The Boost Statechart Libra- Tutorial Pagel of 32

The Boost Statechart

o bOOS t Library

LI RARI E S

Tutorial

A Japanese translation of an earlier version of thegiaitcan be found at

http://prdownloads.sourceforge.jp/jyugem/7127Hsnorialjp.pdf. Kindly contributed by Mitsuo
Fukasawa.

Contents

Introduction
How to read this tutorial
Hello World!
Basic topics: A stop watch
Defining states and events
Adding reactions
Statelocal storage
Getting state information out of the machine
Intermediate topics: A digital camera
Spreading a state machine over multiple translatiots uni
Deferring events
Guards
In-state reactions
Transition actions
Advanced topics
Specifying multiple reactions for a state
Posting events
History
Orthogonal states
State queries
State type information
Exception handling
Submachines & Parametrized States
Asynchronous state machines

Introduction

The Boost Statechart library is a framework that adlgau to quickly transform a UML statechart
into executable C++ codeijthout needing to use a code generator. Thanks to suppalmost all
UML features the transformation is straight-forward Hraresulting C++ code is a nearly
redundancy-free textual description of the statechart

How to read this tutorial

This tutorial was designed to be read linearly. Finsétusers should start reading right at the
beginning and stop as soon as they know enough feaskeat hand. Specifical

2006/06/1.

The Boost Statechart Libra- Tutoria Page2 of 32

o Small and simple machines with just a handful of statebeamplemented reasonably well
by using the features described unéasic topics: A stop watch

o For larger machines with up to roughly a dozen sttte features described under
Intermediate topics: A digital camease often helpful

o Finally, users wanting to create even more complex mastand project architects evalua
Boost.Statechart should also readAlgeanced topicsection at the end. Moreover, reading
the Limitations section in the Rationale is strongly suggested

Hello World!

We will use the simplest possible program to make ourdiegis. The statechart ...

(Greeting \}

H entry / std::cout << "Hello World\n":

exit / std:.cout << "Bye Bye Worldl\n";
-

... Is implemented with the following code:
#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <iostream>

namespace sc = boost::statechart;

/l We are declaring all types as structs only to av oid having to
/I type public. If you don't mind doing so, you can just as well
Il use class.

/l We need to forward-declare the initial state bec ause it can
/I only be defined at a point where the state machi ne is

/Il defined.

struct Greeting;

// Boost.Statechart makes heavy use of the curiousl y recurring

I/l template pattern. The deriving class must always
I the first parameter to all base class templates.
1

be passed as

/I The state machine must be informed which state i t has to

/I enter when the machine is initiated. That's why Greeting is
Il passed as the second template parameter.

struct Machine : sc::state_machine< Machine, Greeti ng > {};

Il For each state we need to define which state mac hine it

/l belongs to and where it is located in the statec hart. Both is
/I specified with Context argument that is passed t 0

I/l simple_state<>. For a flat state machine as we h ave it here,
/l the context is always the state machine. Consequ ently,

/l Machine must be passed as the second template pa rameter to
/I Greeting's base (the Context parameter is explai ned in more
/l detail in the next example).

struct Greeting : sc::simple_state< Greeting, Machi ne >

2006/06/1.

The Boost Statechart Libra- Tutoria Page3 of 32

{
I Whenever the state machine enters a state, it creates an
/I object of the corresponding state class. The o bject is then
Il kept alive as long as the machine remains in t he state.
/l Finally, the object is destroyed when the stat e machine
I exits the state. Therefore, a state entry acti on can be
/I defined by adding a constructor and a state ex it action can
/Il be defined by adding a destructor.
Greeting() { std::cout << "Hello World'\n"; } // entry
~Greeting() { std::cout << "Bye Bye World'\n"; } /I exit

3

int main()

{
Machine myMachine;
/I The machine is not yet running after construct ion. We start
/I it by calling initiate(). This triggers the co nstruction of
/I the initial state Greeting
myMachine.initiate();
Il When we leave main(), myMachine is destructed what leads to
/I the destruction of all currently active states
return O;

}

This printsHello World! andBye Bye World! before exiting.

Basic topics: A stop watch

Next we will model a simple mechanical stop watch witttade machine. Such watches typic
have two buttons:

o Start/Stop
e Reset

And two states:

e Stopped: The hands reside in the position where tleeg last stopped:
o Pressing the reset button moves the hands back to the&tidp. The watch remains in
the Stopped state
o Pressing the start/stop button leads to a transitidmet®&tnning state
e Running: The hands of the watch are in motion andimaally show the elapsed time
o Pressing the reset button moves the hands back to the&tidp and leads to a transiti
to the Stopped state
o Pressing the start/stop button leads to a transitidmet&topped state

Here is one way to specify this in UM

2006/06/1.

The Boost Statechart Libra- Tutoria Page4 of 32

4 Active h

®

(_Stopped) EvStartstop [Running

=
EvReset .%
P EvStartStop
~_ —
- L / o /
o J/

Defining states and events

The two buttons are modeled by two events. Moreoverlgo define the necessary states and the
initial state.The following code is our starting point, subsequent @& snippets must be inserted

#include <boost/statechart/event.hpp>
#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
namespace sc = boost::statechart;

struct EvStartStop : sc::event< EvStartStop > {};
struct EvReset : sc::event< EvReset > {};

struct Active;

struct StopWatch : sc::state_machine< StopWatch, Ac

struct Stopped,;

/I The simple_state class template accepts up to fo
Il - The third parameter specifies the inner initia

/I there is one. Here, only Active has inner stat

/I why it needs to pass its inner initial state S

Il base

Il - The fourth parameter specifies whether and wha
/I history is kept

/I Active is the outermost state and therefore need
/] state machine class it belongs to
struct Active : sc::simple_state<

Active, StopWatch, Stopped > {};

/I Stopped and Running both specify Active as their
/l which makes them nested inside Active

struct Running : sc::simple_state< Running, Active
struct Stopped : sc::simple_state< Stopped, Active

// Because the context of a state must be a complet
/I not forward declared), a machine must be defined
/["outside to inside". That is, we always start wi

/ machine, followed by outermost states, followed
/l inner states of outermost states and so on. We ¢

tive > {};

ur parameters:
| state, if

es, which is
topped to its

t kind of

s to pass the

Context,

> {};
>{}

e type (i.e.
from

th the state
by the direct
andosoina

2006/06/1.

The Boost Statechart Libra- Tutoria Page5 of 32

/I breadth-first or depth-first way or employ a mix ture of the
I two.

int main()

{
StopWatch myWatch;

myWatch.initiate();
return O;

}

This compiles but doesn't do anything observable yet.

