2
0
mirror of https://github.com/boostorg/thread.git synced 2026-01-23 18:12:12 +00:00
Files
thread/test/test_thread.cpp
William E. Kempf d12508b97f Refactored thread_pool implementation
[SVN r13627]
2002-05-02 21:42:22 +00:00

802 lines
19 KiB
C++

#include <boost/thread/mutex.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/thread_pool.hpp>
#define BOOST_INCLUDE_MAIN
#include <boost/test/test_tools.hpp>
#if defined(BOOST_HAS_WINTHREADS)
# include <windows.h>
#endif
#include <list>
#include <iostream>
template <typename M>
void test_lock(M* dummy=0)
{
// Indicate testing progress...
std::cout << '.';
typedef M mutex_type;
typedef typename M::scoped_lock lock_type;
mutex_type mutex;
boost::condition condition;
// Test the lock's constructors.
{
lock_type lock(mutex, false);
BOOST_TEST(!lock);
}
lock_type lock(mutex);
BOOST_TEST(lock);
// Construct and initialize an xtime for a fast time out.
boost::xtime xt;
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
// Test the lock and the mutex with condition variables.
// No one is going to notify this condition variable. We expect to
// time out.
BOOST_TEST(condition.timed_wait(lock, xt) == false);
BOOST_TEST(lock);
// Test the lock and unlock methods.
lock.unlock();
BOOST_TEST(!lock);
lock.lock();
BOOST_TEST(lock);
}
template <typename M>
void test_trylock(M* dummy=0)
{
// Indicate testing progress...
std::cout << '.';
typedef M mutex_type;
typedef typename M::scoped_try_lock try_lock_type;
mutex_type mutex;
boost::condition condition;
// Test the lock's constructors.
{
try_lock_type lock(mutex);
BOOST_TEST(lock);
}
{
try_lock_type lock(mutex, false);
BOOST_TEST(!lock);
}
try_lock_type lock(mutex, true);
BOOST_TEST(lock);
// Construct and initialize an xtime for a fast time out.
boost::xtime xt;
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
// Test the lock and the mutex with condition variables.
// No one is going to notify this condition variable. We expect to
// time out.
BOOST_TEST(condition.timed_wait(lock, xt) == false);
BOOST_TEST(lock);
// Test the lock, unlock and trylock methods.
lock.unlock();
BOOST_TEST(!lock);
lock.lock();
BOOST_TEST(lock);
lock.unlock();
BOOST_TEST(!lock);
BOOST_TEST(lock.try_lock());
BOOST_TEST(lock);
}
template <typename M>
void test_timedlock(M* dummy=0)
{
// Indicate testing progress...
std::cout << '.';
typedef M mutex_type;
typedef typename M::scoped_timed_lock timed_lock_type;
mutex_type mutex;
boost::condition condition;
// Test the lock's constructors.
{
// Construct and initialize an xtime for a fast time out.
boost::xtime xt;
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
timed_lock_type lock(mutex, xt);
BOOST_TEST(lock);
}
{
timed_lock_type lock(mutex, false);
BOOST_TEST(!lock);
}
timed_lock_type lock(mutex, true);
BOOST_TEST(lock);
// Construct and initialize an xtime for a fast time out.
boost::xtime xt;
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
// Test the lock and the mutex with condition variables.
// No one is going to notify this condition variable. We expect to
// time out.
BOOST_TEST(condition.timed_wait(lock, xt) == false);
BOOST_TEST(lock);
// Test the lock, unlock and timedlock methods.
lock.unlock();
BOOST_TEST(!lock);
lock.lock();
BOOST_TEST(lock);
lock.unlock();
BOOST_TEST(!lock);
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
BOOST_TEST(lock.timed_lock(xt));
}
void test_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::mutex mutex;
test_lock<mutex>();
}
void test_try_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::try_mutex mutex;
test_lock<mutex>();
test_trylock<mutex>();
}
void test_timed_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::timed_mutex mutex;
test_lock<mutex>();
test_trylock<mutex>();
test_timedlock<mutex>();
}
void test_recursive_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::recursive_mutex mutex;
test_lock<mutex>();
mutex mx;
mutex::scoped_lock lock1(mx);
mutex::scoped_lock lock2(mx);
}
void test_recursive_try_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::recursive_try_mutex mutex;
test_lock<mutex>();
test_trylock<mutex>();
mutex mx;
mutex::scoped_lock lock1(mx);
mutex::scoped_lock lock2(mx);
}
void test_recursive_timed_mutex()
{
// Indicate testing progress...
