2
0
mirror of https://github.com/boostorg/ublas.git synced 2026-01-24 06:22:13 +00:00
Files
ublas/test/tensor/test_fixed_rank_functions.cpp
Cem Bassoy 231ba5f730 refactor(core): simplify and eliminate auxiliary tensor types (#115)
Auxiliary functions for extents and strides were using different
functions. Additionally, many tags were used to distinguish between
different tensor types. This patch simplifies interfaces of different
core functions and unifies functions that can process different types of
extent and stride types.
2021-09-09 11:34:14 +02:00

461 lines
15 KiB
C++

//
// Copyright (c) 2018, Cem Bassoy, cem.bassoy@gmail.com
// Copyright (c) 2019, Amit Singh, amitsingh19975@gmail.com
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// Google and Fraunhofer IOSB, Ettlingen, Germany
//
// And we acknowledge the support from all contributors.
#include <iostream>
#include <algorithm>
#include <boost/numeric/ublas/tensor.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/test/unit_test.hpp>
#include "utility.hpp"
// BOOST_AUTO_TEST_SUITE ( test_tensor_functions, * boost::unit_test::depends_on("test_tensor_contraction") )
BOOST_AUTO_TEST_SUITE ( test_tensor_extents_static_size_functions)
using test_types = zip<int,float,std::complex<float>>::with_t<boost::numeric::ublas::layout::first_order, boost::numeric::ublas::layout::last_order>;
//using test_types = zip<int>::with_t<boost::numeric::ublas::layout::first_order>;
struct fixture
{
std::tuple<
boost::numeric::ublas::extents<2>,
boost::numeric::ublas::extents<2>,
boost::numeric::ublas::extents<3>,
boost::numeric::ublas::extents<3>,
boost::numeric::ublas::extents<4>
> extents_tuple{
{1,1}, // 1
{2,3}, // 2
{2,3,1}, // 3
{4,2,3}, // 4
{4,2,3,5} // 5
};
std::vector<boost::numeric::ublas::extents<>> extents_vector =
{
{1,1}, // 1
{2,3}, // 2
{2,3,1}, // 3
{4,2,3}, // 4
{4,2,3,5} // 5
};
};
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_prod_vector, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
for_each_in_tuple(extents_tuple,[](auto const& /*unused*/, auto const& n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using tensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
using vector_t = typename tensor_t::vector_type;
auto a = tensor_t(n);
a = 2;
for (auto m = 0u; m < ublas::size(n); ++m) {
auto b = vector_t(n[m], value_t{1});
auto c = ublas::prod(a, b, m + 1);
for (auto i = 0u; i < c.size(); ++i)
BOOST_CHECK_EQUAL(c[i], value_t( static_cast< inner_type_t<value_t> >(n[m]) ) * a[i]);
}
});
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_prod_matrix, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
for_each_in_tuple(extents_tuple,[](auto const& /*unused*/, auto const & n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using tensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
using matrix_t = typename tensor_t::matrix_type;
auto a = tensor_t(n);
a = 2;
for (auto m = 0u; m < ublas::size(n); ++m) {
auto b = matrix_t ( n[m], n[m], value_t{1} );
auto c = ublas::prod(a, b, m + 1);
for (auto i = 0u; i < c.size(); ++i){
BOOST_CHECK_EQUAL(c[i], value_t( static_cast< inner_type_t<value_t> >(n[m]) ) * a[i]);
}
}
});
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_prod_tensor_1, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
auto check = [&]<std::size_t ... qs>(auto const& a, auto const& b, std::index_sequence<qs...> /*unused*/)
{
namespace ublas = boost::numeric::ublas;
constexpr auto q = sizeof...(qs);
using tensorA = std::decay_t<decltype(a)>;
using tensorB = std::decay_t<decltype(b)>;
using extentsA = typename tensorA::extents_type;
using extentsB = typename tensorB::extents_type;
static_assert(!ublas::is_static_v<extentsA> && !ublas::is_static_v<extentsB> );
constexpr auto one_of_extents_is_resizable = ublas::is_dynamic_rank_v<extentsA> ||
ublas::is_dynamic_rank_v<extentsB>;
using phi_type = std::conditional_t<one_of_extents_is_resizable,
std::vector<std::size_t>,
std::array<std::size_t,q> >;
auto phi = phi_type{};
if constexpr(std::is_same_v<phi_type,std::vector<std::size_t>>){
phi.resize(q);
}
std::iota(phi.begin(), phi.end(), std::size_t{1});
auto c = ublas::prod(a, b, phi);
auto const& na = a.extents();
auto acc = std::size_t{1};
for (auto i = 0ul; i < q; ++i){
acc *= na.at(phi.at(i)-1);
}
const auto v = value_t(acc) * a[0] * b[0];
BOOST_CHECK( std::all_of(c.begin(),c.end(),[v](auto cc){ return cc == v;}));