Adding reactions

For the moment we will use only one type of reactteemsitions. Weénsert the bold parts of the

following code:
#i ncl ude <boost/statechart/transition. hpp>

...

struct Stopped;
struct Active : sc::simple_state< Active, StopWatch , Stopped >

{

typedef sc::transition< EvReset, Active > reactions;

8

struct Running : sc::simple_state< Running, Active >

{

typedef sc::transition< EvStartStop, Stopped > reactions;

h

struct Stopped : sc::simple_state< Stopped, Active >

{

typedef sc::transition< EvStartStop, Running > reactions;

/I A state can define an arbitrary number of reacti ons. That's
/[l why we have to put them into an mpl::list<> as s oon as there
/[is more than one of them

Il (see Specifying multiple reactions for a state).

int main()

{

StopWatch myWatch;

myWatch.initiate();
myWat ch. process_event (EvStart Stop());
myWat ch. process_event (EvStart Stop());
myWat ch. process_event (EvStart Stop());
myWat ch. process_event (EvReset ());

return O;

}

2006/06/1.

The Boost Statechart Libra- Tutoria Page6 of 32

Now we have all the states and all the transitionsaogpand a number of events are also sent t
stop watch. The machine dutifully makes the transstawe would expect, but no actions are
executed yet.

State-local storage

Next we'll make the stop watch actually measure timpebéing on the state the stop watch it
we need different variables:

o Stopped: One variable holding the elapsed time
¢ Running: One variable holding the elapsed tand one variable storing the point in time at
which the watch was last started.

We observe that the elapsed time variable is needathtier what state the machine is in.
Moreover, this variable should be reset to 0 wherseviel arEvReset event to the machine. The
other variable is only needed while the machine thénRunning state. It should be set to the cu
time of the system clock whenever we enter the Rurstaitg. Upon exit we simply subtract the ¢
time from the current system clock time and add the rastite elapsed time.

#i ncl ude <cti ne>

...

struct Stopped,;
struct Active : sc::simple_state< Active, StopWatch , Stopped >

{
publi c:
typedef sc::transition< EvReset, Active > react ions;

Active() : elapsedTine_(0.0) {}

doubl e El apsedTi ne() const { return el apsedTine_; }

doubl e & El apsedTinme() { return el apsedTine_; }
private:

doubl e el apsedTi ne_;

I3
struct Running : sc::simple_state< Running, Active >

{
publi c:
typedef sc::transition< EvStartStop, Stopped > reactions;

Running() : startTime (std::tinme(0)) {}

~Runni ng()
/I Similar to when a derived class object acc esses its
/I base class portion, context<>() is used to gain
/[access to the direct or indirect context o f a state.
/[This can either be a direct or indirect ou ter state

/I or the state machine itself
Il (e.g. here: context< StopWatch >()).
context< Active >().El apsedTi ne() +=
std::difftime(std::time(0), startTine_);

2006/06/1.

The Boost Statechart Libra- Tutoria Page7 of 32

private:
std::time_t startTine_;

h
...

The machine now measures the time, but we cannot yetveett from the main program.

At this point, the advantages of state-local storadecfwis still a relatively little-known feature)
may not yet have become apparent. The FAQ itéfhdt's so cool about stalecal storage?tries

to explain them in more detail by comparing this Stepd with one that does not make use of
state-local storage.

Getting state information out of the machine

To retrieve the measured time, we need a mechanism stageinformation out of the machine.
With our current machine design there are two waykotthat. For the sake of simplicity we use the
less efficient onestate_cast<>() (StopWatch2.cpp shows the slightly more complex
alternative). As the name suggests, the semantics arsiwglgr to the ones afynamic_cast

For example, when we catlyWatch.state_cast< const Stopped & >() and the

machine is currently in the Stopped state, we getaaence to th&topped state. Otherwise
std::bad_cast is thrown. We can use this functionality to implemeBt@Watch member
function that returns the elapsed time. However, rdttan ask the machine in which state it is and
then switch to different calculations for the elapsedt, we put the calculation into the Stopped and
Running states and use an interface to retrieve dpsed time:

#i ncl ude <i ostreanr

...

struct | El apsedTi ne

{
¥

struct Active;
struct StopWatch : sc::state_machine< StopWatch, Ac tive >

{

virtual double El apsedTi ne() const = O;

doubl e El apsedTi ne() const

{

return state_cast< const | El apsedTinme & >(). El apsedTi ne();

}
h

...

struct Running : | El apsedTi ne,
sc::simple_state< Running, Active >

L
public:
typedef sc::transition< EvStartStop, Stopped > reactions;

Running() : startTime_(std::time(0)) {}

2006/06/1.

The Boost Statechart Libra- Tutoria Page8 of 32

~Running()
context< Active >().El apsedTinme() = El apsedTi ne();
}
virtual doubl e El apsedTi ne() const
{
return context< Active >().El apsedTine() +
std::difftime(std::time(0), startTinme_);
}
private:
std::time_t startTime_;
I3
struct Stopped : | El apsedTi ne,
sc::simple_state< Stopped, Active >
{
typedef sc::transition< EvStartStop, Running > re actions;

virtual doubl e El apsedTi ne() const

{

}
|8

int main()
{
StopWatch myWatch;
myWatch.initiate();
std::cout << nyWatch. El apsedTine() << "\n";
myWatch.process_event(EvStartStop());
std::cout << nyWatch. El apsedTine() << "\n";
myWatch.process_event(EvStartStop());
std::cout << nyWatch. El apsedTi ne() << "\n";
myWatch.process_event(EvStartStop());
std::cout << nyWatch. El apsedTine() << "\n";
myWatch.process_event(EvReset());
std::cout << nyWatch. El apsedTi ne()
return O;

}

return context< Active >().El apsedTi me();

AN

< "\n";

To actually see time being measured, you might wasingle-step through the statementsniain
() . The StopWatch example extends this program to araictive console application.

Intermediate topics: A digital camera

So far so good. However, the approach presented diasva few limitations:

o Bad scalability: As soon as the compiler reaches tha pdiere
state_machine::initiate() is called, a number of template instantiations takeepla
which can only succeed if the full declaration afleand every state of the machine is knc
That is, the whole layout of a state machine must beeinghted in one single translation 1
(actions can be compiled separately, but this is ofmpmrtance here). For bigger (and m

2006/06/1.