std::cout << '.';
typedef boost::recursive_timed_mutex mutex;
test_lock<mutex>();
test_trylock<mutex>();
test_timedlock<mutex>();
mutex mx;
mutex::scoped_lock lock1(mx);
mutex::scoped_lock lock2(mx);
}
struct condition_test_data
{
condition_test_data() : notified(0), awoken(0) { }
boost::mutex mutex;
boost::condition condition;
int notified;
int awoken;
};
void condition_test_thread(void* param)
{
condition_test_data* data = static_cast<condition_test_data*>(param);
boost::mutex::scoped_lock lock(data->mutex);
BOOST_TEST(lock);
while (!(data->notified > 0))
data->condition.wait(lock);
BOOST_TEST(lock);
data->awoken++;
}
class thread_adapter
{
public:
thread_adapter(void (*func)(void*), void* param) : _func(func), _param(param) { }
void operator()() const { _func(_param); }
private:
void (*_func)(void*);
void* _param;
};
void test_condition_notify_one()
{
// Indicate testing progress...
std::cout << '.';
condition_test_data data;
boost::thread thread(thread_adapter(&condition_test_thread, &data));
{
boost::mutex::scoped_lock lock(data.mutex);
BOOST_TEST(lock);
data.notified++;
data.condition.notify_one();
}
thread.join();
BOOST_TEST(data.awoken == 1);
}
void test_condition_notify_all()
{
// Indicate testing progress...
std::cout << '.';
const int NUMTHREADS = 5;
boost::thread_group threads;
condition_test_data data;
for (int i = 0; i < NUMTHREADS; ++i)
threads.create_thread(thread_adapter(&condition_test_thread, &data));
{
boost::mutex::scoped_lock lock(data.mutex);
BOOST_TEST(lock);
data.notified++;
data.condition.notify_all();
}
threads.join_all();
BOOST_TEST(data.awoken == NUMTHREADS);
}
struct cond_predicate
{
cond_predicate(int& var, int val) : _var(var), _val(val) { }
bool operator()() { return _var == _val; }
int& _var;
int _val;
};
void condition_test_waits(void* param)
{
condition_test_data* data = static_cast<condition_test_data*>(param);
boost::mutex::scoped_lock lock(data->mutex);
BOOST_TEST(lock);
// Test wait.
while (data->notified != 1)
data->condition.wait(lock);
BOOST_TEST(lock);
BOOST_TEST(data->notified == 1);
data->awoken++;
data->condition.notify_one();
// Test predicate wait.
data->condition.wait(lock, cond_predicate(data->notified, 2));
BOOST_TEST(lock);
BOOST_TEST(data->notified == 2);
data->awoken++;
data->condition.notify_one();
// Test timed_wait.
boost::xtime xt;
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.nsec += 100000000;
while (data->notified != 3)
data->condition.timed_wait(lock, xt);
BOOST_TEST(lock);
BOOST_TEST(data->notified == 3);
data->awoken++;
data->condition.notify_one();
// Test predicate timed_wait.
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 2;
BOOST_TEST(data->condition.timed_wait(lock, xt, cond_predicate(data->notified, 4)));
BOOST_TEST(lock);
BOOST_TEST(data->notified == 4);
data->awoken++;
}
void test_condition_waits()
{
// Indicate testing progress...
std::cout << '.';
condition_test_data data;
boost::thread thread(thread_adapter(&condition_test_waits, &data));
boost::xtime xt;
{
boost::mutex::scoped_lock lock(data.mutex);
BOOST_TEST(lock);
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt);
data.notified++;
data.condition.notify_one();
while (data.awoken != 1)
data.condition.wait(lock);
BOOST_TEST(data.awoken == 1);
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt);
data.notified++;
data.condition.notify_one();
while (data.awoken != 2)
data.condition.wait(lock);
BOOST_TEST(data.awoken == 2);
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt);
data.notified++;
data.condition.notify_one();
while (data.awoken != 3)
data.condition.wait(lock);
BOOST_TEST(data.awoken == 3);
}
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt);
data.notified++;
data.condition.notify_one();
BOOST_TEST(boost::xtime_get(&xt, boost::TIME_UTC) == boost::TIME_UTC);
xt.sec += 1;
boost::thread::sleep(xt);
thread.join();
BOOST_TEST(data.awoken == 4);
}
void test_condition()
{
// Indicate testing progress...
std::cout << '.';
test_condition_notify_one();
test_condition_notify_all();
test_condition_waits();
}
boost::mutex tss_mutex;
int tss_instances = 0;
struct tss_value_t
{
tss_value_t()
{
boost::mutex::scoped_lock lock(tss_mutex);
++tss_instances;
value = 0;
}
~tss_value_t()
{
boost::mutex::scoped_lock lock(tss_mutex);
--tss_instances;
}
int value;
};
boost::thread_specific_ptr<tss_value_t> tss_value;
void test_tss_thread()
{
tss_value.reset(new tss_value_t());
for (int i=0; i<1000; ++i)
{
int& n = tss_value->value;
BOOST_TEST(n == i);
++n;
}
}
void test_tss()
{
// Indicate testing progress...
