
corresponding element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>v2 += v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Adds every element of the evaluated vector expression
<code>v1</code> to the corresponding element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.plus_assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Adds every element of <code>v1</code> to the
corresponding element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2 -= v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Subtracts every element of the evaluated vector
expression <code>v1</code> from the corresponding element
of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.minus_assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Subtracts every element of <code>v1</code> from the
corresponding element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v *= t</code></td>
<td>&nbsp;</td>
<td>Multiplies every element of <code>v</code> with <code>t</code>.</td>
<td>&nbsp;</td>
</tr>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of <code>begin () </code>and <code>end
() </code>is specific for the evaluated vector expression,
typically amortized constant time.</p>
<p>The run-time complexity of <code>size ()</code> is constant
time. </p>
<p>The run-time complexity of <code>swap ()</code> is specific
for the evaluated vector expression, typically constant time. </p>
<p>The run-time complexity of <code>rbegin ()</code> and <code>rend
()</code> is specific for the evaluated vector expression,
typically amortized constant time.</p>
<p>The run-time complexity of the element access is specific for
the evaluated vector expression, typically amortized constant
time for the dense and logarithmic for the sparse case.</p>
<p>The run-time complexity of the arithmetic operations is
specific for the evaluated vector expressions, typically linear
in the size of the expressions.</p>
<h4>Invariants</h4>
<table border="1">
<tr>
<td>Valid range </td>
<td>For any vector expression <code>v</code>, <code>[v.begin
(), v.end ())</code> is a valid range. </td>
</tr>
<tr>
<td>Completeness </td>
<td>An algorithm that iterates through the range <code>[v.begin
(), v.end ())</code> will pass through every element of <code>v</code>.
</td>
</tr>
<tr>
<td>Valid reverse range </td>
<td><code>[v.rbegin (), v.rend ())</code> is a valid
range. </td>
</tr>
<tr>
<td>Equivalence of ranges </td>
<td>The distance from <code>v.begin ()</code> to <code>v.end
()</code> is the same as the distance from <code>v.rbegin
()</code> to <code>v.rend ()</code>. </td>
</tr>
</table>
<h4>Models</h4>
<ul>
<li><code>vector_range&lt;V&gt;</code></li>
<li><code>vector_slice&lt;V&gt;</code></li>
<li><code>matrix_row&lt;M&gt;</code></li>
<li><code>matrix_column&lt;M&gt;</code></li>
<li><code>matrix_vector_range&lt;M&gt;</code></li>
<li><code>matrix_vector_slice&lt;M&gt;</code></li>
<li><code>vector_unary&lt;E, F&gt;</code></li>
<li><code>vector_binary&lt;E1, E2, F&gt;</code></li>
<li><code>vector_binary_scalar1&lt;E1, E2, F&gt;</code></li>
<li><code>vector_binary_scalar2&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_vector_unary1&lt;E&gt;</code></li>
<li><code>matrix_vector_unary2&lt;E&gt;</code></li>
<li><code>matrix_vector_binary1&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_vector_binary2&lt;E1, E2, F&gt;</code></li>
</ul>
<h2><a name="matrix_expression"></a>Matrix Expression</h2>
<h4>Description</h4>
<p>A Matrix Expression is an expression evaluatable to a matrix.
