From 98ff2be4e562ac486cbb01b5322f3591ff67fda5 Mon Sep 17 00:00:00 2001 From: Michael Stevens Date: Fri, 27 Aug 2004 13:24:32 +0000 Subject: [PATCH] fixed broken links [SVN r24785] --- doc/blas.htm | 20 ++++++++++---------- doc/overview.htm | 2 +- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/doc/blas.htm b/doc/blas.htm index dbbea932..7613506a 100644 --- a/doc/blas.htm +++ b/doc/blas.htm @@ -22,22 +22,22 @@ template<class M1, class T, class M2, class M3> M1 & boost::numeric::ublas::blas_3::tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)  triangular matrix multiplication

-template<class M1, class T, class M2, class C> M1 & boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C) +template<class M1, class T, class M2, class C> M1 & boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C)  triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix

-template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) +template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)  general matrix multiplication

-template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) +template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)  symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)

-template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) +template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)  hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)

-template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) +template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)  generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)

-template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) +template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)  generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)

template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::axpy_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true) @@ -256,7 +256,7 @@ general matrix multiplication

symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)

-
Todo:
use opb_prod()
+
Todo:
use opb_prod()
@@ -308,7 +308,7 @@ symmetric rank k update: m1 = t * m1 + t2 *

hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)

-
Todo:
use opb_prod()
+
Todo:
use opb_prod()
@@ -366,7 +366,7 @@ hermitian rank k update: m1 = t * m1 + t2 *

generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)

-
Todo:
use opb_prod()
+
Todo:
use opb_prod()
@@ -424,7 +424,7 @@ generalized symmetric rank k update: m1 = t1 * m1 + <

generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)

-
Todo:
use opb_prod()
+
Todo:
use opb_prod()
diff --git a/doc/overview.htm b/doc/overview.htm index dfcacb47..2b162424 100644 --- a/doc/overview.htm +++ b/doc/overview.htm @@ -583,7 +583,7 @@ update.

Storage Layout

uBLAS supports may different storage layouts. The full details can be -found at the Overview of Types. Most types like +found at the Overview of Types. Most types like vector<double> and matrix<double> are by default compatible to C arrays, but can also be configured to contain FORTAN compatible data.