std::cout << '.';
const int NUMTHREADS=5;
boost::thread_group threads;
for (int i=0; i<NUMTHREADS; ++i)
threads.create_thread(&test_tss_thread);
threads.join_all();
BOOST_TEST(tss_instances == 0);
}
int once_value = 0;
boost::once_flag once = BOOST_ONCE_INIT;
void init_once_value()
{
once_value++;
}
void test_once_thread()
{
boost::call_once(&init_once_value, once);
}
void test_once()
{
// Indicate testing progress...
std::cout << '.';
const int NUMTHREADS=5;
boost::thread_group threads;
for (int i=0; i<NUMTHREADS; ++i)
threads.create_thread(&test_once_thread);
threads.join_all();
BOOST_TEST(once_value == 1);
}
// Shared variables for generation barrier test
const int N_THREADS=10;
boost::barrier gen_barrier(N_THREADS);
boost::mutex mutex;
long global_parameter;
void barrier_thread()
{
for (int i = 0; i < 5; ++i)
{
if (gen_barrier.wait())
{
boost::mutex::scoped_lock lock(mutex);
global_parameter++;
}
}
}
void test_barrier()
{
// Indicate testing progress...
std::cout << '.';
boost::thread_group g;
global_parameter = 0;
for (int i = 0; i < N_THREADS; ++i)
g.create_thread(&barrier_thread);
g.join_all();
BOOST_TEST(global_parameter == 5);
}
const int MAX_POOL_THREADS=8;
const int MIN_POOL_THREADS=2;
const int POOL_TIMEOUT = 2; // seconds
const int ITERATIONS=25;
boost::mutex detach_prot;
boost::condition detached;
boost::condition waiting_for_detach;
int at_detach=0;
bool pool_detached=false;
const int DETACH_THREADS=2;
// Constant to cause the cpubound thread to take approx 0.5 seconds
// to complete. Doesn't have to be exact, but should take "a while"
const double SQRT_PER_SECOND=3000000.0;
enum
{
CHATTY_WORKER,
FAST_WORKER,
SLOW_WORKER,
CPUBOUND_WORKER,
WORKER_TYPE_COUNT
};
int work_counts[WORKER_TYPE_COUNT];
class job_adapter
{
public:
job_adapter(void (*func)(void*), void* param)
: _func(func), _param(param){ }
void operator()() const { _func(_param); }
private:
void (*_func)(void*);
void* _param;
};
void chatty_worker(void *arg)
{
int id = reinterpret_cast<int>(arg);
work_counts[CHATTY_WORKER]++;
}
void fast_worker(void *)
{
work_counts[FAST_WORKER]++;
}
void slow_worker(void *)
{
boost::xtime xt;
boost::xtime_get(&xt,boost::TIME_UTC);
xt.sec++;
boost::thread::sleep(xt);
work_counts[SLOW_WORKER]++;
}
void cpubound_worker(void *)
{
double d;
double limit = SQRT_PER_SECOND/2.0;
for(d = 1.0; d < limit; d+=1.0)
{
double root = sqrt(d);
}
work_counts[CPUBOUND_WORKER]++;
}
struct recursive_args
{
boost::thread_pool *ptp;
int count;
};
void recursive_worker(void *arg)
{
recursive_args *pargs = static_cast<recursive_args *>(arg);
if(--pargs->count > 0)
pargs->ptp->add(job_adapter(recursive_worker,pargs));
}
void detach_worker(void *arg)
{
int detach_threads = reinterpret_cast<int>(arg);
boost::mutex::scoped_lock l(detach_prot);
// If we are the Nth thread to reach this, notify
// our caller that everyone is ready to detach!
if(++at_detach==detach_threads)
waiting_for_detach.notify_all();
while(!pool_detached)
detached.wait(l);
// Call slow worker to do a bit of work after this...
slow_worker(arg);
}
// Test a thread_pool with all different sorts of workers
void test_heterogeneous()
{
// Indicate testing progress...
std::cout << '.';
memset(work_counts,0,sizeof(work_counts));
boost::thread_pool tp(MAX_POOL_THREADS,MIN_POOL_THREADS,POOL_TIMEOUT);
for(int i = 0; i < ITERATIONS; i++)
{
tp.add(job_adapter(chatty_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(fast_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(slow_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(cpubound_worker,reinterpret_cast<void *>(i)));
}
tp.join();
BOOST_TEST(work_counts[CHATTY_WORKER] == ITERATIONS);
BOOST_TEST(work_counts[FAST_WORKER] == ITERATIONS);
BOOST_TEST(work_counts[SLOW_WORKER] == ITERATIONS);
BOOST_TEST(work_counts[CPUBOUND_WORKER] == ITERATIONS);
}
void test_recursive()
{
// Indicate testing progress...
