mirror of
https://github.com/boostorg/ublas.git
synced 2026-01-20 17:12:15 +00:00
fix macro for MSVC adding noexcept fixing test and making changes adding comparison test and adding resolving issue changing extents API fixing MSVC errors fixing MSVC error adding static prod function and adding std::array to static extents and static strides fixing get_number_list refactoring meta_function into type_traits and adding staic_traits for static_extents fixing extents_result_type_outer_prod and combining static_functions and functions removing unnecessary code and header file removing unnecessary forward declaration private member resize and adding removed constructors for matrix and vector changing size_t to std::size_t and fixing stride_t adding is_resizable type trait for tensor resizing improve documenting of is_resizable refactoring code changing msvc version in .yml changing toolset msvc-14.1 to msvc-14.16 and adding VSCLCOMPILER changing toolset msvc-14.2 and image to VS 2019 refactoring code and adding new matrix to appveyor adding VS 2019 with msvc-14.1 and disabling VS 2019 with msvc-14.2 and c++2a adding VS 2019 with msvc-14.2 and changing flag to latest removing VS 2019 with msvc-14.2 and c++17 and adding timeout to travis.yml travis_wait workaround removing VS 2017 from appveyor and refactoring code adding clang support for c++17 and c++20 and refactoring code changing dist to bionic and adding source link to clang 10 fixing travis, bugs and adding new examples fixing example bugs for msvc updating licence and adding test_expression to jamfile adding new tests, refactoring code and fixing bugs fix for msvc c++20 fixing memory problem due to BOOST_AUTO_TEST_SUITE macro defining after fixture removing const from tests and enabling test_tensor.cpp removing const from test_fixed_rank_expression_evaluation.cpp fixing msvc bug fixing msvc-14.2 bug for c++ latest where it cannot properly capture variables in lambda func disintegrating tests into smaller units reducing test_types for testing reducing tests reducing test_types for testing in operator arithmetic improving msvc warinings and separating test_function.cpp into it's own module
494 lines
14 KiB
C++
494 lines
14 KiB
C++
//
|
|
// Copyright (c) 2018-2020, Cem Bassoy, cem.bassoy@gmail.com
|
|
// Copyright (c) 2019-2020, Amit Singh, amitsingh19975@gmail.com
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// The authors gratefully acknowledge the support of
|
|
// Google and Fraunhofer IOSB, Ettlingen, Germany
|
|
//
|
|
|
|
|
|
|
|
#include <random>
|
|
#include <boost/numeric/ublas/tensor/tensor.hpp>
|
|
|
|
#ifndef BOOST_TEST_DYN_LINK
|
|
#define BOOST_TEST_DYN_LINK
|
|
#endif
|
|
|
|
#define BOOST_TEST_MODULE TestDynamicTensor
|
|
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
#include "utility.hpp"
|
|
|
|
// BOOST_AUTO_TEST_SUITE ( test_tensor, * boost::unit_test::depends_on("test_extents") ) ;
|
|
BOOST_AUTO_TEST_SUITE ( test_tensor )
|
|
|
|
using test_types = zip<int,float,std::complex<float>>::with_t<boost::numeric::ublas::first_order, boost::numeric::ublas::last_order>;
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE( test_tensor_ctor, value, test_types)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
auto a1 = tensor_type{};
|
|
BOOST_CHECK_EQUAL( a1.size() , 0ul );
|
|
BOOST_CHECK( a1.empty() );
|
|
BOOST_CHECK_EQUAL( a1.data() , nullptr);
|
|
|
|
auto a2 = tensor_type{1,1};
|
|
BOOST_CHECK_EQUAL( a2.size() , 1 );
|
|
BOOST_CHECK( !a2.empty() );
|
|
BOOST_CHECK_NE( a2.data() , nullptr);
|
|
|
|
auto a3 = tensor_type{2,1};
|
|
BOOST_CHECK_EQUAL( a3.size() , 2 );
|
|
BOOST_CHECK( !a3.empty() );
|
|
BOOST_CHECK_NE( a3.data() , nullptr);
