2
0
mirror of https://github.com/boostorg/thread.git synced 2026-01-22 17:52:18 +00:00
Files
thread/doc/rationale.html
2002-04-26 20:41:25 +00:00

400 lines
20 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../../../boost.css">
<title>Boost.Threads - Rationale</title>
</head>
<body link="#0000ff" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt="C++ Boost" src="../../../c++boost.gif" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center">Boost.Threads</h1>
<h2 align="center">Rationale</h2>
</td>
</tr>
</table>
<hr>
<dl class="index">
<dt><a href="#introduction">Introduction</a></dt>
<dt><a href="#library">Rationale for the Creation of <b>Boost.Threads</b></a></dt>
<dt><a href="#primitives">Rationale for the Low Level Primitives Supported in
<b>Boost.Threads</b></a></dt>
<dt><a href="#lock_objects">Rationale for the Lock Design</a></dt>
<dt><a href="#non-copyable">Rationale for NonCopyable Thread Type</a></dt>
<dt><a href="#events">Rationale for not providing <i>Event Variables</i></a></dt>
</dl>
<h2><a name="introduction"></a>Introduction</h2>
<p>This page explains the rationale behind various design decisions in the <b>Boost.Threads</b>
library. Having the rationale documented here should explain how we arrived
at the current design as well as prevent future rehashing of discussions and
thought processes that have already occurred. It can also give users a lot of
insight into the design process required for this library.</p>
<h2><a name="library"></a>Rationale for the Creation of <b>Boost.Threads</b></h2>
<p>Processes often have a degree of &quot;potential parallelism&quot; and it can
often be more intuitive to design systems with this in mind. Further, these
parallel processes can result in more responsive programs. The benefits for
multithreaded programming are quite well known to most modern programmers, yet
the C++ language doesn&#39;t directly support this concept.</p>
<p>Many platforms support multithreaded programming despite the fact that the
language doesn&#39;t support it. They do this through external libraries, which
are, unfortunately, platform specific. POSIX has tried to address this problem
through the standardization of a &quot;pthread&quot; library. However, this
is a standard only on POSIX platforms, so its portability is limited.</p>
<p>Another problem with POSIX and other platform specific thread libraries is
that they are almost universally C based libraries. This leaves several C++
specific issues unresolved, such as what happens when an exception is thrown
in a thread. Further, there are some C++ concepts, such as destructors, that
can make usage much easier than what&#39;s available in a C library.</p>
<p>What&#39;s truly needed is C++ language support for threads. However, the C++
standards committee needs existing practice or a good proposal as a starting
point for adding this to the standard.</p>
<p>The <b>Boost.Threads</b> library was developed to provide a C++ developer with
a portable interface for writing multithreaded programs on numerous platforms.
There&#39;s a hope that the library can be the basis for a more detailed proposal
for the C++ standards committee to consider for inclusion in the next C++ standard.</p>
<h2><a name="primitives"></a>Rationale for the Low Level Primitives Supported
in <b>Boost.Threads</b></h2>
<p>The <b>Boost.Threads</b> library supplies a set of low level primitives for
writing multithreaded programs, such as mutexes and condition variables. In
fact, the first release of <b>Boost.Threads</b> supports only these low level
primitives. However, computer science research has shown that use of these primitives
is difficult since it's difficult to mathematically prove that a usage pattern
is correct, meaning it doesn&#39;t result in race conditions or deadlocks. There
are several algebras (such as CSP, CCS and Join calculus) that have been developed
to help write provably correct parallel processes. In order to prove the correctness
these processes must be coded using higher level abstractions. So why does <b>Boost.Threads</b>
support the lower level concepts?</p>
<p>The reason is simple: the higher level concepts need to be implemented using
at least some of the lower level concepts. So having portable lower level concepts
makes it easier to develop the higher level concepts and will allow researchers
to experiment with various techniques.</p>
<p>Beyond this theoretical application of higher level concepts, however, the
fact remains that many multithreaded programs are written using only the lower
level concepts, so they are useful in and of themselves, even if it&#39;s hard
to prove that their usage is correct. Since many users will be familiar with
these lower level concepts but be unfamiliar with any of the higher level concepts
there&#39;s also an argument for accessibility.</p>
<h2><a name="lock_objects"></a>Rationale for the Lock Design</h2>
<p>Programmers who are used to multithreaded programming issues will quickly note
that the Boost.Thread&#39;s design for mutex lock concepts is not <a href="definitions.html#Thread-safe">thread-safe</a>
(this is clearly documented as well). At first this may seem like a serious
design flaw. Why have a multithreading primitive that&#39;s not thread-safe
itself?</p>
<p>A lock object is not a synchronization primitive. A lock object&#39;s sole
responsibility is to ensure that a mutex is both locked and unlocked in a manner
that won&#39;t result in the common error of locking a mutex and then forgetting
to unlock it. This means that instances of a lock object are only going to be
created, at least in theory, within block scope and won&#39;t be shared between
threads. Only the mutex objects will be created outside of block scope and/or
shared between threads. Though it&#39;s possible to create a lock object outside
of block scope and to share it between threads to do so would not be a typical
usage (in fact, to do so would likely be an error). Nor are there any cases
when such usage would be required.</p>
<p>Lock objects must maintain some state information. In order to allow a program
to determine if a try_lock or timed_lock was successful the lock object must
retain state indicating the success or failure of the call made in its constructor.
