2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-12 00:22:22 +00:00
Files
ublas/doc/container.htm
Jörg Walter 96ea7e91f8 More fixes.
svn path=/trunk/boost/boost/numeric/ublas/; revision=17504
2003-02-18 07:34:44 +00:00

423 lines
11 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Container Concepts</title>
</head>
<body bgcolor="#ffffff">
<h1><img src="c++boost.gif" alt="c++boost.gif" align="Center">
Container Concepts</h1>
<h2><a name="vector"></a>
Vector </h2>
<h4>Description</h4>
<p>A Vector describes common aspects of dense, packed and sparse vectors.
</p>
<h4>Refinement of </h4>
<p><a href="expression.htm#vector_expression">Vector Expression</a>
.</p>
<h4>Associated types</h4>
<table border="1">
<tbody>
<tr>
<td>Value type </td>
<td><code>value_type</code> </td>
<td>The type of the vector. </td>
</tr>
<tr>
<td>Distance type </td>
<td><code>difference_type</code> </td>
<td>A signed integral type used to represent the distance
between two of the vector's iterators. </td>
</tr>
<tr>
<td>Size type </td>
<td><code>size_type</code> </td>
<td>An unsigned integral type that can represent any nonnegative
value of the vector's distance type. </td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0">
<tbody>
<tr>
<td><code>V</code> </td>
<td>A type that is a model of Vector</td>
</tr>
<tr>
<td><code>v</code></td>
<td>Objects of type <code>V</code> </td>
</tr>
<tr>
<td><code>n, i</code></td>
<td>Objects of a type convertible to <code>size_type</code>
</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code>
</td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in <a href="expression.htm#vector_expression">
Vector Expression</a>
the following expressions must be valid. </p>
<table border="1">
<tbody>
<tr>
<th>Name </th>
<th>Expression </th>
<th>Type requirements </th>
<th>Return type </th>
</tr>
<tr>
<td>Sizing constructor </td>
<td><code>V v (n)</code> </td>
<td>&nbsp;</td>
<td><code>V</code></td>
</tr>
<tr>
<td>Insert </td>
<td><code>v.insert (i, t)</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Erase </td>
<td><code>v.erase (i)</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Clear </td>
<td><code>v.clear ()</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>void</code> </td>
</tr>
<tr>
<td>Resize </td>
<td><code>v.resize (n)</code> </td>
<td><code>v</code> is mutable.</td>
<td><code>void</code> </td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs from, or is
not defined in <a href="expression.htm#vector_expression">Vector Expression</a>
.</p>
<table border="1">
<tbody>
<tr>
<th>Name </th>
<th>Expression </th>
<th>Precondition </th>
<th>Semantics </th>
<th>Postcondition </th>
</tr>
<tr>
<td>Sizing constructor </td>
<td><code>V v (n)</code> </td>
<td><code>n &gt;= 0</code> </td>
<td>Creates a vector of <code>n</code> elements. </td>
<td><code>v.size () == n</code>. </td>
</tr>
<tr>
<td>Insert </td>
<td><code>v.insert (i, t)</code> </td>
<td><code>0 &lt;= i &lt; v.size ()</code> and <br>
<code>v (i)</code> is a copy of <code>value_type ()</code>.</td>
<td>A copy of <code>t</code> is inserted in <code>v</code>.
</td>
<td><code>v (i)</code> is a copy of <code>t</code>.</td>
</tr>
<tr>
<td>Erase </td>
<td><code>v.erase (i)</code> </td>
<td><code>0 &lt;= i &lt; v.size ()</code> </td>
<td>Destroys the element <code>v (i)</code> and replaces
it with <code>value_type ()</code>. </td>
<td><code>v (i)</code> is a copy of <code>value_type ()</code>.
</td>
</tr>
<tr>
<td>Clear </td>
<td><code>v.clear ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to <br>
<code>for (i = 0; i &lt; v.size (); ++ i)</code><br>
&nbsp; <code>v.erase (i);</code> </td>
<td>&nbsp; </td>
</tr>
<tr>
<td>Resize </td>
<td><code>v.resize (n)</code> </td>
<td>&nbsp;</td>
<td>Modifies the vector so that it can hold <code>n</code>
elements. </td>
<td><code>v.size () == n</code>. </td>
</tr>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the sizing constructor is linear in the vector's
size. </p>
<p>The run-time complexity of insert and erase is specific for the vector.</p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>vector&lt;T, A&gt;</code></li>
<li><code>unit_vector&lt;T&gt;</code></li>
<li><code>zero_vector&lt;T&gt;</code></li>
<li><code>sparse_vector&lt;T, A&gt;</code></li>
</ul>
<h2><a name="matrix"></a>
Matrix </h2>
<h4>Description</h4>
<p>A Matrix describes common aspects of dense, packed and sparse matrices.