Matrix Expression provides an <a
href="iterator.htm#indexed_bidirectional_cr_iterator">Indexed
Bidirectional Column/Row Iterator</a> or an <a
href="iterator.htm#indexed_random_access_cr_iterator">Indexed
Random Access Column/Row Iterator</a>.</p>
<h4>Refinement of </h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1">
<tr>
<td>Value type </td>
<td><code>value_type</code> </td>
<td>The type of the matrix expression. </td>
</tr>
<tr>
<td rowspan="2">Const iterator types </td>
<td><code>const_iterator1</code> </td>
<td>A type of column iterator that may be used to examine
a matrix expression's elements. </td>
</tr>
<tr>
<td><code>const_iterator2</code></td>
<td>A type of row iterator that may be used to examine a
matrix expression's elements. </td>
</tr>
<tr>
<td rowspan="2">Iterator types </td>
<td><code>iterator1</code> </td>
<td>A type of column iterator that may be used to modify
a matrix expression's elements. </td>
</tr>
<tr>
<td><code>iterator2</code></td>
<td>A type of row iterator that may be used to modify a
matrix expression's elements. </td>
</tr>
<tr>
<td>Distance type </td>
<td><code>difference_type</code> </td>
<td>A signed integral type used to represent the distance
between two of the matrix expression's iterators. </td>
</tr>
<tr>
<td>Size type </td>
<td><code>size_type</code> </td>
<td>An unsigned integral type that can represent any
nonnegative value of the matrix expression's distance
type. </td>
</tr>
<tr>
<td rowspan="2">Const reverse iterator types </td>
<td><code>const_reverse_iterator1</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the matrix expression's const column iterator type. </td>
</tr>
<tr>
<td><code>const_reverse_iterator2</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the matrix expression's const row iterator type. </td>
</tr>
<tr>
<td rowspan="2">Reverse iterator types </td>
<td><code>reverse_iterator1</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the matrix expression's column iterator type. </td>
</tr>
<tr>
<td><code>reverse_iterator2</code> </td>
<td>A Reverse Iterator adaptor whose base iterator type
is the matrix expression's row iterator type. </td>
</tr>
</table>
<h4>Notation</h4>
<table border="0">
<tr>
<td><code>M</code> </td>
<td>A type that is a model of Matrix Expression</td>
</tr>
<tr>
<td><code>m, m1, m2</code></td>
<td>Object of type <code>M</code> </td>
</tr>
<tr>
<td><code>i, j</code></td>
<td>Objects of a type convertible to <code>size_type</code>
</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default
Constructible the following expressions must be valid. </p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Type requirements </th>
<th>Return type </th>
</tr>
<tr>
<td rowspan="4">Beginning of range </td>
<td><code>m.begin1 ()</code> </td>
<td>&nbsp; </td>
<td><code>const_iterator1</code></td>
</tr>
<tr>
<td><code>m.begin2 ()</code> </td>
<td>&nbsp;</td>
<td><code>const_iterator2</code></td>
</tr>
<tr>
<td><code>m.begin1 ()</code> </td>
<td><code>m</code> is mutable.&nbsp; </td>
<td><code>iterator1</code></td>
</tr>
<tr>
<td><code>m.begin2 ()</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>iterator2</code></td>
</tr>
<tr>
<td rowspan="4">End of range </td>
<td><code>m.end1 ()</code> </td>
<td>&nbsp; </td>
<td><code>const_iterator1</code></td>
</tr>
<tr>
<td><code>m.end2 ()</code> </td>
<td>&nbsp;</td>
<td><code>const_iterator2</code></td>
</tr>
<tr>
<td><code>m.end1 ()</code> </td>
<td><code>m</code> is mutable.&nbsp; </td>
<td><code>iterator1</code></td>
</tr>
<tr>
<td><code>m.end2 ()</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>iterator2</code></td>
</tr>
<tr>
<td rowspan="2">Size </td>
<td><code>m.size1 ()</code> </td>
<td>&nbsp; </td>
<td><code>size_type</code> </td>
</tr>
<tr>
<td><code>m.size2 ()</code> </td>
<td>&nbsp;</td>
<td><code>size_type</code> </td>
</tr>
<tr>
<td>Swap </td>
<td><code>m1.swap (m2)</code></td>
<td><code>m1</code> and <code>m2</code> are
mutable.&nbsp; </td>
<td><code>void</code></td>
</tr>
<tr>
<td rowspan="4">Beginning of reverse range </td>
<td><code>m.rbegin1 ()</code> </td>
<td>&nbsp; </td>
<td><code>const_reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code> </td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator2</code></td>
</tr>
<tr>
<td><code>m.rbegin1 ()</code> </td>
<td><code>m</code> is mutable.&nbsp; </td>
<td><code>reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator2</code></td>
</tr>
<tr>
<td rowspan="4">End of reverse range </td>
<td><code>m.rend1 ()</code> </td>
<td>&nbsp; </td>
<td><code>const_reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rend2 ()</code> </td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator2</code></td>
</tr>
<tr>
<td><code>m.rend1 ()</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rend2 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator2</code></td>
</tr>
<tr>
<td>Element access </td>
<td><code>m (i, j)</code> </td>
<td><code>i</code> and <code>j </code>are convertible to <code>size_type</code>.