The Boost Statechart Libra- Tutoria Page9 of 32

real-world) state machines, this leads to the folloviimgations:

o At some point compilers reach their internal templagtantiation limits and give up.
This can happen even for moderately-sized machinegexXaonple, in debug mode one
popular compiler refused to compile earlier versionthefBitMachine example for
anything above 3 bits. This means that the compileheghits limits somewhere
between 8 states, 24 transitions and 16 states, 64tivassi

o Multiple programmers can hardly work on the same statdimasimultaneously
because every layout change will inevitably lead tecompilation of the whole state
machine

e« Maximum one reaction per event: According to UMLtates can have multiple reactions
triggered by the same event. This makes sense whenaibreahave mutually exclusive
guards. The interface we used above only allows forcst one unguarded reaction for each
event. Moreover, the UML concepts junction and cagoint are not directly supported

All these limitations can be overcome with custom reastiWarning: It is easy to abuse custom

reactions up to the point of invoking undefined beheior. Please study the documentation
before employing them!

Spreading a state machine over multiple translatiounits

Let's say your company would like to develop a digitahera. The camera has the following
controls:

e Shutter button, which can be half-pressed and fulsged. The associated events are
EvShutterHalf |, EvShutterFull andEvShutterReleased

« Config button, represented by thgConfig event
¢ A number of other buttons that are not of interes¢ her

One use case for the camera says that the photograwhealé-press the shuttanywherein the
configuration mode and the camera will immediatelyrgo shooting mode. The following
statechart is one way to achieve this behavior:

4 NotShooting)
4 ldle) EvConfig 4 Iiic:nﬂfiguringﬂ‘“H
. ‘}
. EvConfig
—
~
- J - J
- J
/N
EvshutterReleased EvShutterHalf
\

(' Shooting \1

L)

The Configuring and Shooting states will contain niouemested states while the Idle state is
relatively simple. It was therefore decided to build teams. One will implement the shooting
mode while the other will implement the configuratimode. The two teams have already agree

2006/06/1.

The Boost Statechart Libra- Tutoria PagelC of 32

the interface that the shooting team will use toeweéithe configuration settings. We would like to
ensure that the two teams can work with the least pessitgrference. So, we put the two states in
their own translation units so that machine layout gkarmwithin the Configuring state will never
lead to a recompilation of the inner workings of 8teoting state and vice versa.

Unlike in the previous example, the excerpts presentdtere often outline different options to
achieve the same effect. That's why the code is ofteat equal to the Camera example code.
Comments mark the parts where this is the case.

Camera.hpp:

#ifndef CAMERA_HPP_INCLUDED
#define CAMERA_HPP_INCLUDED

#include <boost/statechart/event.hpp>

#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <boost/statechart/custom_reaction.hpp>

namespace sc = boost::statechart;

struct EvShutterHalf : sc::event< EvShutterHalf > { h
struct EvShutterFull : sc::event< EvShutterFull > { b
struct EvShutterRelease : sc::event< EvShutterRelea se > {};

struct EvConfig : sc::event< EvConfig > {};

struct NotShooting;

struct Camera : sc::state_machine< Camera, NotShoot ing >
{

bool IsMemoryAvailable() const { return true; }

bool IsBatteryLow() const { return false; }

I3

struct Idle;
struct NotShooting : sc::simple_state<
NotShooting, Camera, Idle >

{
/I With a custom reaction we only specify that we m ght do
/I something with a particular event, but the act ual reaction
I is defined in the react member function, which can be

/Il implemented in the .cpp file.
typedef sc::customreaction< EvShutterHalf > reactions;

...
sc::result react(const EvShutterHalf &);
3

struct Idle : sc::simple_state< Idle, NotShooting >

{

t ypedef sc::customreaction< EvConfig > reactions;

...
sc::result react(const EvConfig &);

2006/06/1.

The Boost Statechart Libra- Tutoria Pagell of 32

I3
#endif
Camera.cpp:

#include "Camera.hpp"

/I The following includes are only made here but no tin

/I Camera.hpp

/I The Shooting and Configuring states can themselv es apply the
/I same pattern to hide their inner implementation, which

/I ensures that the two teams working on the Camera state

/I machine will never need to disturb each other.
#include "Configuring.hpp"
#include "Shooting.hpp"

...

/I not part of the Camera example
sc::result NotShooting::react(const EvShutterHalf &)

{

return transit< Shooting >();

}

sc::result Idle::react(const EvConfig &)

{

return transit< Configuring >();
}
Caution: Any callto si npl e_state<>::transit<>() or
sinpl e_state<>::term nate() (seereference will inevitably destruct the state object

(similar to del et e thi s;)! That is, code executed after any of these calls mavoke
undefined behavior! That's why these functions should only be called asoparreturn statement.

Deferring events

The inner workings of the Shooting state could loskalows

2006/06/1.

The Boost Statechart Libra- Tutoria Pagel2 of 32

J/EvShutterHalf

4 Shooting N

EvshutterFeleased

(Focusing \\ |’" Storing ‘\

.% EvShutterFull () / defer

.

EvinFocus / DisplayFocused()

W

(r Focused)

EvShutterFull [IsMemoryAvailable()]

vy

/N

EvShutterFull [sMemoryAvailable()]
. J

When the user half-presses the shutter, Shooting amtésinitial state Focusing are entered. In
the Focusing entry action the camera instructs thesfog circuit to bring the subject into focus.
The focusing circuit then moves the lenses accordinglysends the EvinFocus event as soon as it
is done. Of course, the user can fully-press the shuttige the lenses are still in motion. Without
any precautions, the resulting EvShutterFull evenildisimply be lost because the Focusing state
does not define a reaction for this event. As a rethdtuser would have to fully-press the shutter
again after the camera has finished focusing. To ptdfes, the EvShutterFull event is deferred
inside the Focusing state. This means that all eventssofype are stored in a separate queue, \

is emptied into the main queue when the Focusing istatated.

struct Focusing : sc::state< Focusing, Shooting >

typedef mpl::list<
sc::custom_reaction< EvinFocus >,

sc::deferral < EvShutterFull >
> reactions;

Focusing(my_context ctx);
sc::result react(const EvinFocus &);

h
Guards

Both transitions originating at the Focused stateraygdred by the same event but they have
mutually exclusive guards. Here is an appropriate cuséaction:

/I not part of the Camera example
sc::result Focused::react(const EvShutterFull &)

{

2006/06/1.

