// Copyright (C) 2001-2003 // William E. Kempf // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. William E. Kempf makes no representations // about the suitability of this software for any purpose. // It is provided "as is" without express or implied warranty. // // (C) Copyright 2005 Anthony Williams #include #include #include #include #include #include #define DEFAULT_EXECUTION_MONITOR_TYPE execution_monitor::use_sleep_only #include template struct test_lock { typedef M mutex_type; typedef typename M::scoped_lock lock_type; void operator()() { mutex_type mutex; boost::condition condition; // Test the lock's constructors. { lock_type lock(mutex, false); BOOST_CHECK(!lock); } lock_type lock(mutex); BOOST_CHECK(lock ? true : false); // Construct and initialize an xtime for a fast time out. boost::xtime xt = delay(0, 100); // Test the lock and the mutex with condition variables. // No one is going to notify this condition variable. We expect to // time out. BOOST_CHECK(!condition.timed_wait(lock, xt)); BOOST_CHECK(lock ? true : false); // Test the lock and unlock methods. lock.unlock(); BOOST_CHECK(!lock); lock.lock(); BOOST_CHECK(lock ? true : false); } }; template struct test_trylock { typedef M mutex_type; typedef typename M::scoped_try_lock try_lock_type; void operator()() { mutex_type mutex; boost::condition condition; // Test the lock's constructors. { try_lock_type lock(mutex); BOOST_CHECK(lock ? true : false); } { try_lock_type lock(mutex, false); BOOST_CHECK(!lock); } try_lock_type lock(mutex, true); BOOST_CHECK(lock ? true : false); // Construct and initialize an xtime for a fast time out. boost::xtime xt = delay(0, 100); // Test the lock and the mutex with condition variables. // No one is going to notify this condition variable. We expect to // time out. BOOST_CHECK(!condition.timed_wait(lock, xt)); BOOST_CHECK(lock ? true : false); // Test the lock, unlock and trylock methods. lock.unlock(); BOOST_CHECK(!lock); lock.lock(); BOOST_CHECK(lock ? true : false); lock.unlock(); BOOST_CHECK(!lock); BOOST_CHECK(lock.try_lock()); BOOST_CHECK(lock ? true : false); } }; template struct test_timedlock { typedef M mutex_type; typedef typename M::scoped_timed_lock timed_lock_type; void operator()() { mutex_type mutex; boost::condition condition; // Test the lock's constructors. { // Construct and initialize an xtime for a fast time out. boost::xtime xt = delay(0, 100); timed_lock_type lock(mutex, xt); BOOST_CHECK(lock ? true : false); } { timed_lock_type lock(mutex, false); BOOST_CHECK(!lock); } timed_lock_type lock(mutex, true); BOOST_CHECK(lock ? true : false); // Construct and initialize an xtime for a fast time out. boost::xtime xt = delay(0, 100); // Test the lock and the mutex with condition variables. // No one is going to notify this condition variable. We expect to // time out. BOOST_CHECK(!condition.timed_wait(lock, xt)); BOOST_CHECK(lock ? true : false); // We should be less than 1 millisecond before the target time. BOOST_CHECK(boost::xtime_cmp(xt, delay(0,1))<=0); // Test the lock, unlock and timedlock methods. lock.unlock(); BOOST_CHECK(!lock); lock.lock(); BOOST_CHECK(lock ? true : false); lock.unlock(); BOOST_CHECK(!lock); xt = delay(0, 100); BOOST_CHECK(lock.timed_lock(xt)); BOOST_CHECK(lock ? true : false); } }; template struct test_recursive_lock { typedef M mutex_type; typedef typename M::scoped_lock lock_type; void operator()() { mutex_type mx; lock_type lock1(mx); lock_type lock2(mx); } }; void do_test_mutex() { test_lock()(); } void test_mutex() { timed_test(&do_test_mutex, 3); } void do_test_try_mutex() { test_lock()(); test_trylock()(); } void test_try_mutex() { timed_test(&do_test_try_mutex, 3); } void do_test_timed_mutex() { test_lock()(); test_trylock()(); test_timedlock()(); } void test_timed_mutex() { timed_test(&do_test_timed_mutex, 