// Copyright (C) 2001 // William E. Kempf // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. William E. Kempf makes no representations // about the suitability of this software for any purpose. // It is provided "as is" without express or implied warranty. #include #include #include #include #include #include #include "timeconv.inl" #if defined(BOOST_HAS_WINTHREADS) # include # include #elif defined(BOOST_HAS_PTHREADS) # include #endif namespace boost { #if defined(BOOST_HAS_WINTHREADS) recursive_mutex::recursive_mutex() : m_count(0) { m_mutex = reinterpret_cast(CreateMutex(0, 0, 0)); if (!m_mutex) throw thread_resource_error(); } recursive_mutex::~recursive_mutex() { int res = 0; res = CloseHandle(reinterpret_cast(m_mutex)); assert(res); } void recursive_mutex::do_lock() { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } void recursive_mutex::do_unlock() { if (--m_count == 0) { int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } void recursive_mutex::do_lock(cv_state& state) { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); m_count = state; } void recursive_mutex::do_unlock(cv_state& state) { state = m_count; m_count = 0; int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } recursive_try_mutex::recursive_try_mutex() : m_count(0) { m_mutex = reinterpret_cast(CreateMutex(0, 0, 0)); if (!m_mutex) throw thread_resource_error(); } recursive_try_mutex::~recursive_try_mutex() { int res = 0; res = CloseHandle(reinterpret_cast(m_mutex)); assert(res); } void recursive_try_mutex::do_lock() { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } bool recursive_try_mutex::do_trylock() { unsigned int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), 0); assert(res != WAIT_FAILED && res != WAIT_ABANDONED); if (res == WAIT_OBJECT_0) { if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } return true; } return false; } void recursive_try_mutex::do_unlock() { if (--m_count == 0) { int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } void recursive_try_mutex::do_lock(cv_state& state) { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); m_count = state; } void recursive_try_mutex::do_unlock(cv_state& state) { state = m_count; m_count = 0; int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } recursive_timed_mutex::recursive_timed_mutex() : m_count(0) { m_mutex = reinterpret_cast(CreateMutex(0, 0, 0)); if (!m_mutex) throw thread_resource_error(); } recursive_timed_mutex::~recursive_timed_mutex() { int res = 0; res = CloseHandle(reinterpret_cast(m_mutex)); assert(res); } void recursive_timed_mutex::do_lock() { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } bool recursive_timed_mutex::do_trylock() { unsigned int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), 0); assert(res != WAIT_FAILED && res != WAIT_ABANDONED); if (res == WAIT_OBJECT_0) { if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } return true; } return false; } bool recursive_timed_mutex::do_timedlock(const xtime& xt) { unsigned milliseconds; to_duration(xt, milliseconds); unsigned int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), milliseconds); assert(res != WAIT_FAILED && res != WAIT_ABANDONED); if (res == WAIT_OBJECT_0) { if (++m_count > 1) { res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } return true; } return false; } void recursive_timed_mutex::do_unlock() { if (--m_count == 0) { int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } } void recursive_timed_mutex::do_lock(cv_state& state) { int res = 0; res = WaitForSingleObject(reinterpret_cast(m_mutex), INFINITE); assert(res == WAIT_OBJECT_0); m_count = state; } void recursive_timed_mutex::do_unlock(cv_state& state) { state = m_count; m_count = 0; int res = 0; res = ReleaseMutex(reinterpret_cast(m_mutex)); assert(res); } #elif defined(BOOST_HAS_PTHREADS) recursive_mutex::recursive_mutex() : m_count(0) # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) , m_valid_id(false) # endif { pthread_mutexattr_t attr; int res = 0; res = pthread_mutexattr_init(&attr); assert(res == 0); # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); assert(res == 0); # endif res = pthread_mutex_init(&m_mutex, &attr); if (res != 0) throw thread_resource_error(); # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_cond_init(&m_unlocked, 0); if (res != 0) { pthread_mutex_destroy(&m_mutex); throw thread_resource_error(); } # endif } recursive_mutex::~recursive_mutex() { int res = 0; res = pthread_mutex_destroy(&m_mutex); assert(res == 0); # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_cond_destroy(&m_unlocked); assert(res == 0); # endif } void recursive_mutex::do_lock() { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) if (++m_count > 1) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } # else pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) ++m_count; else { while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = tid; m_valid_id = true; m_count = 1; } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } void recursive_mutex::do_unlock() { # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) if (--m_count == 0) { int res = 0; res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } # else int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); pthread_t tid = pthread_self(); if (m_valid_id && !pthread_equal(m_thread_id, tid)) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); throw lock_error(); } if (--m_count == 0) { assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } void recursive_mutex::do_lock(cv_state& state) { # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) m_count = state.count; # else int res = 0; while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = pthread_self(); m_valid_id = true; m_count = state.count; res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } void recursive_mutex::do_unlock(cv_state& state) { # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); # endif state.pmutex = &m_mutex; state.count = m_count; } recursive_try_mutex::recursive_try_mutex() : m_count(0) # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) , m_valid_id(false) # endif { pthread_mutexattr_t attr; int res = 0; res = pthread_mutexattr_init(&attr); assert(res == 0); # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); assert(res == 0); # endif res = pthread_mutex_init(&m_mutex, &attr); if (res != 0) throw thread_resource_error(); # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_cond_init(&m_unlocked, 0); if (res != 0) { pthread_mutex_destroy(&m_mutex); throw thread_resource_error(); } # endif } recursive_try_mutex::~recursive_try_mutex() { int res = 0; res = pthread_mutex_destroy(&m_mutex); assert(res == 0); # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) res = pthread_cond_destroy(&m_unlocked); assert(res == 0); # endif } void recursive_try_mutex::do_lock() { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) if (++m_count > 1) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } # else pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) ++m_count; else { while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = tid; m_valid_id = true; m_count = 1; } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } bool recursive_try_mutex::do_trylock() { # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) int res = 0; res = pthread_mutex_trylock(&m_mutex); assert(res == 0); if (res == 0) { if (++m_count > 1) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } return true; } return false; # else int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); bool ret = false; pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) { ++m_count; ret = true; } else if (!m_valid_id) { m_thread_id = tid; m_valid_id = true; m_count = 1; ret = true; } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); return ret; # endif } void recursive_try_mutex::do_unlock() { # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) if (--m_count == 0) { int res = 0; res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } # else int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); pthread_t tid = pthread_self(); if (m_valid_id && !pthread_equal(m_thread_id, tid)) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); throw lock_error(); } if (--m_count == 0) { assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } void recursive_try_mutex::do_lock(cv_state& state) { # if defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) m_count = state.count; # else int res = 0; while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = pthread_self(); m_valid_id = true; m_count = state.count; res = pthread_mutex_unlock(&m_mutex); assert(res == 0); # endif } void recursive_try_mutex::do_unlock(cv_state& state) { # if !defined(BOOST_HAS_PTHREAD_MUTEXATTR_SETTYPE) int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); # endif state.pmutex = &m_mutex; state.count = m_count; } recursive_timed_mutex::recursive_timed_mutex() : m_valid_id(false), m_count(0) { int res = 0; res = pthread_mutex_init(&m_mutex, 0); if (res != 0) throw thread_resource_error(); res = pthread_cond_init(&m_unlocked, 0); if (res != 0) { pthread_mutex_destroy(&m_mutex); throw thread_resource_error(); } } recursive_timed_mutex::~recursive_timed_mutex() { int res = 0; res = pthread_mutex_destroy(&m_mutex); assert(res == 0); res = pthread_cond_destroy(&m_unlocked); assert(res == 0); } void recursive_timed_mutex::do_lock() { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) ++m_count; else { while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = tid; m_valid_id = true; m_count = 1; } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } bool recursive_timed_mutex::do_trylock() { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); bool ret = false; pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) { ++m_count; ret = true; } else if (!m_valid_id) { m_thread_id = tid; m_valid_id = true; m_count = 1; ret = true; } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); return ret; } bool recursive_timed_mutex::do_timedlock(const xtime& xt) { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); bool ret = false; pthread_t tid = pthread_self(); if (m_valid_id && pthread_equal(m_thread_id, tid)) { ++m_count; ret = true; } else { timespec ts; to_timespec(xt, ts); while (m_valid_id) { res = pthread_cond_timedwait(&m_unlocked, &m_mutex, &ts); if (res == ETIMEDOUT) break; assert(res == 0); } if (!m_valid_id) { m_thread_id = tid; m_valid_id = true; m_count = 1; ret = true; } } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); return ret; } void recursive_timed_mutex::do_unlock() { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); pthread_t tid = pthread_self(); if (m_valid_id && !pthread_equal(m_thread_id, tid)) { res = pthread_mutex_unlock(&m_mutex); assert(res == 0); throw lock_error(); } if (--m_count == 0) { assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); } res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } void recursive_timed_mutex::do_lock(cv_state& state) { int res = 0; while (m_valid_id) { res = pthread_cond_wait(&m_unlocked, &m_mutex); assert(res == 0); } m_thread_id = pthread_self(); m_valid_id = true; m_count = state.count; res = pthread_mutex_unlock(&m_mutex); assert(res == 0); } void recursive_timed_mutex::do_unlock(cv_state& state) { int res = 0; res = pthread_mutex_lock(&m_mutex); assert(res == 0); assert(m_valid_id); m_valid_id = false; res = pthread_cond_signal(&m_unlocked); assert(res == 0); state.pmutex = &m_mutex; state.count = m_count; } #endif } // namespace boost // Change Log: // 8 Feb 01 WEKEMPF Initial version.