#include #include #include #include #include const int MAX_POOL_THREADS=8; const int MIN_POOL_THREADS=2; const int POOL_TIMEOUT = 2; // seconds const int ITERATIONS=25; boost::mutex detach_prot; boost::condition detached; boost::condition waiting_for_detach; int at_detach=0; bool pool_detached=false; const int DETACH_THREADS=2; // Constant to cause the cpubound thread to take approx 0.5 seconds // to complete. Doesn't have to be exact, but should take "a while" const double SQRT_PER_SECOND=3000000.0; enum { CHATTY_WORKER, FAST_WORKER, SLOW_WORKER, CPUBOUND_WORKER, WORKER_TYPE_COUNT }; int work_counts[WORKER_TYPE_COUNT]; class job_adapter { public: job_adapter(void (*func)(void*), void* param) : _func(func), _param(param){ } void operator()() const { _func(_param); } private: void (*_func)(void*); void* _param; }; void chatty_worker(void *arg) { int id = reinterpret_cast(arg); work_counts[CHATTY_WORKER]++; } void fast_worker(void *) { work_counts[FAST_WORKER]++; } void slow_worker(void *) { boost::xtime xt; boost::xtime_get(&xt,boost::TIME_UTC); xt.sec++; boost::thread::sleep(xt); work_counts[SLOW_WORKER]++; } void cpubound_worker(void *) { double d; double limit = SQRT_PER_SECOND/2.0; for(d = 1.0; d < limit; d+=1.0) { double root = sqrt(d); } work_counts[CPUBOUND_WORKER]++; } struct recursive_args { boost::thread_pool *ptp; int count; }; void recursive_worker(void *arg) { recursive_args *pargs = static_cast(arg); if(--pargs->count > 0) pargs->ptp->add(job_adapter(recursive_worker,pargs)); } void detach_worker(void *arg) { int detach_threads = reinterpret_cast(arg); boost::mutex::scoped_lock l(detach_prot); // If we are the Nth thread to reach this, notify // our caller that everyone is ready to detach! if(++at_detach==detach_threads) waiting_for_detach.notify_all(); while(!pool_detached) detached.wait(l); // Call slow worker to do a bit of work after this... slow_worker(arg); } // Test a thread_pool with all different sorts of workers void test_heterogeneous() { memset(work_counts,0,sizeof(work_counts)); boost::thread_pool tp(MAX_POOL_THREADS,MIN_POOL_THREADS,POOL_TIMEOUT); for(int i = 0; i < ITERATIONS; i++) { tp.add(job_adapter(chatty_worker,reinterpret_cast(i))); tp.add(job_adapter(fast_worker,reinterpret_cast(i))); tp.add(job_adapter(slow_worker,reinterpret_cast(i))); tp.add(job_adapter(cpubound_worker,reinterpret_cast(i))); } tp.join(); BOOST_TEST(work_counts[CHATTY_WORKER] == ITERATIONS); BOOST_TEST(work_counts[FAST_WORKER] == ITERATIONS); BOOST_TEST(work_counts[SLOW_WORKER] == ITERATIONS); BOOST_TEST(work_counts[CPUBOUND_WORKER] == ITERATIONS); } void test_recursive() { recursive_args ra; boost::thread_pool tp; ra.ptp = &tp; ra.count = ITERATIONS; // Recursive_worker will add another job to the queue before returning tp.add(job_adapter(recursive_worker,static_cast(&ra))); // busy wait for bottom to be reached. while(ra.count > 0) boost::thread::yield(); tp.join(); BOOST_TEST(ra.count == 0); } // Test cancellation of thread_pool operations. void test_cancel() { int wc_after_cancel[WORKER_TYPE_COUNT]; memset(work_counts,0,sizeof(work_counts)); boost::thread_pool tp(MAX_POOL_THREADS,MIN_POOL_THREADS,POOL_TIMEOUT); for(int i = 0; i < ITERATIONS; i++) { tp.add(job_adapter(chatty_worker,reinterpret_cast(i))); tp.add(job_adapter(fast_worker,reinterpret_cast(i))); tp.add(job_adapter(slow_worker,reinterpret_cast(i))); tp.add(job_adapter(cpubound_worker,reinterpret_cast(i))); } tp.cancel(); // Save our worker counts memcpy(wc_after_cancel,work_counts,sizeof(wc_after_cancel)); // Do a bit more work to prove we can continue after a cancel tp.add(job_adapter(chatty_worker,reinterpret_cast(i))); tp.add(job_adapter(fast_worker,reinterpret_cast(i))); tp.add(job_adapter(slow_worker,reinterpret_cast(i))); tp.add(job_adapter(cpubound_worker,reinterpret_cast(i))); tp.join(); // Check our counts // As long as ITERATIONS is decently sized, there is no way // these tasks could have completed before the cancel... BOOST_TEST(wc_after_cancel[SLOW_WORKER] < ITERATIONS); BOOST_TEST(wc_after_cancel[CPUBOUND_WORKER] < ITERATIONS); // Since they could not have completed, if we are processing jobs // in a FIFO order, the others can't have completed either. BOOST_TEST(wc_after_cancel[CHATTY_WORKER] < ITERATIONS); BOOST_TEST(wc_after_cancel[FAST_WORKER] < ITERATIONS); // Check to see that more work was accomplished after the cancel. BOOST_TEST(wc_after_cancel[SLOW_WORKER] < work_counts[SLOW_WORKER]); BOOST_TEST(wc_after_cancel[CPUBOUND_WORKER] < work_counts[CPUBOUND_WORKER]); BOOST_TEST(wc_after_cancel[CHATTY_WORKER] < work_counts[CHATTY_WORKER]); BOOST_TEST(wc_after_cancel[FAST_WORKER] < work_counts[FAST_WORKER]); } void test_detach() { int wc_after_detach; memset(work_counts,0,sizeof(work_counts)); { boost::mutex::scoped_lock l(detach_prot); // For detach testing, we want a known size thread pool so that we can make a better guess // at when the detached process will finish boost::thread_pool tp(DETACH_THREADS,0); for(int i = 0; i < DETACH_THREADS; i++) { tp.add(job_adapter(detach_worker,reinterpret_cast(DETACH_THREADS))); } // Wait for all of the threads to reach a known point waiting_for_detach.wait(l); tp.detach(); wc_after_detach = work_counts[SLOW_WORKER]; // Let our threads know we've detached. pool_detached = true; detached.notify_all(); } // Our detached threads should finish approx 1 sec after this. // We could reliably sync. with the exit of detach_worker, but we // can't reliably sync. with the cleanup of the thread_pool harness, // so for the purposes of this test, we'll sleep 3 secs, and check some values. boost::xtime xt; boost::xtime_get(&xt,boost::TIME_UTC); xt.sec += 3; boost::thread::sleep(xt); // Work should still complete after detach BOOST_TEST(work_counts[SLOW_WORKER] == DETACH_THREADS); // None of the work should have occurred before attach. BOOST_TEST(0 == wc_after_detach); } void test_thread_pool() { test_heterogeneous(); test_recursive(); test_cancel(); test_detach(); }