If a lock object were to have such state and remain thread-safe it would need
to synchronize access to the state information which would result in roughly
doubling the time of most operations. Worse, since checking the state can occur
only by a call after construction we&#39;d have a race condition if the lock
object were shared between threads.</p>
<p>So, to avoid the overhead of synchronizing access to the state information
and to avoid the race condition the <b>Boost.Threads</b> library simply does
nothing to make lock objects thread-safe. Instead, sharing a lock object between
threads results in undefined behavior. Since the only proper usage of lock objects
is within block scope this isn&#39;t a problem, and so long as the lock object
is properly used there&#39;s no danger of any multithreading issues.</p>
<h2><a name="non-copyable"></a>Rationale for NonCopyable Thread Type</h2>
<p>Programmers who are used to C libraries for multithreaded programming are likely
to wonder why <b>Boost.Threads</b> uses a noncopyable design for <a href="thread.html">boost::thread</a>.
After all, the C thread types are copyable, and you often have a need for copying
them within user code. However, careful comparison of C designs to C++ designs
shows a flaw in this logic.</p>
<p>All C types are copyable. It is, in fact, not possible to make a noncopyable
type in C. For this reason types that represent system resources in C are often
designed to behave very similarly to a pointer to dynamic memory. There&#39;s
an API for acquiring the resource and an API for releasing the resources. For
memory we have pointers as the type and alloc/free for the acquisition and release
APIs. For files we have FILE* as the type and fopen/fclose for the acquisition
and release APIs. You can freely copy instances of the types but must manually
manage the lifetime of the actual resource through the acquisition and release
APIs.</p>
<p>C++ designs recognize that the acquisition and release APIs are error prone
and try to eliminate possible errors by acquiring the resource in the constructor
and releasing it in the destructor. The best example of such a design is the
std::iostream set of classes which can represent the same resource as the FILE*
type in C. A file is opened in the std::fstream&#39;s constructor and closed
in its destructor. However, if an iostream were copyable it could lead to a
file being closed twice, an obvious error, so the std::iostream types are noncopyable
by design. This is the same design used by boost::thread, which is a simple
and easy to understand design that&#39;s consistent with other C++ standard
types.</p>
<p>During the design of boost::thread it was pointed out that it would be possible
to allow it to be a copyable type if some form of &quot;reference management&quot;
were used, such as ref-counting or ref-lists, and many argued for a boost::thread_ref
design instead. The reasoning was that copying &quot;thread&quot; objects was
a typical need in the C libraries, and so presumably would be in the C++ libraries
as well. It was also thought that implementations could provide more efficient
reference management than wrappers (such as boost::shared_ptr) around a noncopyable
thread concept. Analysis of whether or not these arguments would hold true doesn&#39;t
appear to bear them out. To illustrate the analysis we&#39;ll first provide
pseudo-code illustrating the six typical usage patterns of a thread object.</p>
<h3>1. Simple creation of a thread.</h3>
<pre>
void foo()
{
create_thread(&amp;bar);
}
</pre>
<h3>2. Creation of a thread that's later joined.</h3>
<pre>
Void foo()
{
thread = create_thread(&amp;bar);
join(thread);
}
</pre>
<h3>3. Simple creation of several threads in a loop.</h3>
<pre>
Void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
create_thread(&amp;bar);
}
</pre>
<h3>4. Creation of several threads in a loop which are later joined.</h3>
<pre>
Void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i].join();
}
</pre>
<h3>5. Creation of a thread whose ownership is passed to another object/method.</h3>
<pre>
Void foo()
{
thread = create_thread(&amp;bar);
manager.owns(thread);
}
</pre>
<h3>6. Creation of a thread whose ownership is shared between multiple objects.</h3>
<pre>
Void foo()
{
