2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-01-24 18:32:37 +00:00
Files
ublas/test/tensor/test_static_operators_arithmetic.cpp
Cem Bassoy 231ba5f730 refactor(core): simplify and eliminate auxiliary tensor types (#115)
Auxiliary functions for extents and strides were using different
functions. Additionally, many tags were used to distinguish between
different tensor types. This patch simplifies interfaces of different
core functions and unifies functions that can process different types of
extent and stride types.
2021-09-09 11:34:14 +02:00

243 lines
6.5 KiB
C++

//
// Copyright (c) 2018, Cem Bassoy, cem.bassoy@gmail.com
// Copyright (c) 2019, Amit Singh, amitsingh19975@gmail.com
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// Google and Fraunhofer IOSB, Ettlingen, Germany
//
#include <boost/numeric/ublas/tensor.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include "utility.hpp"
BOOST_AUTO_TEST_SUITE(test_tensor_static_arithmetic_operations)
using double_extended = boost::multiprecision::cpp_bin_float_double_extended;
using test_types = zip<int,float,double_extended>::with_t<boost::numeric::ublas::layout::first_order, boost::numeric::ublas::layout::last_order>;
struct fixture
{
template<size_t... N>
using extents_type = boost::numeric::ublas::extents<N...>;
fixture() = default;
std::tuple<
extents_type<1,1>, // 1
extents_type<2,3>, // 2
extents_type<4,1,3>, // 3
extents_type<4,2,3>, // 4
extents_type<4,2,3,5> // 5
> extents;
};
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_binary_arithmetic_operations, value, test_types, fixture)
{
namespace ublas = boost::numeric::ublas;
using value_type = typename value::first_type;
using layout_type = typename value::second_type;
auto check = [](auto const& /*unused*/, auto& e)
{
using extents_type = std::decay_t<decltype(e)>;
using tensor_type = ublas::tensor_static<value_type,extents_type,layout_type>;
auto t = tensor_type ();
auto t2 = tensor_type ();
auto r = tensor_type ();
auto v = value_type {};
std::iota(t.begin(), t.end(), v);
std::iota(t2.begin(), t2.end(), v+2);
r = t + t + t + t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 3*t(i) + t2(i) );
r = t2 / (t+3) * (t+1) - t2; // r = ( t2/ ((t+3)*(t+1)) ) - t2
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), t2(i) / (t(i)+3)*(t(i)+1) - t2(i) );
r = 3+t2 / (t+3) * (t+1) * t - t2; // r = 3+( t2/ ((t+3)*(t+1)*t) ) - t2
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 3+t2(i) / (t(i)+3)*(t(i)+1)*t(i) - t2(i) );
r = t2 - t + t2 - t;
for(auto i = 0ul; i < r.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 4 );
r = tensor_type (1) + tensor_type (1);
for(auto i = 0ul; i < r.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2 );
r = t * t * t * t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), t(i)*t(i)*t(i)*t2(i) );
r = (t2/t2) * (t2/t2);
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 1 );
};
for_each_in_tuple(extents,check);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_unary_arithmetic_operations, value, test_types, fixture)
{
namespace ublas = boost::numeric::ublas;
using value_type = typename value::first_type;
using layout_type = typename value::second_type;
auto check = [](auto const& /*unused*/, auto& e)
{
using extents_type = std::decay_t<decltype(e)>;
using tensor_type = ublas::tensor_static<value_type,extents_type,layout_type>;
auto t = tensor_type ();
auto t2 = tensor_type ();
auto v = value_type {};
std::iota(t.begin(), t.end(), v);
std::iota(t2.begin(), t2.end(), v+2);
tensor_type r1 = t + 2 + t + 2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r1(i), 2*t(i) + 4 );
tensor_type r2 = 2 + t + 2 + t;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r2(i), 2*t(i) + 4 );
tensor_type r3 = (t-2) + (t-2);
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r3(i), 2*t(i) - 4 );
tensor_type r4 = (t*2) * (3*t);
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r4(i), 2*3*t(i)*t(i) );
tensor_type r5 = (t2*2) / (2*t2) * t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r5(i), (t2(i)*2) / (2*t2(i)) * t2(i) );
tensor_type r6 = (t2/2+1) / (2/t2+1) / t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r6(i), (t2(i)/2+1) / (2/t2(i)+1) / t2(i) );
};
for_each_in_tuple(extents,check);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_assign_arithmetic_operations, value, test_types, fixture)
{
namespace ublas = boost::numeric::ublas;
using value_type = typename value::first_type;
using layout_type = typename value::second_type;
auto check = [](auto const& /*unused*/, auto& e)
{
using extents_type = std::decay_t<decltype(e)>;
using tensor_type = ublas::tensor_static<value_type,extents_type,layout_type>;
auto t = tensor_type ();
auto t2 = tensor_type ();
auto r = tensor_type ();
auto v = value_type {};
std::iota(t.begin(), t.end(), v);
std::iota(t2.begin(), t2.end(), v+2);
r = t + 2;
r += t;
r += 2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2*t(i) + 4 );
r = 2 + t;
r += t;
r += 2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2*t(i) + 4 );
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2*t(i) + 4 );
r = (t-2);
r += t;
r -= 2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2*t(i) - 4 );
r = (t*2);
r *= 3;
r *= t;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), 2*3*t(i)*t(i) );
r = (t2*2);
r /= 2;
r /= t2;
r *= t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), (t2(i)*2) / (2*t2(i)) * t2(i) );
r = (t2/2+1);
r /= (2/t2+1);
r /= t2;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( r(i), (t2(i)/2+1) / (2/t2(i)+1) / t2(i) );
tensor_type q = -r;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( q(i), -r(i) );
tensor_type p = +r;
for(auto i = 0ul; i < t.size(); ++i)
BOOST_CHECK_EQUAL ( p(i), r(i) );
};
for_each_in_tuple(extents,check);
}
BOOST_AUTO_TEST_SUITE_END()