</p>
<h4>Refinement of </h4>
<p><a href="expression.htm#matrix_expression">Matrix Expression</a>
.</p>
<h4>Associated types</h4>
<table border="1">
<tbody>
<tr>
<td>Value type </td>
<td><code>value_type</code> </td>
<td>The type of the matrix. </td>
</tr>
<tr>
<td>Distance type </td>
<td><code>difference_type</code> </td>
<td>A signed integral type used to represent the distance
between two of the matrix's iterators. </td>
</tr>
<tr>
<td>Size type </td>
<td><code>size_type</code> </td>
<td>An unsigned integral type that can represent any nonnegative
value of the matrix's distance type. </td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0">
<tbody>
<tr>
<td><code>M</code> </td>
<td>A type that is a model of Matrix</td>
</tr>
<tr>
<td><code>m</code></td>
<td>Objects of type <code>M</code> </td>
</tr>
<tr>
<td><code>n1, n2, i, j</code></td>
<td>Objects of a type convertible to <code>size_type</code>
</td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code>
</td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in <a href="expression.htm#matrix_expression">
Matrix Expression</a>
the following expressions must be valid. </p>
<table border="1">
<tbody>
<tr>
<th>Name </th>
<th>Expression </th>
<th>Type requirements </th>
<th>Return type </th>
</tr>
<tr>
<td>Sizing constructor </td>
<td><code>M m (n1, n2)</code> </td>
<td>&nbsp;</td>
<td><code>M</code></td>
</tr>
<tr>
<td>Insert </td>
<td><code>m.insert (i, j, t)</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Erase </td>
<td><code>m.erase (i, j)</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Clear </td>
<td><code>m.clear ()</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>void</code> </td>
</tr>
<tr>
<td>Resize </td>
<td><code>m.resize (n1, n2)</code> </td>
<td><code>m</code> is mutable.</td>
<td><code>void</code> </td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs from, or is
not defined in <a href="expression.htm#matrix_expression">Matrix Expression</a>
.</p>
<table border="1">
<tbody>
<tr>
<th>Name </th>
<th>Expression </th>
<th>Precondition </th>
<th>Semantics </th>
<th>Postcondition </th>
</tr>
<tr>
<td>Sizing constructor </td>
<td><code>M m (n1, n2)</code> </td>
<td><code>n1 &gt;= 0</code> and<code> n2 &gt;= 0</code></td>
<td>Creates a matrix of <code>n1 </code>rows and <code>n2</code>
columns. </td>
<td><code>m.size1 () == n1</code> and <code>m.size2 () ==
n2</code>.</td>
</tr>
<tr>
<td>Insert </td>
<td><code>m.insert (i, j, t)</code> </td>
<td><code>0 &lt;= i &lt; m.size1 ()</code>, <br>
<code>0 &lt;= j &lt; m.size2 ()</code>and <code><br>
m (i, j)</code> is a copy of <code>value_type ()</code>.</td>
<td>A copy of <code>t</code> is inserted in <code>m</code>.
</td>
<td><code>m (i, j)</code> is a copy of <code>t</code>.</td>
</tr>
<tr>
<td>Erase </td>
<td><code>m.erase (i, j)</code> </td>
<td><code>0 &lt;= i &lt; m.size1 ()</code>and <code><br>
0 &lt;= j &lt; m.size2 </code></td>
<td>Destroys the element <code>m (i, j)</code> and replaces
it with <code>value_type ()</code>. </td>
<td><code>m (i, j)</code> is a copy of <code>value_type
()</code>. </td>
</tr>
<tr>
<td>Clear </td>
<td><code>m.clear ()</code> </td>
<td>&nbsp; </td>
<td>Equivalent to<br>
<code>for (i = 0; i &lt; m.size1 (); ++ i)</code><br>
&nbsp; <code>for (j = 0; j &lt; m.size2 (); ++ j)</code><br>
&nbsp; &nbsp; <code>m.erase (i, j);</code> </td>
<td>&nbsp; </td>
</tr>
<tr>
<td>Resize </td>
<td><code>m.resize (n1, n2)</code> </td>
<td>&nbsp;</td>
<td>Modifies the vector so that it can hold <code>n1 </code>rows
and <code>n2</code> columns. </td>
<td><code>m.size1 () == n1</code> and <code>m.size2 () ==
n2</code>.</td>
</tr>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the sizing constructor is quadratic in the
matrix's size. </p>
<p>The run-time complexity of insert and erase is specific for the matrix.</p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>matrix&lt;T, F, A&gt;</code></li>
<li><code>identity_matrix&lt;T&gt;</code></li>
<li><code>zero_matrix&lt;T&gt;</code></li>
<li><code>triangular_matrix&lt;T, F1, F2, A&gt;</code></li>
<li><code>symmetric_matrix&lt;T, F1, F2, A&gt;</code></li>
<li><code>banded_matrix&lt;T, F, A&gt;</code></li>
<li><code>sparse_matrix&lt;T, F, A&gt;</code></li>
</ul>
<hr>
<p>Copyright (&copy;) 2000-2002 Joerg Walter, Mathias Koch <br>
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
``as is'' without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
<p>Last revised: 1/15/2003</p>
</body>
</html>