The Boost Statechart Libra- Tutoria Pagel3 of 32

if (context< Camera >().IsMemoryAvailable())

{

return transit< Storing >();

}

else

/I The following is actually a mixture between an in-state

// reaction and a transition. See later on how to implement
/Il proper transition actions.

std::cout << "Cache memory full. Please wait... \n";

return transit< Focused >();

}
}

Custom reactions can of course also be implemented ginedtie state declaration, which is often
preferable for easier browsing.

Next we will use a guard to prevent a transition l@hduter states react to the event if the batte
low:

Camera.cpp:
...
sc::result NotShooting::react(const EvShutterHalf &)
{
if (context< Camera >().IsBatteryLow())
{
/I We cannot react to the event ourselves, so w e forward it
// to our outer state (this is also the default if a state

/l defines no reaction for a given event).
return forward_event();
}

else

{

return transit< Shooting >();

}

}
...

In-state reactions

The self-transition of the Focused state could alsoipéemented as an-state reactionwhich has
the same effect as long as Focused does not have aypypeekit actions:

Shooting.cpp:

...
sc::result Focused::react(const EvShutterFull &)

{

if (context< Camera >().IsMemoryAvailable())

{

return transit< Storing >();

}

2006/06/1.

The Boost Statechart Libra- Tutoria Pagelq of 32

else
{
std::cout << "Cache memory full. Please walit... \n";
/Il Indicate that the event can be discarded. So , the
/I dispatch algorithm will stop looking for a r eaction

/I and the machine remains in the Focused state
return discard_event();
}

}
..

Because the in-state reaction is guarded, we nemmpioy acustom_reaction<> here. For
unguarded in-state reactioims state_reaction <> should be used for better code-readability.

Transition actions
As an effect of every transition, actions are exetutghe following order:

1. Starting from the innermost active state, all exibas up to but excluding thenermost

common context

2. The transition action (if present)

3. Starting from the innermost common context, all eattyons down to the target state
followed by the entry actions of the initial states

Example:
4 InnermostCommonOuter N
4 A ™
4 I
B 4 X ™
4 I
< - Y a
D N
[j SIS 7
o J . J
L J - J
- J . J
- vy

Here the order is as follows: ~D(), ~C(), ~B(), ~A(Q, X(), Y(), Z(). The transition action t() is
therefore executed in the context of the InnermostCan@uter state because the source state has
already been left (destructed) and the target ststabt yet been entered (constructed).

With Boost.Statechart, a transition action can be mipee ofany common outer context. That is,
the transition between Focusing and Focused coulchpkemented as follows:

Shooting.hpg

2006/06/1.

The Boost Statechart Libra- Tutoria Pagelt of 32

...
struct Focusing;
struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >

{

typedef sc::transition<
EvShutterRelease, NotShooting > reactions;

...
voi d Di spl ayFocused(const EvlnFocus &);
3

...

/I not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >

{

typedef sc::transition< EvinFocus, Focused
Shoot i ng, &Shooting:: D spl ayFocused > reactlons
I3

Or, the following is also possible (here the state madksed serves as the outermost context):

/I not part of the Camera example
struct Camera : sc::state_machine< Camera, NotShoot ing >

{
|8

/I not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >

{

typedef sc::transition< EvinFocus, Focused
Canera, &Canera::D splayFocused > reactlons
3

voi d Di spl ayFocused(const EvlnFocus &);

Naturally, transition actions can also be invokeanfrmustom reaction
Shooting.cpp:

...
sc::result Focusing::react(const EvinFocus & evt)

/' We have to manually forward evt
return transit< Focused >(&Shoot i ng: : Di spl ayFocused, evt),

}
Advanced topics

Specifying multiple reactions for a state

Often a state must define reactions for more than osmet.ew this case, ampl::list<> must be
used as outlined belo

2006/06/1.

The Boost Statechart Libra- Tutoria Pagel€ of 32

n...

#i ncl ude <boost/npl/list. hpp>
nanmespace npl = boost::npl;
n...

struct Playing : sc::simple_state< Playing, Mp3Play er >

{
typdef mpl::list<
sc::custom_reaction< EvFastForward >,
sc::transition< EvStop, Stopped > > reactions;

[%
|5

Posting events

Nonr-trivial state machines often need to post internah&s: Here's an example of how to do this:

Pumping::~Pumping()
{

post_event(EvPumpingFinished());
}

The event is pushed into the main queue. The evettg iqueue are processed as soon as the
current reaction is completed. Events can be postedifisidereact functions, entry-, exit- and
transition actions. However, posting from inside eatons is a bit more complicated (see e.g.

Focusing::Focusing() in Shooting.cpp in the Camera example):
struct Pumping : sc: : st at e< Pumping, Purifier >
{

Punpi ng(ny_context ctx) : my_base(ctx)
post_event(EvPumpingStarted());

}
I ...
|5

As soon as an entry action of a state needs to cohgatvatside world" (here: the event queue in
the state machine), the state must derive fstate<> rather than fronsimple_state<> and
must implement a forwarding constructor as outlined alfapart from the construct@tate<>
offers the same interface sisnple_state<>). Hence, this must be done whenever an entry
action makes one or more calls to the following fumgio

e Simple_state<>::post_event()

e simple_state<>::clear_shallow_history<>()
e Simple_state<>::.clear_deep_history<>()

e Simple_state<>::outermost_context()

e simple_state<>::context<>()

e Simple_state<>::state_cast<>()

2006/06/1.

The Boost Statechart Libra- Tutoria Pagel7 of 32

e Simple_state<>::state_downcast<>()
o simple_state<>::state_begin()
e Simple_state<>::state_end()

In my experience, these functions are needed onllyrarentry actions so this workaround should
not uglify user code too much.

History

Photographers testing beta versions ofdgital camerasaid that they really liked that hadfessing
the shutter anytime (even while the camera is beinfjgured) immediately readies the camera for
picture-taking. However, most of them found it uniti@ that the camera always goes into the idle
mode after releasing the shutter. They would ratheetise camera go back into the state it had
before half-pressing the shutter. This way they carygasit the influence of a configuration setting
by modifying it, half- and then fully-pressing the #uto take a picture. Finally, releasing the
shutter will bring them back to the screen where tieye modified the setting. To implement this
behavior we'd change the state chart as follows:

4 NotShooting)

O Ide)

EvConfig [Configuring)

=
H I EvConfig

o
T

\ 3
Q

EvShutterReleased EvshutterHalf

N4
(r Shooting \

.)