3); } void do_test_recursive_mutex() { test_lock()(); test_recursive_lock()(); } void test_recursive_mutex() { timed_test(&do_test_recursive_mutex, 3); } void do_test_recursive_try_mutex() { test_lock()(); test_trylock()(); test_recursive_lock()(); } void test_recursive_try_mutex() { timed_test(&do_test_recursive_try_mutex, 3); } void do_test_recursive_timed_mutex() { test_lock()(); test_trylock()(); test_timedlock()(); test_recursive_lock()(); } void test_recursive_timed_mutex() { timed_test(&do_test_recursive_timed_mutex, 3); } namespace { template class loop_on_mutex { Mutex& m; unsigned loop_count; unsigned& counter; public: loop_on_mutex(Mutex& m_,unsigned loop_count_,unsigned& counter_): m(m_),loop_count(loop_count_),counter(counter_) {} void operator()() { for(unsigned i=0;i void test_loop_threads() { Mutex m; unsigned const number_of_threads=100; unsigned const loop_count=100; unsigned count=0; boost::thread_group pool; for (unsigned i=0; i < number_of_threads; ++i) { pool.create_thread( loop_on_mutex(m,loop_count,count) ); } pool.join_all(); BOOST_CHECK(count==number_of_threads*loop_count); } } void test_loop_threads_on_mutex() { test_loop_threads(); test_loop_threads(); test_loop_threads(); test_loop_threads(); test_loop_threads(); test_loop_threads(); } namespace { template class block_on_mutex { Mutex& mutex; unsigned& unblocked_count; boost::mutex& unblocked_count_mutex; boost::mutex& finish_mutex; void increment_unblocked_count() { boost::mutex::scoped_lock lock(unblocked_count_mutex); ++unblocked_count; } public: block_on_mutex(Mutex& mutex_, unsigned& unblocked_count_, boost::mutex& unblocked_count_mutex_, boost::mutex& finish_mutex_): mutex(mutex_), unblocked_count(unblocked_count_), unblocked_count_mutex(unblocked_count_mutex_), finish_mutex(finish_mutex_) {} void operator()() { typename Mutex::scoped_lock lock(mutex); // we get here when unblocked increment_unblocked_count(); // wait until we're allowed to finish boost::mutex::scoped_lock finish_lock(finish_mutex); } }; unsigned read_sync_value(unsigned& value,boost::mutex& m) { boost::mutex::scoped_lock lock(m); return value; } template void test_threads_block_on_mutex() { unsigned unblocked_count=0; boost::mutex unblocked_count_mutex; boost::mutex finish_mutex; boost::mutex::scoped_lock finish_lock(finish_mutex); Mutex blocking_mutex; typename Mutex::scoped_lock blocking_lock(blocking_mutex); unsigned const number_of_threads=100; boost::thread_group pool; for (unsigned i=0; i < number_of_threads; ++i) { pool.create_thread( block_on_mutex(blocking_mutex,unblocked_count,unblocked_count_mutex,finish_mutex) ); } boost::thread::sleep(delay(1)); BOOST_CHECK(!read_sync_value(unblocked_count,unblocked_count_mutex)); blocking_lock.unlock(); boost::thread::sleep(delay(1)); BOOST_CHECK(read_sync_value(unblocked_count,unblocked_count_mutex)==1); finish_lock.unlock(); pool.join_all(); BOOST_CHECK(read_sync_value(unblocked_count,unblocked_count_mutex)==number_of_threads); } } void test_lock_blocks_other_threads() { test_threads_block_on_mutex(); test_threads_block_on_mutex(); test_threads_block_on_mutex(); test_threads_block_on_mutex(); test_threads_block_on_mutex(); test_threads_block_on_mutex(); } boost::unit_test_framework::test_suite* init_unit_test_suite(int, char*[]) { boost::unit_test_framework::test_suite* test = BOOST_TEST_SUITE("Boost.Threads: mutex test suite"); test->add(BOOST_TEST_CASE(&test_mutex)); test->add(BOOST_TEST_CASE(&test_try_mutex)); test->add(BOOST_TEST_CASE(&test_timed_mutex)); test->add(BOOST_TEST_CASE(&test_recursive_mutex)); test->add(BOOST_TEST_CASE(&test_recursive_try_mutex)); test->add(BOOST_TEST_CASE(&test_recursive_timed_mutex)); test->add(BOOST_TEST_CASE(&test_loop_threads_on_mutex)); test->add(BOOST_TEST_CASE(&test_lock_blocks_other_threads)); return test; }