Files
statechart/example/PingPong/PingPong.cpp
2006-12-03 14:46:37 +00:00

333 lines
9.7 KiB
C++

//////////////////////////////////////////////////////////////////////////////
// Copyright 2002-2006 Andreas Huber Doenni
// Distributed under the Boost Software License, Version 1.0. (See accompany-
// ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// #define USE_TWO_THREADS // ignored for single-threaded builds
// #define CUSTOMIZE_MEMORY_MANAGEMENT
//////////////////////////////////////////////////////////////////////////////
// The following example program demonstrates the use of asynchronous state
// machines. First, it creates two objects of the same simple state machine
// mimicking a table tennis player. It then sends an event (the ball) to the
// first state machine. Upon reception, the first machine sends a similar
// event to the second state machine, which then sends the event back to the
// first machine. The two machines continue to bounce the event back and forth
// until one machine "has enough" and aborts the game. The two players don't
// "know" each other, they can only pass the ball back and forth because the
// event representing the ball also carries two boost::function objects.
// Both reference the fifo_scheduler<>::queue_event() function, binding the
// scheduler and the handle of the opponent. One can be used to return the
// ball to the opponent and the other can be used to abort the game.
// Depending on whether the program is compiled single-threaded or
// multi-threaded and the USE_TWO_THREADS define above, the two
// machines either run in the same thread without/with mutex locking or in two
// different threads with mutex locking.
//////////////////////////////////////////////////////////////////////////////
#include <boost/statechart/event.hpp>
#include <boost/statechart/asynchronous_state_machine.hpp>
#include <boost/statechart/state.hpp>
#include <boost/statechart/transition.hpp>
#include <boost/statechart/custom_reaction.hpp>
#include <boost/statechart/fifo_scheduler.hpp>
#include <boost/statechart/fifo_worker.hpp>
#include <boost/mpl/list.hpp>
#include <boost/config.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#ifdef BOOST_MSVC
# pragma warning( push )
# pragma warning( disable: 4127 ) // conditional expression is constant
# pragma warning( disable: 4251 ) // class needs to have dll-interface
# pragma warning( disable: 4275 ) // non-dll class used as base for dll class
# pragma warning( disable: 4800 ) // forcing value to bool 'true' or 'false'
#endif
#ifdef BOOST_HAS_THREADS
# include <boost/thread/thread.hpp>
#endif
#ifdef CUSTOMIZE_MEMORY_MANAGEMENT
# ifdef BOOST_HAS_THREADS
// for some reason the following is not automatically defined
# if defined( BOOST_MSVC ) | defined( BOOST_INTEL )
# define __WIN32__
# endif
# else
# define BOOST_NO_MT
# endif
# include <boost/pool/pool_alloc.hpp>
#endif
#ifdef BOOST_MSVC
# pragma warning( pop )
#endif
#include <iostream>
#include <ctime>
#include <memory> // std::allocator
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std
{
using ::clock_t;
using ::clock;
}
#endif
#ifdef BOOST_INTEL
# pragma warning( disable: 304 ) // access control not specified
# pragma warning( disable: 383 ) // reference to temporary used
# pragma warning( disable: 981 ) // operands are evaluated in unspecified order
#endif
namespace sc = boost::statechart;
namespace mpl = boost::mpl;
//////////////////////////////////////////////////////////////////////////////
const unsigned int noOfEvents = 1000000;
template< class T >
boost::intrusive_ptr< T > MakeIntrusive( T * pObject )
{
return boost::intrusive_ptr< T >( pObject );
}
//////////////////////////////////////////////////////////////////////////////
struct BallReturned : sc::event< BallReturned >
{
boost::function1< void, const boost::intrusive_ptr< const BallReturned > & >
returnToOpponent;
boost::function0< void > abortGame;
};
struct GameAborted : sc::event< GameAborted > {};
#ifdef CUSTOMIZE_MEMORY_MANAGEMENT
typedef boost::fast_pool_allocator< int > MyAllocator;
typedef sc::fifo_scheduler<
sc::fifo_worker< MyAllocator >, MyAllocator > MyScheduler;
#else
typedef std::allocator< void > MyAllocator;
typedef sc::fifo_scheduler<> MyScheduler;
#endif
struct Waiting;
struct Player : sc::asynchronous_state_machine<
Player, Waiting, MyScheduler, MyAllocator >
{
public:
Player(
my_context ctx,