As mentioned earlier, the Configuring state contaifairly complex and deeply nested inner
machine. Naturally, we'd like to restore the presistate down to thenermost sta{g) in
Configuring, that's why we use a deep history pseude. Sthe associated code looks as follows:

/I not part of the Camera example
struct NotShooting : sc::simple_state<
NotShooting, Camera, Idle, sc::has_deep_history >

{
...

|8
I ...

2006/06/1.

The Boost Statechart Libra- Tutoria Pagel8 of 32

struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >
{
typedef sc::transition<
EvShutterRelease, sc:: deep_hi story< 1dl e >>reactions;
...
I3

History has two phases: Firstly, when the state comigithie history pseudo state is exited,
information about the previously active inner statgdrichy must be saved. Secondly, when a
transition to the history pseudo state is made latesated state hierarchy information must be
retrieved and the appropriate states entered. Theefas expressed by passing either
has_shallow_history , has_deep_history or has_full_history (which combines
shallow and deep history) as the last parameteetsithple_state andstate class templates.
The latter is expressed by specifying eitsleallow_history<> ordeep_history<> asa
transition destination or, as we'll see in an instangrainner initial state. Because it is possible that
a state containing a history pseudo state has neveebésed before a transition to history is m.
both class templates demand a parameter specifying fdndtdstate to enter in such situations.

The redundancy necessary for using history is checkembfesistency at compile time. That is, the
state machine wouldn't have compiled had we forgdtigrasshas_deep_history to the base
of NotShooting

Another change request filed by a few beta testerstBaythey would like to see the camera go
back into the state it had before turning it off whisey turn it back on. Here's the implementation:

é Off N
®—()
N\
EvOff EvOn
\/
4 NotShooting)
4 1l ™) , 4 A
e E\,.'[::Or‘lﬂgx Configuring
=
! _ EvConfig
<
L vy L vy
- vy
/N
EvshutterEeleased EvshutterHalf
\/
r” Sshooting \

EvOff () / defer
EvOn () / defer

2006/06/1.

The Boost Statechart Libra- Tutoria Pagels of 32

...

/I not part of the Camera example

struct NotShooting : sc::simple_state< NotShooting, Camera,
mpl::list< sc::deep_history< Idle > >,
sc:: has_deep_history >

{

...
I3
...

Unfortunately, there is a small inconvenience dusotae template-related implementation details.
When the inner initial state is a class template mstaon we always have to put it into an
mpl::list<> , although there is only one inner initial state.rdtaver, the current deep history
implementation has sonfienitations.

Orthogonal states

é Active)

(" NumLockOff) xf NumLockon)

EviumlLockPressed

!

EvihumLockPressed

l ’rCapsLookfo“‘ EvCapsLockPressed r'rCa;::nch:nr:kL’:Jrﬁ
EvCapsLockPressed

"rScroIILockDrﬁ

g)
ScrollLockOff EvScrollLockPressed

EvScrollLockPressed

/N

. vy -
- vy

To implement this statechart you simply specify more themioner initial state (see the Keyboard
example):

struct Active;
struct Keyboard : sc::state_machine< Keyboard, Acti ve > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
npl : :list< NunmLockOff, CapsLockOff, Scroll LockOff >>{};

2006/06/1.

The Boost Statechart Libra- Tutoria Page2C of 32

Active's inner states must declare which orthogonabretiiey belong to:

struct EvNumLockPressed : sc::event< EvNumLockPress ed > {};
struct EvCapsLockPressed : sc::event< EvCapsLockPre ssed > {};
struct EvScrollLockPressed :

sc::event< EvScrollLockPressed > {};

struct NumLockOn : sc::simple_state<
NumLockOn, Active ::orthogonal< 0 >>
{
typedef sc::transition<
EvNumLockPressed, NumLockOff > reactions;

3
struct NumLockOff : sc::simple_state<

NumLockOff, Active ::orthogonal< 0 >>
{

typedef sc::transition<
EvNumLockPressed, NumLockOn > reactions;

3

struct CapsLockOn : sc::simple_state<
CapsLockOn, Active ::orthogonal< 1 >>

{

typedef sc::transition<
EvCapsLockPressed, CapsLockOff > reactions;

I3
struct CapsLockOff : sc::simple_state<

CapsLockOff, Active ::orthogonal< 1 >>
{

typedef sc::transition<
EvCapsLockPressed, CapsLockOn > reactions;

I3
struct ScrollLockOn : sc::simple_state<

ScrollLockOn, Active ::orthogonal < 2 >>
{

typedef sc::transition<
EvScrollLockPressed, ScrollLockOff > reactions;

3
struct ScrollLockOff : sc::simple_state<

ScrollLockOff, Active ::orthogonal < 2 >>
{

typedef sc::transition<
EvScrollLockPressed, ScrollLockOn > reactions;

I3
orthogonal< 0 > is the default, sblumLockOnandNumLockOff could just as well pass
Active instead ofActive::orthogonal< 0 > to specify their context. The numbers passed

to theorthogonal = member template must correspond to the list posititndrouter state.
Moreover, the orthogonal position of the sourceestéia transition must correspond to

2006/06/1.

The Boost Statechart Libra- Tutoria Page21 of 32

orthogonal position of the target state. Any violat@f these rules lead to compile time errors.
Examples:

/l Example 1: does not compile because Active speci fies
/l only 3 orthogonal regions
struct WhateverLockOn: sc::simple_state<

WhateverLockOn, Active .. orthogonal< 3 >>{};
/l Example 2: does not compile because Active speci fies
/I that NumLockOff is part of the "0Oth" orthogonal region
struct NumLockOff : sc::simple_state<
NumLockOff, Active : . orthogonal< 1>>{};
/l Example 3: does not compile because a transition between

/I different orthogonal regions is not permitted
struct CapsLockOn : sc::simple_state<
CapsLockOn, Active . . orthogonal< 1>>
{
typedef sc::transition<
EvCapsLockPressed, CapsLockOff > reactions;

3

struct CapsLockOff : sc::simple_state<
CapsLockOff, Active . 1 orthogonal< 2>>

{

typedef sc::transition<
EvCapsLockPressed, CapsLockOn > reactions;

I
State queries

Often reactions in a state machine depend on theeasttite in one or more orthogonal regions.
is because orthogonal regions are not completely astiadgpr a certain reaction in an outer state
can only take place if the inner orthogonal regiaresin particular states. For this purpose, the
state_cast<> function introduced undégetting state information out of the machisalso
available within states.

As a somewhat far-fetched example, let's assume th&tgboardalso accepts
EvRequestShutdown events, the reception of which makes the keyboandinate only if all
lock keys are in the off state. We would then modify Keyboard state machine as follows:

struct EVRequestShutdown : sc::event< EVRequestShut down > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > >

{

typedef sc::custom_reaction< EvRequestShutdown > reactions;

sc::result react(const EvRequestShutdown &)

{

2006/06/1.