};
for_each_in_tuple(extents_tuple,[&](auto const& /*I*/, auto const& n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
constexpr auto modes = std::make_index_sequence<size>{};
using tensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = tensor_t(n);
auto b = tensor_t(n);
a = 2;
b = 3;
for_each_in_index(modes, a,b, check );
});
for_each_in_tuple(extents_tuple,[&](auto const& I, auto const& n){
auto const& nA = n;
auto const& nB = extents_vector[I];
constexpr auto sizeA = std::tuple_size_v<std::decay_t<decltype(n)>>;
constexpr auto modes = std::make_index_sequence<sizeA>{};
using tensorA_type = ublas::tensor_static_rank<value_t, sizeA , layout_t>;
using tensorB_type = ublas::tensor_dynamic<value_t, layout_t>;
auto a = tensorA_type(nA);
auto b = tensorB_type(nB);
a = 2;
b = 3;
for_each_in_index(modes, a,b, check );
});
for_each_in_tuple(extents_tuple,[&](auto const& I, auto const& n){
auto const& nA = extents_vector[I];
auto const& nB = n;
constexpr auto sizeB = std::tuple_size_v<std::decay_t<decltype(n)>>;
constexpr auto modes = std::make_index_sequence<sizeB>{};
using tensor_t_1 = ublas::tensor_dynamic<value_t, layout_t>;
using tensor_t_2 = ublas::tensor_static_rank<value_t, sizeB, layout_t>;
auto a = tensor_t_1(nA);
auto b = tensor_t_2(nB);
a = 2;
b = 3;
for_each_in_index(modes, a,b, check );
});
}
// TODO:
#if 0
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_prod_tensor_2, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
constexpr auto to_array = []<std::size_t ... is>(std::index_sequence<is...>/*unused*/) {
return std::array<std::size_t,sizeof...(is)>{is...};
};
auto compute_factorial = []<std::size_t ... is>(std::index_sequence<is...>/*unused*/) {
return ( 1 * ... * is );
};
/*
auto compute_factorial = [](auto const& p){
auto f = 1ul;
for(auto i = 1u; i <= p; ++i)
f *= i;
return f;
};
*/
auto permute_extents_dynamic_rank = [](auto const& pi, auto const& na){
auto nb = ublas::extents<>(na.begin(),na.end());
assert(std::size(pi) == ublas::size(na));
for(auto j = 0u; j < std::size(pi); ++j)
nb[pi[j]-1] = na[j];
return nb;
};
auto permute_extents_static_rank = []<std::size_t size>(std::array<std::size_t,size> const& pi, auto const& na){
//constexpr auto size = std::tuple_size_v<std::decay_t<decltype(na)>>;
auto na_base = na.base();
assert(std::size(pi) == size);
for(auto j = 0u; j < std::size(pi); ++j)
na_base[pi[j]-1] = na[j];
return ublas::extents<size>(na_base.begin(),na_base.end());
};
for_each_in_tuple(extents_tuple,[&](auto const& /*unused*/, auto const& n){
auto const& na = n;
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using tensorA_type = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = tensorA_type(na);
a = 2;
assert(a.rank() == size);
// auto const pa = a.rank();
auto pi = to_array(std::make_index_sequence<size>{});
constexpr auto factorial = compute_factorial(std::make_index_sequence<size>{});
// auto pi = std::vector<std::size_t>(pa);
// auto fac = compute_factorial(pa);
// std::iota(pi.begin(), pi.end(), 1);
constexpr auto factorials = std::make_index_sequence<factorial>{};
// for_each_in_tuple(factorials,[&](auto const& /*unused*/, auto const& /*unused*/){
// using tensorB_type = ublas::tensor_dynamic<value_t, layout_t>;
// const auto nb = permute_extents_dynamic_rank(pi, na);
// const auto b = tensorB_type(nb, value_t{3});
// constexpr auto modes = std::make_index_sequence<size>{};
// for_each_in_tuple(modes,[&](auto const& /*unused*/, auto const& /*unused*/){
// const auto phia = to_array(std::make_index_sequence<Q>);
// const auto phib = std::array<std::size_t>(q);
// });
// for (auto f = 0ul; f < fac; ++f) {
// for (auto q = 0ul; q <= pa; ++q) {
// auto phia = std::vector<std::size_t>(q);
// auto phib = std::vector<std::size_t>(q);
// std::iota(phia.begin(), phia.end(), 1ul);
// std::transform(phia.begin(), phia.end(), phib.begin(),
// [&pi](std::size_t i) { return pi.at(i - 1); });
// auto c = ublas::prod(a, b, phia, phib);
// auto acc = value_t(1);
// for (auto i = 0ul; i < q; ++i)
// acc *= value_t( static_cast< inner_type_t<value_t> >( a.extents().at(phia.at(i) - 1) ) );
// for (auto i = 0ul; i < c.size(); ++i)
// BOOST_CHECK_EQUAL(c[i], acc *a[0] * b[0]);
// }
// std::next_permutation(pi.begin(), pi.end());
// }
});
for_each_in_tuple(extents_tuple,[&](auto const& /*unused*/, auto & /*n*/){
// auto const& na = n;
// constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