|
|
|
|
auto a4 = tensor_type{1,2};
|
|
BOOST_CHECK_EQUAL( a4.size() , 2 );
|
|
BOOST_CHECK( !a4.empty() );
|
|
BOOST_CHECK_NE( a4.data() , nullptr);
|
|
|
|
auto a5 = tensor_type{2,1};
|
|
BOOST_CHECK_EQUAL( a5.size() , 2 );
|
|
BOOST_CHECK( !a5.empty() );
|
|
BOOST_CHECK_NE( a5.data() , nullptr);
|
|
|
|
auto a6 = tensor_type{4,3,2};
|
|
BOOST_CHECK_EQUAL( a6.size() , 4*3*2 );
|
|
BOOST_CHECK( !a6.empty() );
|
|
BOOST_CHECK_NE( a6.data() , nullptr);
|
|
|
|
auto a7 = tensor_type{4,1,2};
|
|
BOOST_CHECK_EQUAL( a7.size() , 4*1*2 );
|
|
BOOST_CHECK( !a7.empty() );
|
|
BOOST_CHECK_NE( a7.data() , nullptr);
|
|
|
|
|
|
}
|
|
|
|
|
|
struct fixture
|
|
{
|
|
using extents_type = boost::numeric::ublas::basic_extents<std::size_t>;
|
|
fixture()
|
|
: extents {
|
|
extents_type{}, // 0
|
|
extents_type{1,1}, // 1
|
|
extents_type{1,2}, // 2
|
|
extents_type{2,1}, // 3
|
|
extents_type{2,3}, // 4
|
|
extents_type{2,3,1}, // 5
|
|
extents_type{4,1,3}, // 6
|
|
extents_type{1,2,3}, // 7
|
|
extents_type{4,2,3}, // 8
|
|
extents_type{4,2,3,5}} // 9
|
|
{
|
|
}
|
|
std::vector<extents_type> extents;
|
|
};
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_ctor_extents, value, test_types, fixture )
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
auto check = [](auto const& e) {
|
|
auto t = tensor_type{e};
|
|
BOOST_CHECK_EQUAL ( t.size() , product(e) );
|
|
BOOST_CHECK_EQUAL ( t.rank() , e.size() );
|
|
if(e.empty()) {
|
|
BOOST_CHECK ( t.empty() );
|
|
BOOST_CHECK_EQUAL ( t.data() , nullptr);
|
|
}
|
|
else{
|
|
BOOST_CHECK ( !t.empty() );
|
|
BOOST_CHECK_NE ( t.data() , nullptr);
|
|
}
|
|
};
|
|
|
|
for(auto const& e : extents)
|
|
check(e);
|
|
}
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_copy_ctor, value, test_types, fixture )
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
auto check = [](auto const& e)
|
|
{
|
|
auto r = tensor_type{e};
|
|
auto t = r;
|
|
BOOST_CHECK_EQUAL ( t.size() , r.size() );
|
|
BOOST_CHECK_EQUAL ( t.rank() , r.rank() );
|
|
BOOST_CHECK ( t.strides() == r.strides() );
|
|
BOOST_CHECK ( t.extents() == r.extents() );
|
|
|
|
if(e.empty()) {
|
|
BOOST_CHECK ( t.empty() );
|
|
BOOST_CHECK_EQUAL ( t.data() , nullptr);
|
|
}
|
|
else{
|
|
BOOST_CHECK ( !t.empty() );
|
|
BOOST_CHECK_NE ( t.data() , nullptr);
|
|
}
|
|
|
|
for(auto i = 0ul; i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], r[i] );
|
|
};
|
|
|
|
for(auto const& e : extents)
|
|
check(e);
|
|
}
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_copy_ctor_layout, value, test_types, fixture )
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
using other_layout_type = std::conditional_t<std::is_same<ublas::first_order,layout_type>::value, ublas::last_order, ublas::first_order>;
|
|
using other_tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>, other_layout_type>;
|
|
|
|
|
|
for(auto const& e : extents)
|
|
{
|
|
auto r = tensor_type{e};
|
|
other_tensor_type t = r;
|
|
tensor_type q = t;
|
|
|
|
BOOST_CHECK_EQUAL ( t.size() , r.size() );
|
|
BOOST_CHECK_EQUAL ( t.rank() , r.rank() );
|
|
BOOST_CHECK ( t.extents() == r.extents() );
|
|
|
|
BOOST_CHECK_EQUAL ( q.size() , r.size() );
|
|
BOOST_CHECK_EQUAL ( q.rank() , r.rank() );
|
|
BOOST_CHECK ( q.strides() == r.strides() );
|
|
BOOST_CHECK ( q.extents() == r.extents() );
|
|
|
|
for(auto i = 0ul; i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( q[i], r[i] );
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_copy_move_ctor, value, test_types, fixture )
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
auto check = [](auto const& e)
|
|
{
|
|
auto r = tensor_type{e};
|
|
auto t = std::move(r);
|
|