The Boost Statechart Libra- Tutoria Page22 of 32

if ((state_downcast< const NumLockOff * >() ! =0) &&
(state_downcast< const CapsLockOff * >() I=0) &&
(state_downcast< const ScrollLockOff * >()!1=0))
{
return terminate();
}
else
{ |
return discard_event();
}

}
h

Passing a pointer type instead of reference typetsasud pointers being returned instead of
std::bad_cast being thrown when the cast fails. Note also the ustaté_downcast<>()

instead ofstate_cast<>() . Similar to the differences between
boost::polymorphic_downcast<>() anddynamic_cast | state_downcast<>() is

a much faster variant state_cast<>() and can only be used when the passed type is a most-
derived typestate_cast<>() should only be used if you want to query an addiidase.

Custom state queries

It is often desirable to find out exactly which stajef machine currently resides in. To some extent
this is already possible wititate_cast<>() andstate_downcast<>() but their utility is
rather limited because both only return a yes/no anew&e question "Are you in state X?". It is
possible to ask more sophisticated questions when yowapasiditional base class rather than a
state class tetate_cast<>() but this involves more work (all states need to ddriem and
implement the additional base), is slow (under the Istaig_cast<>() uses

dynamic_cast), forces projects to compile with C++ RTTI turnedamd has a negative impact
on state entry/exit speed.

Especially for debugging it would be so much more udadirig able to ask "In which state(s) are
you?". For this purpose it is possible to iterate olleactive innermost states with

state_machine<>::state_begin() andstate_machine<>::state_end()
Dereferencing the returned iterator returns a referéoconst
state_machine<>::state_base_type , the common base of all states. We can thus print

the currently active state configuration as follogsg(the Keyboard example for the complete code):

void DisplayStateConfiguration(const Keyboard & kb d)
{
char region ='a’;
for (
Keyboard::state_iterator pLeafState = kbd.state _begin();
pLeafState != kbd.state_end(); ++pLeafState)
{

std::cout << "Orthogonal region " << region << 2
/I The following use of typeid assumes that
/[BOOST_STATECHART_USE_NATIVE_RTTI is defined
std::cout << typeid(*pLeafState).name() << "\ n";
++region;
}
}

2006/06/1.

The Boost Statechart Libra- Tutoria Page23 of 32

If necessary, the outer states can be accessed with
state_machine<>::state_base_type::outer_state ptr() , Which returns a pointt

to const state_machine<>::state_base_type . When called on an outermost state this
function simply returns O.

State type information

To cut down on executable size some applications mugirbpiled with C++ RTTI turned off. Th
would render the ability to iterate over all actstates pretty much useless if it weren't for the
following two functions:

e Static unspeci fi ed_t ype simple_state<>::static_type()
e unspecified _type

state_machine<>::state_base_type::dynamic_type() const
Both return a value that is comparable ajgerator==() andstd::less<> . This alone would
be enough to implement tiidsplayStateConfiguration function above without the help

typeid but it is still somewhat cumbersome as a map must be usssatiate the type
information values with the state names.

Custom state type information

That's why the following functions are also providedly available when
BOOST_STATECHART_USE_NATIVE_RTTis not defined):

e template<class T >

static void simple_state<>::custom_static_type_ptr(const T
*)

e template<class T >
static const T * simple_state<>::custom_static_type _ptr();

e template<class T >
const T * state_machine<>::
state_base_type::custom_dynamic_type_ptr() const;

These allow us to directly associate arbitrary state tyformation with each state ...

...

int main()

{
NumLockOn::custom_static_type_ptr("NumLockOn");
NumLockOff::custom_static_type_ptr("NumLockOff");
CapsLockOn::custom_static_type_ptr("CapsLockOn");
CapsLockOff::custom_static_type_ptr("CapsLockOff ");
ScrollLockOn::custom_static_type_ ptr("ScrollLock on");
ScrollLockOff::custom_static_type_ptr("ScrollLoc kOff");
...

}

... and rewrite the display function as follo

2006/06/1.

The Boost Statechart Libra- Tutoria Page24 of 32

void DisplayStateConfiguration(const Keyboard & kb d)
{
char region = 'a’;
for (
Keyboard::state iterator pLeafState = kbd.state _begin();
pLeafState != kbd.state_end(); ++pLeafState)
{
std::cout << "Orthogonal region " << region << "
std::cout <<
pLeafState->custom_dynamic_type ptr< char >() << "\n";
++region;
}
}

Exception handling

Exceptions can be propagated from all user code ekweptstate destructors. Out of the box, the
state machine framework is configured for simple etioafhandling and does not catch any of
these exceptions, so they are immediately propagatbe &iate machine client. A scope guard
inside thestate_machine<> ensures that all state objects are destructed bé&®exteption is
caught by the client. The scope guard does not attengatl anyexit functions (sedwo stage
exit below) that states might define as these could thess#ivow other exceptions which would
mask the original exception. Consequently, if a stedehine should do something more sensible
when exceptions are thrown, it has to catch them be¢fmy are propagated into the
Boost.Statechart framework. This exception handlingsehis often appropriate but it can lead to
considerable code duplication in state machines wheng aions can trigger exceptions that need
to be handled inside the state machine Eseer handlingn the Rationale).

That's why exception handling can be customized throligExceptionTranslator

parameter of thetate_machine class template. Since the out-of-the box behavitor gt
translate any exceptions, the default argument ferghrameter is

null_exception_translator . A state_machine<> subtype can be configured for
advanced exception handling by specifying the ljpsumppliedexception_translator<>

instead. This way, the following happens when an eiaes propagated from user code:

1. The exception is caught inside the framework

2. In the catch block, agxception_thrown event is allocated on the stack

3. Also in the catch block, ammediate dispatch of thexception_thrown event is
attempted. That is, possibly remaining events in theegaei dispatched only after the
exception has been handled successfully

4. If the exception was handled successfully, the statghine returns to the client normally. If
the exception could not be handled successfully, iggnal exception is rethrown so that the
client of the state machine can handle the exception

On platforms with buggy exception handling implementaiusers would probably want to
implement their own model of thexceptionTranslator concefgee als@iscriminating exception)s

Successful exception handling
An exception is considered handled successfully, if:

e an appropriate reaction for te&ception_thrown event has been founaind
¢ the state machine is in a stable state after the redwi® completec

2006/06/1.

