2
0
mirror of https://github.com/boostorg/thread.git synced 2026-02-21 03:22:10 +00:00
Files
thread/doc/configuration.qbk

216 lines
9.7 KiB
Plaintext

[/
(C) Copyright 20012 Vicente J. Botet Escriba.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:configuration Configuration]
[section:system Boost.System]
Boost.Thread uses by default Boost.System to define the exceptions. For backward compatibility and also for compilers that don't work well with Boost.System the user can define `BOOST_THREAD_DONT_USE_SYSTEM `.
`BOOST_THREAD_USES_SYSTEM` is defined when Boost.Thread uses Boost.Move.
[endsect]
[section:chrono Boost.Chrono]
Boost.Thread uses by default Boost.Chrono for the time related functions. For backward compatibility and also for compilers that don't work well with Boost.Chrono the user can define `BOOST_THREAD_DONT_USE_CHRONO`. If `BOOST_THREAD_DONT_USE_SYSTEM` is defined then `BOOST_THREAD_DONT_USE_CHRONO` is defined implicitly.
`BOOST_THREAD_USES_CHRONO` is defined when Boost.Thread uses Boost.Chrono.
[endsect]
[section:move Boost.Move]
Boost.Thread uses by default an internal move semantic implementation. Since version 3.0.0 you can use the move emulation emulation provided by Boost.Move.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_USES_MOVE ` if you want to use Boost.Move interface.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_USE_MOVE ` if you want to use boost::unique_future.
[endsect]
[section:shared_gen Shared Locking Generic]
The shared mutex implementation on Windows platform provides currently less functionality than the generic one that is used for PTheads based platforms. In order to have access to these functions, the user needs to define `BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN` to use the generic implementation, that while could be less efficient, provides all the functions.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_GENERIC_SHARED_MUTEX_ON_WIN ` if you don't want these features.
[endsect]
[section:shared_upwards Shared Locking Upwards Conversion]
Boost.Threads includes in version 2 the Shared Locking Upwards Conversion as defined in [@http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html Shared Locking].
These conversions need to be used carefully to avoid deadlock or livelock. The user need to define explicitly `BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION` to get these upwards conversions.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_SHARED_MUTEX_UPWARDS_CONVERSION ` if you don't want these features.
[endsect]
[section:explicit_cnv Explicit Lock Conversion]
In [@http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html Shared Locking] the lock conversions are explicit. As this explicit conversion breaks the lock interfaces, it is provided only if the `BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION` is defined.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_EXPLICIT_LOCK_CONVERSION ` if you don't want these features.
[endsect]
[section:future unique_future versus future]
C++11 uses `std::future`. Versions of Boost.Thread previous to version 3.0.0 uses `boost:unique_future`.
Since version 3.0.0 `boost::future` replaces `boost::unique_future` when `BOOST_THREAD_PROVIDES_FUTURE` is defined. The documentation doesn't contains anymore however `boost::unique_future`.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_FUTURE` if you want to use boost::future.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_FUTURE` if you want to use boost::unique_future.
[endsect]
[section:lazy promise lazy initialization]
C++11 promise initialize the associated state at construction time. Versions of Boost.Thread previous to version 3.0.0 initialize it lazily at any point in time in which this associated state is needed.
Since version 3.0.0 this difference in behavior can be configured. When `BOOST_THREAD_PROVIDES_PROMISE_LAZY` is defined the backward compatible behavior is provided.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_DONT_PROVIDE_PROMISE_LAZY ` if you want to use boost::future.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_PROVIDES_PROMISE_LAZY ` if you want to use boost::unique_future.
[endsect]
[section:alloc promise Allocator constructor]
C++11 std::promise provides constructors with allocators.
template <typename R>
class promise
{
public:
template <class Allocator>
explicit promise(allocator_arg_t, Allocator a);
// ...