// using tensor_t_1 = ublas::tensor_static_rank<value_t, size, layout_t>;
// auto a = tensor_t_1(na, value_t{2});
// auto const pa = a.rank();
// auto pi = std::vector<std::size_t>(pa);
// auto fac = compute_factorial(pa);
// std::iota(pi.begin(), pi.end(), 1);
// for (auto f = 0ul; f < fac; ++f) {
// auto nb = permute_extents_static_rank(pi, na);
// using tensor_t_2 = ublas::tensor_static_rank<value_t, size, layout_t>;
// auto b = tensor_t_2(nb, value_t{3});
// for (auto q = 0ul; q <= pa; ++q) {
// auto phia = std::vector<std::size_t>(q);
// auto phib = std::vector<std::size_t>(q);
// std::iota(phia.begin(), phia.end(), 1ul);
// std::transform(phia.begin(), phia.end(), phib.begin(),
// [&pi](std::size_t i) { return pi.at(i - 1); });
// auto c = ublas::prod(a, b, phia, phib);
// auto acc = value_t(1);
// for (auto i = 0ul; i < q; ++i){
// acc *= value_t( static_cast< inner_type_t<value_t> >( a.extents().at(phia.at(i) - 1) ) );
// }
// for (auto i = 0ul; i < c.size(); ++i)
// BOOST_CHECK_EQUAL(c[i], acc *a[0] * b[0]);
// }
// std::next_permutation(pi.begin(), pi.end());
// }
});
}
#endif
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_inner_prod, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
using dtensor_t = ublas::tensor_dynamic<value_t, layout_t>;
auto const body = [&](auto const& a, auto const& b){
auto c = ublas::inner_prod(a, b);
auto r = std::inner_product(a.begin(),a.end(), b.begin(),value_t(0));
BOOST_CHECK_EQUAL( c , r );
};
for_each_in_tuple(extents_tuple,[&](auto const& /*unused*/, auto & n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using stensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = stensor_t(n);
auto b = stensor_t(n);
a = 2;
b = 3;
body(a,b);
});
for_each_in_tuple(extents_tuple,[&](auto const& I, auto & n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using stensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = stensor_t(n);
auto b = dtensor_t(extents_vector[I]);
a = 2;
b = 1;
body(a,b);
});
for_each_in_tuple(extents_tuple,[&](auto const& I, auto & n){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n)>>;
using stensor_t = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = dtensor_t(extents_vector[I]);
auto b = stensor_t(n);
a = 2;
b = 1;
body(a,b);
});
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( test_tensor_extents_static_size_outer_prod, value, test_types, fixture )
{
namespace ublas = boost::numeric::ublas;
using value_t = typename value::first_type;
using layout_t = typename value::second_type;
for_each_in_tuple(extents_tuple,[&](auto const& /*unused*/, auto const& n1){
constexpr auto size1 = std::tuple_size_v<std::decay_t<decltype(n1)>>;
using tensor_t_1 = ublas::tensor_static_rank<value_t, size1, layout_t>;
auto a = tensor_t_1(n1);
a = 2;
for_each_in_tuple(extents_tuple,[&](auto const& /*J*/, auto const& n2){
constexpr auto size2 = std::tuple_size_v<std::decay_t<decltype(n2)>>;
using tensor_t_2 = ublas::tensor_static_rank<value_t, size2, layout_t>;
auto b = tensor_t_2(n2);
b = 1;
auto c = ublas::outer_prod(a, b);
BOOST_CHECK ( std::all_of(c.begin(),c.end(), [&a,&b](auto cc){return cc == a[0]*b[0];}) );
});
});
for_each_in_tuple(extents_tuple,[&](auto const& I, auto const& /*n1*/){
using tensor_t_1 = ublas::tensor_dynamic<value_t, layout_t>;
auto a = tensor_t_1(extents_vector[I]);
a = 2;
for_each_in_tuple(extents_tuple,[&](auto const& /*J*/, auto const& n2){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n2)>>;
using tensor_t_2 = ublas::tensor_static_rank<value_t, size, layout_t>;
auto b = tensor_t_2(n2);
b = 1;
auto c = ublas::outer_prod(a, b);
BOOST_CHECK ( std::all_of(c.begin(),c.end(), [&a,&b](auto cc){return cc == a[0]*b[0];}) );
// for(auto const& cc : c)
// BOOST_CHECK_EQUAL( cc , a[0]*b[0] );
});
});
for_each_in_tuple(extents_tuple,[&](auto const& /*unused*/, auto const& n1){
constexpr auto size = std::tuple_size_v<std::decay_t<decltype(n1)>>;
using tensor_t_1 = ublas::tensor_static_rank<value_t, size, layout_t>;
auto a = tensor_t_1(n1);
a = 2;
for(auto const& n2 : extents_vector){
using tensor_t_2 = ublas::tensor_dynamic<value_t, layout_t>;
auto b = tensor_t_2(n2);
b = 1;
auto c = ublas::outer_prod(a, b);
BOOST_CHECK ( std::all_of(c.begin(),c.end(), [&a,&b](auto cc){return cc == a[0]*b[0];}) );
// for(auto const& cc : c)
// BOOST_CHECK_EQUAL( cc , a[0]*b[0] );
}
});
}
BOOST_AUTO_TEST_SUITE_END()