BOOST_CHECK_EQUAL ( t.size() , product(e) );
|
|
BOOST_CHECK_EQUAL ( t.rank() , e.size() );
|
|
|
|
if(e.empty()) {
|
|
BOOST_CHECK ( t.empty() );
|
|
BOOST_CHECK_EQUAL ( t.data() , nullptr);
|
|
}
|
|
else{
|
|
BOOST_CHECK ( !t.empty() );
|
|
BOOST_CHECK_NE ( t.data() , nullptr);
|
|
}
|
|
|
|
};
|
|
|
|
for(auto const& e : extents)
|
|
check(e);
|
|
}
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_ctor_extents_init, value, test_types, fixture )
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
std::random_device device{};
|
|
std::minstd_rand0 generator(device());
|
|
|
|
using distribution_type = std::conditional_t<std::is_integral_v<value_type>, std::uniform_int_distribution<>, std::uniform_real_distribution<> >;
|
|
auto distribution = distribution_type(1,6);
|
|
|
|
for(auto const& e : extents){
|
|
auto r = value_type( static_cast< inner_type_t<value_type> >(distribution(generator)) );
|
|
auto t = tensor_type{e,r};
|
|
for(auto i = 0ul; i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], r );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_ctor_extents_array, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
using array_type = typename tensor_type::array_type;
|
|
|
|
for(auto const& e : extents) {
|
|
auto a = array_type(product(e));
|
|
auto v = value_type {};
|
|
|
|
for(auto& aa : a){
|
|
aa = v;
|
|
v += value_type{1};
|
|
}
|
|
auto t = tensor_type{e, a};
|
|
v = value_type{};
|
|
|
|
for(auto i = 0ul; i < t.size(); ++i, v+=value_type{1})
|
|
BOOST_CHECK_EQUAL( t[i], v);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_read_write_single_index_access, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
for(auto const& e : extents) {
|
|
auto t = tensor_type{e};
|
|
auto v = value_type {};
|
|
for(auto i = 0ul; i < t.size(); ++i, v+=value_type{1}){
|
|
t[i] = v;
|
|
BOOST_CHECK_EQUAL( t[i], v );
|
|
|
|
t(i) = v;
|
|
BOOST_CHECK_EQUAL( t(i), v );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_read_write_multi_index_access_at, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
auto check1 = [](const tensor_type& t)
|
|
{
|
|
auto v = value_type{};
|
|
for(auto k = 0ul; k < t.size(); ++k){
|
|
BOOST_CHECK_EQUAL(t[k], v);
|
|
v+=value_type{1};
|
|
}
|
|
};
|
|
|
|
auto check2 = [](const tensor_type& t)
|
|
{
|
|
std::array<unsigned,2> k;
|
|
auto r = std::is_same<layout_type,ublas::first_order>::value ? 1 : 0;
|
|
auto q = std::is_same<layout_type,ublas::last_order >::value ? 1 : 0;
|
|
auto v = value_type{};
|
|
for(k[r] = 0ul; k[r] < t.size(r); ++k[r]){
|
|
for(k[q] = 0ul; k[q] < t.size(q); ++k[q]){
|
|
BOOST_CHECK_EQUAL(t.at(k[0],k[1]), v);
|
|
v+=value_type{1};
|
|
}
|
|
}
|
|
};
|
|
|
|
auto check3 = [](const tensor_type& t)
|
|
{
|
|
std::array<unsigned,3> k;
|
|
using op_type = std::conditional_t<std::is_same_v<layout_type,ublas::first_order>, std::minus<>, std::plus<>>;
|
|
auto r = std::is_same_v<layout_type,ublas::first_order> ? 2 : 0;
|
|
auto o = op_type{};
|
|
auto v = value_type{};
|
|
for(k[r] = 0ul; k[r] < t.size(r); ++k[r]){
|
|
for(k[o(r,1)] = 0ul; k[o(r,1)] < t.size(o(r,1)); ++k[o(r,1)]){
|
|
for(k[o(r,2)] = 0ul; k[o(r,2)] < t.size(o(r,2)); ++k[o(r,2)]){
|
|
BOOST_CHECK_EQUAL(t.at(k[0],k[1],k[2]), v);
|
|
v+=value_type{1};
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
auto check4 = [](const tensor_type& t)
|
|
{
|
|
std::array<unsigned,4> k;
|
|
using op_type = std::conditional_t<std::is_same_v<layout_type,ublas::first_order>, std::minus<>, std::plus<>>;
|
|
auto r = std::is_same_v<layout_type,ublas::first_order> ? 3 : 0;
|
|
auto o = op_type{};
|
|
auto v = value_type{};
|
|
for(k[r] = 0ul; k[r] < t.size(r); ++k[r]){
|
|