std::cout << '.';
recursive_args ra;
boost::thread_pool tp;
ra.ptp = &tp;
ra.count = ITERATIONS;
// Recursive_worker will add another job to the queue before returning
tp.add(job_adapter(recursive_worker,static_cast<void *>(&ra)));
// busy wait for bottom to be reached.
while(ra.count > 0)
boost::thread::yield();
tp.join();
BOOST_TEST(ra.count == 0);
}
// Test cancellation of thread_pool operations.
void test_cancel()
{
// Indicate testing progress...
std::cout << '.';
int wc_after_cancel[WORKER_TYPE_COUNT];
memset(work_counts,0,sizeof(work_counts));
boost::thread_pool tp(MAX_POOL_THREADS,MIN_POOL_THREADS,POOL_TIMEOUT);
for(int i = 0; i < ITERATIONS; i++)
{
tp.add(job_adapter(chatty_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(fast_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(slow_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(cpubound_worker,reinterpret_cast<void *>(i)));
}
tp.cancel();
// Save our worker counts
memcpy(wc_after_cancel,work_counts,sizeof(wc_after_cancel));
// Do a bit more work to prove we can continue after a cancel
tp.add(job_adapter(chatty_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(fast_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(slow_worker,reinterpret_cast<void *>(i)));
tp.add(job_adapter(cpubound_worker,reinterpret_cast<void *>(i)));
tp.join();
// Check our counts
// As long as ITERATIONS is decently sized, there is no way
// these tasks could have completed before the cancel...
BOOST_TEST(wc_after_cancel[SLOW_WORKER] < ITERATIONS);
BOOST_TEST(wc_after_cancel[CPUBOUND_WORKER] < ITERATIONS);
// Since they could not have completed, if we are processing jobs
// in a FIFO order, the others can't have completed either.
BOOST_TEST(wc_after_cancel[CHATTY_WORKER] < ITERATIONS);
BOOST_TEST(wc_after_cancel[FAST_WORKER] < ITERATIONS);
// Check to see that more work was accomplished after the cancel.
BOOST_TEST(wc_after_cancel[SLOW_WORKER] < work_counts[SLOW_WORKER]);
BOOST_TEST(wc_after_cancel[CPUBOUND_WORKER] < work_counts[CPUBOUND_WORKER]);
BOOST_TEST(wc_after_cancel[CHATTY_WORKER] < work_counts[CHATTY_WORKER]);
BOOST_TEST(wc_after_cancel[FAST_WORKER] < work_counts[FAST_WORKER]);
}
void test_detach()
{
// Indicate testing progress...
std::cout << '.';
int wc_after_detach;
memset(work_counts,0,sizeof(work_counts));
{
boost::mutex::scoped_lock l(detach_prot);
// For detach testing, we want a known size thread pool so that we can make a better guess
// at when the detached process will finish
boost::thread_pool tp(DETACH_THREADS,0);
for(int i = 0; i < DETACH_THREADS; i++)
{
tp.add(job_adapter(detach_worker,reinterpret_cast<void *>(DETACH_THREADS)));
}
// Wait for all of the threads to reach a known point
waiting_for_detach.wait(l);
tp.detach();
wc_after_detach = work_counts[SLOW_WORKER];
// Let our threads know we've detached.
pool_detached = true;
detached.notify_all();
}
// Our detached threads should finish approx 1 sec after this.
// We could reliably sync. with the exit of detach_worker, but we
// can't reliably sync. with the cleanup of the thread_pool harness,
// so for the purposes of this test, we'll sleep 3 secs, and check some values.
boost::xtime xt;
boost::xtime_get(&xt,boost::TIME_UTC);
xt.sec += 3;
boost::thread::sleep(xt);
// Work should still complete after detach
BOOST_TEST(work_counts[SLOW_WORKER] == DETACH_THREADS);
// None of the work should have occurred before attach.
BOOST_TEST(0 == wc_after_detach);
}
void test_thread_pool()
{
test_heterogeneous();
test_recursive();
test_cancel();
test_detach();
}
int test_main(int, char*[])
{
test_mutex();
test_try_mutex();
test_timed_mutex();
test_recursive_mutex();
test_recursive_try_mutex();
test_recursive_timed_mutex();
test_condition();
test_tss();
test_once();
test_barrier();
test_thread_pool();
return 0;
}