thread = create_thread(&amp;bar);
manager1.add(thread);
manager2.add(thread);
}
</pre>
<p>Of these usage patterns there&#39;s only one that requires reference management
(number 6). Hopefully it&#39;s fairly obvious that this usage pattern simply
won&#39;t occur as often as the other usage patterns. So there really isn&#39;t
a &quot;typical need&quot; for a thread concept, though there is some need.</p>
<p>Since the need isn&#39;t typical we must use different criteria for deciding
on either a thread_ref or thread design. Possible criteria include ease of use
and performance. So let&#39;s analyze both of these carefully.</p>
<p>With ease of use we can look at existing experience. The standard C++ objects
that represent a system resource, such as std::iostream, are noncopyable, so
we know that C++ programmers must at least be experienced with this design.
Most C++ developers are also used to smart pointers such as boost::shared_ptr,
so we know they can at least adapt to a thread_ref concept with little effort.
So existing experience isn&#39;t going to lead us to a choice.</p>
<p>The other thing we can look at is how difficult it is to use both types for
the six usage patterns above. If we find it overly difficult to use a concept
for any of the usage patterns there would be a good argument for choosing the
other design. So we&#39;ll code all six usage patterns using both designs.</p>
<h3>1.</h3>
<pre>
void foo()
{
thread thrd(&amp;bar);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
}
</pre>
<h3>2.</h3>
<pre>
void foo()
{
thread thrd(&amp;bar);
thrd.join();
}
void foo()
{
thread_ref thrd =
create_thread(&amp;bar);thrd-&gt;join();
}
</pre>
<h3>3.</h3>
<pre>
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread thrd(&amp;bar);
}
void foo()
{
for (int i=0; i&lt;NUM_THREADS; ++i)
thread_ref thrd = create_thread(&amp;bar);
}
</pre>
<h3>4.</h3>
<pre>
void foo()
{
std::auto_ptr&lt;thread&gt; threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = std::auto_ptr&lt;thread&gt;(new thread(&amp;bar));
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
void foo()
{
thread_ref threads[NUM_THREADS];
for (int i=0; i&lt;NUM_THREADS; ++i)
threads[i] = create_thread(&amp;bar);
for (int i= 0; i&lt;NUM_THREADS;
++i)threads[i]-&gt;join();
}
</pre>
<h3>5.</h3>
<pre>
void foo()
{
thread thrd* = new thread(&amp;bar);
manager.owns(thread);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager.owns(thrd);
}
</pre>
<h3>6.</h3>
<pre>
void foo()
{
boost::shared_ptr&lt;thread&gt; thrd(new thread(&amp;bar));
manager1.add(thrd);
manager2.add(thrd);
}
void foo()
{
thread_ref thrd = create_thread(&amp;bar);
manager1.add(thrd);
manager2.add(thrd);
}
</pre>
<p>This shows the usage patterns being nearly identical in complexity for both
designs. The only actual added complexity occurs because of the use of operator
new in (4), (5) and (6) and the use of std::auto_ptr and boost::shared_ptr in
(4) and (6) respectively. However, that&#39;s not really much added complexity,
and C++ programmers are used to using these idioms any way. Some may dislike
the presence of operator new in user code, but this can be eliminated by proper
design of higher level concepts, such as the boost::thread_group class that
simplifies example (4) down to:</p>
<pre>
void foo()
{
thread_group threads;
for (int i=0; i&lt;NUM_THREADS; ++i)
threads.create_thread(&amp;bar);
threads.join_all();
}
</pre>
<p>So ease of use is really a wash and not much help in picking a design.</p>
<p>So what about performance? If you look at the above code examples we can analyze
the theoretical impact to performance that both designs have. For (1) we can
see that platforms that don&#39;t have a ref-counted native thread type (POSIX,
for instance) will be impacted by a thread_ref design. Even if the native thread
type is ref-counted there may be an impact if more state information has to
be maintained for concepts foreign to the native API, such as clean up stacks
for Win32 implementations. For (2) the performance impact will be identical
to (1). The same for (3). For (4) things get a little more interesting and we
find that theoretically at least the thread_ref may perform faster since the
thread design requires dynamic memory allocation/deallocation. However, in practice