for(k[o(r,1)] = 0ul; k[o(r,1)] < t.size(o(r,1)); ++k[o(r,1)]){
|
|
for(k[o(r,2)] = 0ul; k[o(r,2)] < t.size(o(r,2)); ++k[o(r,2)]){
|
|
for(k[o(r,3)] = 0ul; k[o(r,3)] < t.size(o(r,3)); ++k[o(r,3)]){
|
|
BOOST_CHECK_EQUAL(t.at(k[0],k[1],k[2],k[3]), v);
|
|
v+=value_type{1};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
auto check = [check1,check2,check3,check4](auto const& e) {
|
|
auto t = tensor_type{e};
|
|
auto v = value_type {};
|
|
for(auto i = 0ul; i < t.size(); ++i){
|
|
t[i] = v;
|
|
v+=value_type{1};
|
|
}
|
|
|
|
if(t.rank() == 1) check1(t);
|
|
else if(t.rank() == 2) check2(t);
|
|
else if(t.rank() == 3) check3(t);
|
|
else if(t.rank() == 4) check4(t);
|
|
|
|
};
|
|
|
|
for(auto const& e : extents)
|
|
check(e);
|
|
}
|
|
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_reshape, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
for(auto const& efrom : extents){
|
|
for(auto const& eto : extents){
|
|
|
|
auto v = value_type {};
|
|
v+=value_type{1};
|
|
auto t = tensor_type{efrom, v};
|
|
for(auto i = 0ul; i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], v );
|
|
|
|
t.reshape(eto);
|
|
for(auto i = 0ul; i < std::min(product(efrom),product(eto)); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], v );
|
|
|
|
BOOST_CHECK_EQUAL ( t.size() , product(eto) );
|
|
BOOST_CHECK_EQUAL ( t.rank() , eto.size() );
|
|
BOOST_CHECK ( t.extents() == eto );
|
|
|
|
if(efrom != eto){
|
|
for(auto i = product(efrom); i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], value_type{} );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_swap, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
for(auto const& e_t : extents){
|
|
for(auto const& e_r : extents) {
|
|
|
|
auto v = value_type {} + value_type{1};
|
|
auto w = value_type {} + value_type{2};
|
|
auto t = tensor_type{e_t, v};
|
|
auto r = tensor_type{e_r, w};
|
|
|
|
std::swap( r, t );
|
|
|
|
for(auto i = 0ul; i < t.size(); ++i)
|
|
BOOST_CHECK_EQUAL( t[i], w );
|
|
|
|
BOOST_CHECK_EQUAL ( t.size() , product(e_r) );
|
|
BOOST_CHECK_EQUAL ( t.rank() , e_r.size() );
|
|
BOOST_CHECK ( t.extents() == e_r );
|
|
|
|
for(auto i = 0ul; i < r.size(); ++i)
|
|
BOOST_CHECK_EQUAL( r[i], v );
|
|
|
|
BOOST_CHECK_EQUAL ( r.size() , product(e_t) );
|
|
BOOST_CHECK_EQUAL ( r.rank() , e_t.size() );
|
|
BOOST_CHECK ( r.extents() == e_t );
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_standard_iterator, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>,layout_type>;
|
|
|
|
for(auto const& e : extents)
|
|
{
|
|
auto v = value_type {} + value_type{1};
|
|
auto t = tensor_type{e, v};
|
|
|
|
BOOST_CHECK_EQUAL( std::distance(t.begin(), t.end ()), t.size() );
|
|
BOOST_CHECK_EQUAL( std::distance(t.rbegin(), t.rend()), t.size() );
|
|
|
|
BOOST_CHECK_EQUAL( std::distance(t.cbegin(), t.cend ()), t.size() );
|
|
BOOST_CHECK_EQUAL( std::distance(t.crbegin(), t.crend()), t.size() );
|
|
|
|
if(t.size() > 0) {
|
|
BOOST_CHECK( t.data() == std::addressof( *t.begin () ) ) ;
|
|
BOOST_CHECK( t.data() == std::addressof( *t.cbegin() ) ) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_throw, value, test_types, fixture)
|
|
{
|
|
using namespace boost::numeric;
|
|
using value_type = typename value::first_type;
|
|
using layout_type = typename value::second_type;
|
|
using tensor_type = ublas::tensor<value_type, ublas::dynamic_extents<>, layout_type>;
|
|
|
|
std::vector<value_type> vec(30);
|
|
BOOST_CHECK_THROW(tensor_type({5,5},vec), std::runtime_error);
|
|
|
|
auto t = tensor_type{{5,5}};
|
|
auto i = ublas::index::index_type<4>{};
|
|
BOOST_CHECK_THROW(t.operator()(i,i,i), std::runtime_error);
|
|
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|