2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-02-09 23:42:23 +00:00
Files
ublas/doc/operations_overview.htm
Michael Stevens f7587ed34d clarified aliases
svn path=/trunk/boost/libs/numeric/ublas/; revision=29580
2005-06-15 08:49:23 +00:00

202 lines
7.9 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" />
<meta name="GENERATOR" content="Quanta Plus" />
<meta http-equiv="Content-Type" content=
"text/html; charset=us-ascii" />
<link href="ublas.css" type="text/css" />
<title>uBLAS operations overview</title>
</head>
<body>
<h1><img src="../../../../boost.png" align="middle" />
Overview of Matrix and Vector Operations</h1>
<dl>
<dt>Contents:</dt>
<dd><a href="#blas">Basic Linear Algebra</a></dd>
<dd><a href="#advanced">Advanced Functions</a></dd>
<dd><a href="#sub">Submatrices, Subvectors</a></dd>
<dd><a href="#speed">Speed Improvements</a></dd>
</dl>
<h3>Definitions:</h3>
<table style="" summary="notation">
<tr><td><code>A, B, C</code></td>
<td> are matrices</td></tr>
<tr><td><code>u, v, w</code></td>
<td>are vectors</td></tr>
<tr><td><code>i, j, k</code></td>
<td>are integer values</td></tr>
<tr><td><code>t, t1, t2</code></td>
<td>are scalar values</td></tr>
<tr><td><code>r, r1, r2</code></td>
<td>are <a href="range.htm">ranges</a>, e.g. <code>range(0, 3)</code></td></tr>
<tr><td><code>s, s1, s2</code></td>
<td>are <a href="range.htm#slice">slices</a>, e.g. <code>slice(0, 1, 3)</code></td></tr>
</table>
<h2><a name="blas">Basic Linear Algebra</a></h2>
<h3>standard operations: addition, subtraction, multiplication by a
scalar</h3>
<pre><code>
C = A + B; C = A - B; C = -A;
w = u + v; w = u - v; w = -u;
C = t * A; C = A * t; C = A / t;
w = t * u; w = u * t; w = u / t;
</code></pre>
<h3>computed assignements</h3>
<pre><code>
C += A; C -= A;
w += u; w -= u;
C *= t; C /= t;
w *= t; w /= t;
</code></pre>
<h3>inner, outer and other products</h3>
<pre><code>
t = inner_prod(u, v);
C = outer_prod(u, v);
w = prod(A, u); w = prod(u, A); w = prec_prod(A, u); w = prec_prod(u, A);
C = prod(A, B); C = prec_prod(A, B);
w = element_prod(u, v); w = element_div(u, v);
C = element_prod(A, B); C = element_div(A, B);
</code></pre>
<h3>transformations</h3>
<pre><code>
w = conj(u); w = real(u); w = imag(u);
C = trans(A); C = conj(A); C = herm(A); C = real(A); C = imag(A);
</code></pre>
<h2><a name="advanced">Advanced functions</a></h2>
<h3>norms</h3>
<pre><code>
t = norm_inf(v); i = index_norm_inf(v);
t = norm_1(v); t = norm_2(v);
t = norm_inf(A); i = index_norm_inf(A);
t = norm_1(A); t = norm_frobenius(A);
</code></pre>
<h3>products</h3>
<pre><code>
axpy_prod(A, u, w, true); // w = A * u
axpy_prod(A, u, w, false); // w += A * u
axpy_prod(u, A, w, true); // w = trans(A) * u
axpy_prod(u, A, w, false); // w += trans(A) * u
axpy_prod(A, B, C, true); // C = A * B
axpy_prod(A, B, C, false); // C += A * B
</code></pre>
<p><em>Note:</em> The last argument (<code>bool init</code>) of
<code>axpy_prod</code> is optional. Currently it defaults to
<code>true</code>, but this may change in the future. Set the
<code>init</code> to <code>true</code> is equivalent to call
<code>w.clear()</code> before <code>axpy_prod</code>. Up to now
there are some specialisation for compressed matrices that give a
large speed up compared to <code>prod</code>.</p>
<pre><code>
w = block_prod&lt;matrix_type, 64&gt; (A, u); // w = A * u
w = block_prod&lt;matrix_type, 64&gt; (u, A); // w = trans(A) * u
C = block_prod&lt;matrix_type, 64&gt; (A, B); // w = A * B
</code></pre>
<p><em>Note:</em> The blocksize can be any integer. However, the
total speed depends very strong on the combination of blocksize,
CPU and compiler. The function <code>block_prod</code> is designed
for large dense matrices.</p>
<h3>rank-k updates</h3>
<pre><code>
opb_prod(A, B, C, true); // C = A * B
opb_prod(A, B, C, false); // C += A * B
</code></pre>
<p><em>Note:</em> The last argument (<code>bool init</code>) of