The Boost Statechart Libra- Tutoria Page2t of 32

The second condition is important for scenarios 2 aindt® next section. In these scenarios, the
state machine is in the middle of a transition wheretteeption is handled. The machine would be
left in an invalid state, should the reaction simpkcdrd the event without doing anything else.
exception_translator<> simply rethrows the original exception if the exeapthandling

was unsuccessful. Just as with simple exception handlitigisicase a scope guard inside the
state_machine<> ensures that all state objects are destructed béexteption is caught by
the client.

Which states can react to arexcept i on_t hr own event?

Short answer: If the state machine is stable when tepérn is thrown, the state that caused the
exception is first tried for a reaction. Otherwise thermostnstable states first tried for a
reaction.

Longer answer: There are three scenarios:

1. Areact member function propagates an excephefore calling any of the reaction
functions or the action executed during an in-stadetion propagates an exception. The state
that caused the exception is first tried for a reactso the following machine will transit to
Defective after receiving an EvStart event:

é dle A

. > EvStart () /throw std::runtime_error(y

exception_thrown
A
(r Defective \1

_

2. A state entry action (constructor) propagates aapan:
o If there are no orthogonal regions, the direct ostate of the state that caused the
exception is first tried for a reaction, so the folloggmachine will transit to Defective
after trying to enter Stopped:

4 Active N

Q- s 4 Stopped

\\e_ntr‘-; / throw std::runtime_error(]J
_ vy

exception_thrown

W
(r Defective \

)

o If there are orthogonal regions, the outermositable states first tried for a reaction.
The outermost unstable state is found by first selethieglirect outer state of the state
that caused the exception and then moving outwarbaustiate is found that is unstal

2006/06/1.

The Boost Statechart Libra- Tutoria Page2€ of 32

but has no direct or indirect outer states that aséabie. This more complex rule is
necessary because only reactions associated with thenostainstable state (or any of
its direct or indirect outer states) are able to btiregmachine back into a stable state.
Consider the following statechart:

4 A N
4 D \
=)
- —— T N\
r” C)

. > Hentryfthrow std::runtime_error():

o J

exception_thrown

\Vi
4 F N

e J

exception_thrown

N4
(B)

_

Whether this state machine will ultimately transittorkE or F after initiation depends
which of the two orthogonal regions is initiatedfirlf the upper orthogonal region is
initiated first, the entry sequence is as follows: ABD(exception is thrown). Both D
and B were successfully entered, so B is the outermosthl@state when the except
is thrown and the machine will therefore transitiofrtélowever, if the lower
orthogonal region is initiated first, the sequencesitodows: A, B, (exception is
thrown). D was never entered so A is the outermost uessédie when the exception is
thrown and the machine will therefore transitiorto
In practice these differences rarely matter as top-kver recovery is adequate for
most state machines. However, since the sequence afionitis clearly defined
(orthogonal region 0 is always initiated first, thegion 1 and so forth), useran
accurately control when and where they want to leaexiceptions
3. A transition action propagates an exception: Thenmost common outer state of the source
and the target state is first tried for a reactiorthedollowing machine will transit to
Defective after receiving an EvStartStop event:

2006/06/1.

The Boost Statechart Libra- Tutoria Page27 of 32

4 Active N

(r Stopped)
L @
EvsStartStop / throw std:runtime_error();

/

[

Running \

)

exception_thrown

W
(r Defective \

_

As with a normal event, the dispatch algorithm will m@utward to find a reaction if the first tried
state does not provide one (or if the reaction eiplireturnedforward_event();). However,
in contrast to normal events, it will give up once ihas unsuccessfully tried an outermost state
so the following machine withot transit to Defective after receiving an EvNumLocld2e= event:

] D\

4 Active N

4 NumLockOff
. E EviumLockPressed () / throw std::runtime_error();

| .

AN

exception_thrown

V
{" Defective \]

_

Instead, the machine is terminated and the origkwd@ion rethrown.

Discriminating exceptions

Because thexception_thrown event is dispatched from within the catch block, ae ethrov
and catch the exception in a custom reaction:

struct Defective : sc::simple_state<

2006/06/1.

The Boost Statechart Libra- Tutoria Page28 of 32

Defective, Purifier > {};

/I Pretend this is a state deeply nested in the Pur ifier
I/ state machine
struct Idle : sc::simple_state< Idle, Purifier >

typedef mpl::list<
sc::custom_reaction< EvStart >,
sc::custom_reaction< sc::exception_thrown >
> reactions;

sc::result react(const EvStart &)

{

throw std::runtime_error("™);
}
sc::result react(const sc::exception_thrown &)
{

try

{

t hr ow;
}

catch (const std::runtime_error &)

/I only std::runtime_errors will lead to a tr ansition
I/ to Defective ...
return transit< Defective >();

}

catch (...)
/I ... all other exceptions are forwarded to our outer
I state(s). The state machine is terminated and the
Il exception rethrown if the outer state(s) c an't

/I handle it either...
return forward_event();

}
/I Alternatively, if we want to terminate the m achine
/l immediately, we can also either rethrow or t hrow
/Il a different exception.

}

|3

Unfortunately, this idiom (usingt hr ow; inside at ry block nested inside a&at ch block) does
not work on at least one very popular compilerlf you have to use one of these platforms, yot
pass a customized exception translator class tetaét@ machine class template. This will
allow you to generate different events dependinthertype of the exception.

Two stage exit

If a simple_state<> orstate<> subtype declares a public member function with theadige
void exit() then this function is called just before the statedhp destructed. As explained
underError handlin(in the Rationale, this is useful for two things tauuld otherwise be difficul

2006/06/1.

The Boost Statechart Libra- Tutoria Page2S of 32

or cumbersome to achieve with destructors only:

1. To signal a failure in an exit action
2. To execute certain exit actioosly during a transition or a termination but not whemn state
machine object is destructed

A few points to consider before employiagit()

e There is no guarantee treatit() will be called:
o If the client destructs the state machine object witleallingterminate()
beforehand then the currently active states are déstrwithout callingexit() . This
is necessary because an exception that is possibly tfiromrexit() could not be
propagated on to the state machine client
o exit() is not called when a previously executed actiop@gated an exception and
that exception has not (yet) been handled successfiiiy.is because a new exception
that could possibly be thrown froexit() would mask the original exception
¢ A state is considered exited, even ifatgt function propagated an exception. That is, the
state object is inevitably destructed right aftelimglexit() , regardless of whethexit()
propagated an exception or not. A state machinegunefd for advanced exception handling
is therefore always unstable while handling an exoapiropagated from axit function
¢ In a state machine configured for advanced exceptimmling the processing rules for an
exception event resulting from an exception propEdjfomexit() are analogous to the
ones defined for exceptions propagated from state cmtsts. That is, the outermost unste
state is first tried for a reaction and the dispatthen moves outward until an appropriate
reaction is found

Submachines & parameterized states

Submachines are to event-driven programming what fumgtre to procedural programming,
reusable building blocks implementing often neededtfanality. The associated UML notation is
not entirely clear to me. It seems to be severely lin(igegl the same submachine cannot appear in
different orthogonal regions) and does not seem toustdor obvious stuff like e.g. parameters.