</td>
<td>Convertible to <code>value_type</code>.</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>m2 = m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>m2 += m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.plus_assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2 -= m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.minus_assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is
convertible to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m *= t</code></td>
<td><code>m</code> is mutable and <code>t</code> is
convertible to <code>value_type</code>.</td>
<td><code>M &amp;</code></td>
</tr>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1">
<tr>
<th>Name </th>
<th>Expression </th>
<th>Precondition </th>
<th>Semantics </th>
<th>Postcondition </th>
</tr>
<tr>
<td rowspan="2">Beginning of range </td>
<td><code>m.begin1 ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing to the first element in
the first column of a matrix expression. </td>
<td><code>m.begin1 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size1
() == 0</code>. </td>
</tr>
<tr>
<td><code>m.begin2 ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing to the first element in
the first row of a matrix expression. </td>
<td><code>m.begin2 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size2
() == 0</code>. </td>
</tr>
<tr>
<td rowspan="2">End of range </td>
<td><code>m.end1 ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing one past the last
element in the matrix expression. </td>
<td><code>m.end1 ()</code> is past-the-end. </td>
</tr>
<tr>
<td><code>m.end2 ()</code> </td>
<td>&nbsp; </td>
<td>Returns an iterator pointing one past the last
element in the matrix expression. </td>
<td><code>m.end2 ()</code> is past-the-end. </td>
</tr>
<tr>
<td rowspan="2">Size </td>
<td><code>m.size1 ()</code> </td>
<td>&nbsp; </td>
<td>Returns the number of rows of the matrix expression. </td>
<td><code>m.size1 () &gt;= 0 </code></td>
</tr>
<tr>
<td><code>m.size2 ()</code> </td>
<td>&nbsp; </td>
<td>Returns the number of columns of the matrix
expression. </td>
<td><code>m.size2 () &gt;= 0 </code></td>
</tr>
<tr>
<td>Swap </td>
<td><code>m1.swap (m2)</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>swap (m1, m2)</code>. </td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Beginning of reverse range </td>
<td><code>m.rbegin1 ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator1 (m.end1 ())</code>.
</td>
<td><code>m.rbegin1 ()</code> is either dereferenceable
or past-the-end. It is past-the-end if and only if <code>m.size1
() == 0</code>. </td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator2 (m.end2 ())</code>.
</td>
<td><code>m.rbegin2 ()</code> is either dereferenceable
or past-the-end. It is past-the-end if and only if <code>m.size2
() == 0</code>. </td>
</tr>
<tr>
<td rowspan="2">End of reverse range </td>
<td><code>m.rend1 ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator1 (m.begin1 ())</code>.
</td>
<td><code>m.rend1 ()</code> is past-the-end.</td>
</tr>
<tr>
<td><code>m.rend2 ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <code>reverse_iterator2 (m.begin2 ())</code>.