};
template <class R, class Alloc> struct uses_allocator<promise<R>,Alloc>: true_type {};
where
struct allocator_arg_t { };
constexpr allocator_arg_t allocator_arg = allocator_arg_t();
template <class T, class Alloc> struct uses_allocator;
Since version 3.0.0 Boost.Thread implements this constructor using the following interface
namespace boost
{
typedef container::allocator_arg_t allocator_arg_t;
constexpr allocator_arg_t allocator_arg = {};
namespace container
{
template <class R, class Alloc>
struct uses_allocator<promise<R>,Alloc>: true_type {};
}
template <class T, class Alloc>
struct uses_allocator : public container::uses_allocator<T, Alloc> {};
}
which introduces a dependency on Boost.Container. This feature is provided only if `BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS` is defined.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_FUTURE_CTOR_ALLOCATORS ` if you don't want these features.
[endsect]
[section:terminate Call to terminate if joinable]
C++11 has a different semantic for the thread destructor and the move assignment. Instead of detaching the thread, calls to terminate() if the thread was joinable. When `BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE` and `BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE` is defined Boost.Thread provides the C++ semantic.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE ` if you don't want these features.
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE ` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE ` if you don't want these features.
[endsect]
[section:once_flag once_flag]
C++11 defines a default constructor for once_flag. When `BOOST_THREAD_PROVIDES_ONCE_CXX11 ` is defined Boost.Thread provides this C++ semantics. In this case, the previous aggregate syntax is not supported.
boost::once_flag once = BOOST_ONCE_INIT;
You should now just do
boost::once_flag once;
When `BOOST_THREAD_VERSION==2` define `BOOST_THREAD_PROVIDES_ONCE_CXX11` if you want these features.
When `BOOST_THREAD_VERSION==3` define `BOOST_THREAD_DONT_PROVIDE_ONCE_CXX11` if you don't want these features.
[endsect]
[section:deprecated Deprecated]
Version 3.0.0 deprecates some Boost.Thread features.
These deprecated features will be provided by default up to boost 1.52. If you don't want to include the deprecated features you could define `BOOST_THREAD_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0`. Since 1.53 these features will not be included any more by default. Since this version, if you want to include the deprecated features yet you could define `BOOST_THREAD_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0`. These deprecated features will be only available until boost 1.55, that is you have 1 year and a half to move to the new features.
[endsect]
[section:version Version]
`BOOST_THREAD_VERSION` defines the Boost.Thread version.
The default version is 1. In this case the following breaking or extending macros are defined if the opposite is not requested:
* `BOOST_THREAD_PROVIDES_PROMISE_LAZY`
* `BOOST_THREAD_PROVIDES_DEPRECATED_FEATURES_SINCE_V3_0_0`
The user can request the version 2 by defining `BOOST_THREAD_VERSION` to 2. In this case the following breaking or extending macros are defined if the opposite is not requested:
* Breaking change `BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION `
* Breaking change `BOOST_THREAD_PROVIDES_FUTURE`
* Uniformity `BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN`
* Extension `BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION`
* Conformity `BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS`
* Breaking change BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE
* Breaking change BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE
* Breaking change `BOOST_THREAD_PROVIDES_ONCE_CXX11`
* Breaking change `BOOST_THREAD_DONT_PROVIDE_PROMISE_LAZY`
* Breaking change `BOOST_THREAD_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0`
[endsect]
[endsect]
[section:limitations Limitations]
Some compilers don't work correctly with some of the added features.
[section:sun SunPro]
If __SUNPRO_CC < 0x5100 the library defines
* `BOOST_THREAD_DONT_USE_MOVE`
* `BOOST_THREAD_DONT_PROVIDE_FUTURE_CTOR_ALLOCATORS`
[endsect]
[section:vacpp VACPP]
If __IBMCPP__ is defined the library defines
* `BOOST_THREAD_DONT_USE_CHRONO`
And Boost.Thread doesn't links with Boost.Chrono.
[endsect]
[endsect]