Boost.Statechart is completely unaware of submachingtdytan be implemented quite nicely
with templates. Here, a submachine is used to improveoihe paste implementation of the
keyboard machine discussed un@ethogonal states

enum LockType

{

NUM_LOCK,
CAPS_LOCK,
SCROLL_LOCK

I3

template< LockType lockType >
struct Off;
struct Active : sc::simple_state<
Active, Keyboard, mpl::list<
Off< NUM_LOCK >, Off< CAPS_LOCK >, Off< SCROLL_LO CK>>>{}

template< LockType lockType >
struct EvPressed : sc::event< EvPressed< lockType > > {};

2006/06/1.

The Boost Statechart Libra- Tutoria Page3C of 32

template< LockType lockType >
struct On : sc::simple_state<
On< lockType >, Active::orthogonal< lockType > >

{

typedef sc::transition<
EvPressed< lockType >, Off< lockType > > reacti ons;

I3

template< LockType lockType >
struct Off : sc::simple_state<
Off< lockType >, Active::orthogonal< lockType > >

{

typedef sc::transition<
EvPressed< lockType >, On< lockType > > reactio ns,

I
Asynchronous state machines

Why asynchronous state machines are necessary

As the name suggests, a synchronous state machine procebsegesdsynchronously. This
behavior is implemented by tiséate_machine class template, whoggocess_event
function only returns after having executed alctems (including the ones provoked by internal
events that actions might have posted). This functistriigly non-reentrant (just like all other
member functions, sstate_machine<> s not thread-safe). This makes it difficult for two
state_machine<> subtype objects to communicate via events in a betional fashion
correctly,even in a single-threaded programFor example, state machiAgs in the middle of
processing an external event. Inside an actiongitde to send a new event to state macBi(tzy
calling B::process_event()). It then "waits" for B to send back an answer via a
boost::function<> -like call-back, which referenceés:process_event() and was
passed as a data member of the event. However, Avfalawaiting” for B to send back an event,
A::process_event() has not yet returned from processing the externat evehas soon 4%
answers via the call-back;:process_event() is unavoidably reentered. This all really
happens in a single thread, that's why "wait" is iotgs.

How it works
Theasynchronous_state_machine class template has none of the member functions the
state_machine class template has. Moreovasynchronous_state_machine<> subtype

objects cannot even be created or destroyed diréetiead, all these operations must be performed
through theScheduler object each asynchronous state machine is associatedWithese
Scheduler member functions only push an appropriate itemtimoschedulers' queue and then
return immediately. A dedicated thread will later pe items out of the queue to have them
processed.

Applications will usually first create fifo_scheduler<> object and then call
fifo_scheduler<>::create_processor<>() and
fifo_scheduler<>::initiate_processor() to schedule the creation and initiation of
one or moresynchronous_state_machine<> subtype objects. Finally,
fifo_scheduler<>::operator()() Is either called directly to let the machine(s) nuthe
current thread, or, Boost::function<> object referencingperator()() is passed to a
newboost::thread . Alternatively, the latter could also be done rigfter constructing the

2006/06/1.

The Boost Statechart Libra- Tutoria Page31 of 32

fifo_scheduler<> object. In the following code, we are running ctege machine in a new
boost::thread and the other in the main thread (see the PingPangme for the full source
code):

struct Waiting;
struct Player :
sc::asynchronous_state_machine< Player, Waiting >

{
...

8
/...

int main()
{
/I Create two schedulers that will wait for new e vents
/l when their event queue runs empty
sc::fifo_scheduler<> schedulerl(true);
sc::fifo_scheduler<> scheduler2(true);

/I Each player is serviced by its own scheduler
sc::fifo_scheduler<>::processor_handle playerl =
schedulerl.create_processor< Player >(/* ... * 1);
schedulerl.initiate_processor(playerl);
sc::fifo_scheduler<>::processor_handle player2 =
scheduler2.create_processor< Player >(/* ... * 1);
scheduler2.initiate_processor(player2);

// the initial event that will start the game

boost::intrusive_ptr< BallReturned > plnitialBall =
new BallReturned();

...

scheduler2.queue_event(player2, pinitialBall);

...

/I Up until here no state machines exist yet. The y
/Il will be created when operator()() is called

// Run first scheduler in a new thread
boost::thread otherThread(boost::bind(

&sc::fifo_scheduler<>::operator(), &schedulerl, 0));
scheduler2(); // Run second scheduler in this thr ead
otherThread.join();
return O;

}

We could just as well use two boost::threads:

int main()

2006/06/1.

The Boost Statechart Libra- Tutoria Page32 of 32

{
...
boost::thread thread1(boost::bind(
&sc::fifo_scheduler<>::operator(), &schedulerl, 0));
boost::thread thread2(boost::bind(
&sc::fifo_scheduler<>::operator(), &scheduler2, 0));

// do something else ...

thread1l.join();
thread2.join();

return O;

}
Or, run both machines in the same thread:
int main()
sc::fifo_scheduler<> schedulerl(true);

sc::fifo_scheduler<>::processor_handle playerl =

schedulerl.create_processor< Player >(/* ... *);
sc::fifo_scheduler<>::processor_handle player2 =
schedulerl.create_processor< Player >(/* ... * 1);
...
schedulerl();
return O;
}
In all the examples abovifo_scheduler<>::operator()() waits on an empty event
gueue and will only return after a callftto_scheduler<>::terminate() . ThePlayer

state machine calls this function on its schedulerobloight before terminating.

Revised 18 June, 2006

© CopyrightAndreas Huber Bnni 2003-2006The link refersto a spam honeypot. Please remove
the words spam and trap to obtain my real address.

Distributed under the Boost Software License, Version($dke accompanying fi
LICENSE_1 0.t or copy aihttp://www.boost.org/LICENSE_1_0)

2006/06/1.