</td>
<td><code>m.rend2 ()</code> is past-the-end.</td>
</tr>
<tr>
<td>Element access </td>
<td><code>m (i, j)</code> </td>
<td><code>0 &lt;= i &lt; m.size1 ()</code> and <code>0
&lt;= j &lt; m.size2 ()</code> </td>
<td>Returns the <code>j</code>-th element of the <code>i</code>-th
row of the matrix expression. </td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>m2 = m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Assigns every element of the evaluated matrix
expression <code>m1</code> to the corresponding element
of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Assigns every element of <code>m1 </code>to the
corresponding element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>m2 += m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Adds every element of the evaluated matrix expression
<code>m1</code> to the corresponding element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.plus_assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Adds every element of <code>m1</code> to the
corresponding element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2 -= m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Subtracts every element of the evaluated matrix
expression <code>m1</code> from the corresponding element
of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.minus_assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br>
m1.size2 () == m2.size2 ()</code> </td>
<td>Subtracts every element of <code>m1</code> from the
corresponding element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m *= t</code></td>
<td>&nbsp;</td>
<td>Multiplies every element of <code>m</code> with <code>t</code>.</td>
<td>&nbsp;</td>
</tr>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of <code>begin1 ()</code>,<code>
begin2 ()</code>,<code> end1 () </code>and <code>end2 () </code>is
specific for the evaluated matrix expression.</p>
<p>The run-time complexity of <code>size1 () </code>and <code>size2
() </code>is constant time. </p>
<p>The run-time complexity of <code>swap () </code>is specific
for the evaluated matrix expression, typically constant time. </p>
<p>The run-time complexity of <code>rbegin1 ()</code>,<code>
rbegin2 ()</code>,<code> rend1 () </code>and <code>rend2 () </code>is
specific for the evaluated matrix expression.</p>
<p>The run-time complexity of the element access is specific for
the evaluated matrix expression, typically amortized constant
time for the dense and logarithmic for the sparse case.</p>
<p>The run-time complexity of the arithmetic operations is
specific for the evaluated matrix expressions, typically
quadratic in the size of the proxies.</p>
<h4>Invariants</h4>
<table border="1">
<tr>
<td>Valid range </td>
<td>For any matrix expression <code>m</code>, <code>[m.begin1
(), m.end1 ())</code> and <code>[m.begin2 (), m.end2 ())</code>
are valid ranges. </td>
</tr>
<tr>
<td>Completeness </td>
<td>An algorithm that iterates through the range <code>[m.begin1
(), m.end1 ())</code> will pass through every row of <code>m</code>,
an algorithm that iterates through the range <code>[m.begin2
(), m.end2 ())</code> will pass through every column of <code>m</code>.</td>
</tr>
<tr>
<td>Valid reverse range </td>
<td><code>[m.rbegin1 (), m.rend1 ())</code> and <code>[m.rbegin2
(), m.rend2 ())</code> are valid ranges. </td>
</tr>
<tr>
<td>Equivalence of ranges </td>
<td>The distance from <code>m.begin1 ()</code> to <code>m.end1
()</code> is the same as the distance from <code>m.rbegin1
()</code> to <code>m.rend1 ()</code> and the distance
from <code>m.begin2 ()</code> to <code>m.end2 ()</code>
is the same as the distance from <code>m.rbegin2 ()</code>
to <code>m.rend2 ()</code>. </td>
</tr>
</table>
<h4>Models</h4>
<ul>
<li><code>matrix_range&lt;M&gt;</code></li>
<li><code>matrix_slice&lt;M&gt;</code></li>
<li><code>triangular_adaptor&lt;M, F&gt;</code></li>
<li><code>symmetric_adaptor&lt;M, F&gt;</code></li>
<li><code>banded_adaptor&lt;M&gt;</code></li>
<li><code>vector_matrix_binary&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_unary1&lt;E, F&gt;</code></li>
<li><code>matrix_unary2&lt;E, F&gt;</code></li>
<li><code>matrix_binary&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_binary_scalar1&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_binary_scalar2&lt;E1, E2, F&gt;</code></li>
<li><code>matrix_matrix_binary&lt;E1, E2, F&gt;</code></li>
</ul>
<hr>
<p>Copyright (<28>) 2000-2002 Joerg Walter, Mathias Koch <br>
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
``as is'' without express or implied warranty, and with no claim as to its suitability
for any purpose.</p>
<p>Last revised: 8/3/2002</p>
</body>
</html>