there may be dynamic allocation for the thread_ref design as well, it will just
be hidden from the user. As long as the implementation has to do dynamic allocations
the thread_ref loses again because of the reference management. For (5) we see
the same impact as we do for (4). For (6) we still have a possible impact to
the thread design because of dynamic allocation but thread_ref no longer suffers
because of its reference management, and in fact, theoretically at least, the
thread_ref may do a better job of managing the references. All of this indicates
that thread wins for (1), (2) and (3), with (4) and (5) the winner depends on
the implementation and the platform but the thread design probably has a better
chance, and with (6) it will again depend on the implementation and platform
but this time we favor thread_ref slightly. Given all of this it&#39;s a narrow
margin, but the thread design prevails.</p>
<p>Given this analysis, and the fact that noncopyable objects for system resources
are the normal designs that C++ programmers are used to dealing with, the <b>Boost.Threads</b>
library has gone with a noncopyable design.</p>
<h2><a name="events"></a>Rationale for not providing <i>Event Variables</i></h2>
<p><i>Event variables</i> are simply far too error-prone. <a href=
"condition.html">Condition variables</a> are a much safer alternative.</p>
<p>[Note that Graphical User Interface <i>events</i> are a different concept,
and are not what is being discussed here.]</p>
<p>Event variables were one of the first synchronization primitives. They are
still used today, for example, in the native Windows multithreading API.</p>
<p>Yet both respected computer science researchers and experienced multithreading
practitioners believe event variables are so inherently error-prone that they
should never be used, and thus should not be part of a multithreading library.</p>
<p>Per Brinch Hansen <a href="bibliography.html#Brinch-Hansen-73"> [Brinch Hansen
73]</a> analyzed event variables in some detail, pointing out [emphasis his]
that &quot;<i>event operations force the programmer to be aware of the relative
speeds of the sending and receiving processes</i>&quot;. His summary:</p>
<blockquote>
<p>We must therefore conclude that event variables of the previous type are
impractical for system design. <i>The effect of an interaction between two
processes must be independent of the speed at which it is carried out.</i></p>
</blockquote>
<p>Experienced programmers using the Windows platform today report that event
variables are a continuing source of errors, even after previous bad experiences
caused them to be very careful in their use of event variables. Overt problems
can be avoided, for example, by teaming the event variable with a mutex, but
that may just convert a <a href=
"definitions.html#Race condition">race condition</a> into another problem,
such as excessive resource use. One of the most distressing aspects of the experience
reports is the claim that many defects are latent. That is, the programs appear
to work correctly, but contain hidden timing dependencies which will cause them
to fail when environmental factors or usage patterns change, altering relative
thread timings.</p>
<p>The decision to exclude event variables from <b>Boost.Threads</b> has been
surprising to some Windows programmers. They have written programs which work
using event variables, and wonder what the problem is. It seems similar to the
&quot;goto considered harmful&quot; controversy of 30 years ago. It isn&#39;t
that events, like gotos, can&#39;t be made to work, but rather that virtually
all programs using alternatives will be easier to write, debug, read, maintain,
and be less likely to contain latent defects.</p>
<p>[Rationale provided by Beman Dawes]</p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
05 November, 2001
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>&copy; Copyright <a href="mailto:wekempf@cox.net">William E. Kempf</a> 2001-2002.
All Rights Reserved.</i></p>
<p>Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. William E. Kempf
makes no representations about the suitability of this software for any purpose.
It is provided &quot;as is&quot; without express or implied warranty.</p>
</body>
</html>