<code>opb_prod</code> is optional. Currently it defaults to
<code>true</code>, but this may change in the future. This function
may give a speedup if <code>A</code> has less columns than rows,
because the product is computed as a sum of outer products.</p>
<h2><a name="sub">Submatrices, Subvectors</a></h2>
<p><em>Note:</em> A range <code>r = range(start, stop)</code>
contains all indices <code>i</code> with <code>start &lt;= i &lt;
stop</code>. A slice is something more general. The slice
<code>s = slice(start, stride, size)</code> contains the indices
<code>start, start+stride, ..., start+(size-1)*stride</code>. The
stride can be 0 or negative! If <code>start >= stop</code> for a range
or <code>size == 0</code> for a slice then it contains no elements.</p>
<pre><code>
w = project(u, r); // a subvector of u specifed by the index range r
w = project(u, s); // a subvector of u specifed by the index slice s
C = project(A, r1, r2); // a submatrix of A specified by the two index ranges r1 and r2
C = project(A, s1, s2); // a submatrix of A specified by the two index slices s1 and s2
w = row(A, i); w = column(A, j); // a row or column of matrix as a vector
</code></pre>
<p>There are to more ways to access some matrix elements as a
vector:</p>
<pre><code>matrix_vector_range&lt;matrix_type&gt; (A, r1, r2);
matrix_vector_slice&lt;matrix_type&gt; (A, s1, s2);
</code></pre>
<p><em>Note:</em> These matrix proxies take a sequence of elements
of a matrix and allow you to access these as a vector. In
particular <code>matrix_vector_slice</code> can do this in a very
general way. <code>matrix_vector_range</code> is less useful as the
elements must lie along a diagonal.</p>
<p><em>Example:</em> To access the first two elements of a sub
column of a matrix we access the row with a slice with stride 1 and
the column with a slice with stride 0 thus:<br />
<code>matrix_vector_slice&lt;matrix_type&gt; (A, slice(0,1,2),
slice(0,0,2));
</code></p>
<h2><a name="speed">Speed improvements</a></h2>
<a name='noalias'>
<h3>Matrix / Vector assignment</h3></a>
<p>If you know for sure that the left hand expression and the right
hand expression have no common storage, then assignment has
no <em>aliasing</em>. A more efficient assignment can be specified
in this case:</p>
<pre><code>noalias(C) = prod(A, B);
</code></pre>
<p>This avoids the creation of a temporary matrix that is required in a normal assignment.
'noalias' assignment requires that the left and right hand side be size conformant.</p>
<h3>Sparse element access</h3>
<p>The matrix element access function <code>A(i1,i2)</code> or the equivalent vector
element access functions (<code>v(i) or v[i]</code>) usually create 'sparse element proxies'
when applied to a sparse matrix or vector. These <em>proxies</em> allow access to elements
without having to worry about nasty C++ issues where references are invalidated.</p>
<p>These 'sparse element proxies' can be implemented more efficiently when applied to <code>const</code>
objects.
Sadly in C++ there is no way to distinguish between an element access on the left and right hand side of
an assignment. Most often elements on the right hand side will not be changed and therefore it would
be better to use the <code>const</code> proxies. We can do this by making the matrix or vector
<code>const</code> before accessing it's elements. For example:</p>
<pre><code>value = const_cast&lt;const VEC&&gt;(v)[i]; // VEC is the type of V
</code></pre>
<p>If more then one element needs to be accessed <code>const_iterator</code>'s should be used
in preference to <code>iterator</code>'s for the same reason. For the more daring 'sparse element proxies'
can be completely turned off in uBLAS by defining the configuration macro <code>BOOST_UBLAS_NO_ELEMENT_PROXIES</code>.
</p>
<hr />
<p>Copyright (&copy;) 2000-2004 Joerg Walter, Mathias Koch, Gunter
Winkler, Michael Stevens<br />
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>