unsigned int maxNoOfReturns
) :
my_base( ctx ),
maxNoOfReturns_( maxNoOfReturns )
{
}
static unsigned int & TotalNoOfProcessedEvents()
{
return totalNoOfProcessedEvents_;
}
unsigned int GetMaxNoOfReturns() const
{
return maxNoOfReturns_;
}
private:
static unsigned int totalNoOfProcessedEvents_;
const unsigned int maxNoOfReturns_;
};
unsigned int Player::totalNoOfProcessedEvents_ = 0;
struct Waiting : sc::state< Waiting, Player >
{
public:
//////////////////////////////////////////////////////////////////////////
typedef mpl::list<
sc::custom_reaction< BallReturned >,
sc::custom_reaction< GameAborted >
> reactions;
Waiting( my_context ctx ) :
my_base( ctx ),
noOfReturns_( 0 ),
pBallReturned_( new BallReturned() )
{
outermost_context_type & machine = outermost_context();
// as we will always return the same event to the opponent, we construct
// and fill it here so that we can reuse it over and over
pBallReturned_->returnToOpponent = boost::bind(
&MyScheduler::queue_event,
&machine.my_scheduler(), machine.my_handle(), _1 );
pBallReturned_->abortGame = boost::bind(
&MyScheduler::queue_event,
&machine.my_scheduler(), machine.my_handle(),
MakeIntrusive( new GameAborted() ) );
}
sc::result react( const GameAborted & )
{
return DestroyMyself();
}
sc::result react( const BallReturned & ballReturned )
{
outermost_context_type & machine = outermost_context();
++machine.TotalNoOfProcessedEvents();
if ( noOfReturns_++ < machine.GetMaxNoOfReturns() )
{
ballReturned.returnToOpponent( pBallReturned_ );
return discard_event();
}
else
{
ballReturned.abortGame();
return DestroyMyself();
}
}
private:
//////////////////////////////////////////////////////////////////////////
sc::result DestroyMyself()
{
outermost_context_type & machine = outermost_context();
machine.my_scheduler().destroy_processor( machine.my_handle() );
machine.my_scheduler().terminate();
return terminate();
}
unsigned int noOfReturns_;
const boost::intrusive_ptr< BallReturned > pBallReturned_;
};
//////////////////////////////////////////////////////////////////////////////
char GetKey()
{
char key;
std::cin >> key;
return key;
}
//////////////////////////////////////////////////////////////////////////////
int main()
{
std::cout << "Boost.Statechart PingPong example\n\n";
std::cout << "Threading configuration:\n";
#ifdef BOOST_HAS_THREADS
std::cout << "Multi-threaded build with ";
#ifdef USE_TWO_THREADS
std::cout << 2;
#else
std::cout << 1;
#endif
std::cout << " thread(s).\n";
#else
std::cout << "Single-threaded build\n";
#endif
std::cout << "\np<CR>: Performance test\n";
std::cout << "e<CR>: Exits the program\n\n";
char key = GetKey();
while ( key != 'e' )
{
switch( key )
{
case 'p':
{
#ifdef BOOST_HAS_THREADS
MyScheduler scheduler1( true );
#else
MyScheduler scheduler1;
#endif
#ifdef USE_TWO_THREADS
#ifdef BOOST_HAS_THREADS
MyScheduler scheduler2( true );
#else
MyScheduler & scheduler2 = scheduler1;
#endif
#else
MyScheduler & scheduler2 = scheduler1;
#endif
MyScheduler::processor_handle player1 =
scheduler1.create_processor< Player >( noOfEvents / 2 );
scheduler1.initiate_processor( player1 );
MyScheduler::processor_handle player2 =
scheduler2.create_processor< Player >( noOfEvents / 2 );
scheduler2.initiate_processor( player2 );
boost::intrusive_ptr< BallReturned > pInitialBall = new BallReturned();
pInitialBall->returnToOpponent = boost::bind(
&MyScheduler::queue_event, &scheduler1, player1, _1 );
pInitialBall->abortGame = boost::bind(
&MyScheduler::queue_event,
&scheduler1, player1, MakeIntrusive( new GameAborted() ) );
scheduler2.queue_event( player2, pInitialBall );
std::cout << "\nHaving players return the ball " <<
noOfEvents << " times. Please wait...\n";
const unsigned int prevCount = Player::TotalNoOfProcessedEvents();
const std::clock_t startTime = std::clock();
#ifdef USE_TWO_THREADS
#ifdef BOOST_HAS_THREADS
boost::thread otherThread(
boost::bind( &MyScheduler::operator(), &scheduler2, 0 ) );
scheduler1();
otherThread.join();
#else
scheduler1();
#endif
#else
scheduler1();
#endif
const std::clock_t elapsedTime = std::clock() - startTime;
std::cout << "Time to send and dispatch one event and\n" <<
"perform the resulting transition: ";
std::cout << elapsedTime / static_cast< double >( CLOCKS_PER_SEC ) *
1000000.0 / ( Player::TotalNoOfProcessedEvents() - prevCount )
<< " microseconds\n\n";
}
break;
default:
{
std::cout << "Invalid key!\n";
}
}
key = GetKey();
}
return 0;
}