
A Japanese translation of an earlier version of this tutorial can be found at
http://prdownloads.sourceforge.jp/jyugem/7127/fsm-tutorial-jp.pdf. Kindly contributed by Mitsuo
Fukasawa.

Contents

Introduction
How to read this tutorial

Hello World!
Basic topics: A stop watch

Defining states and events
Adding reactions
State-local storage
Getting state information out of the machine

Intermediate topics: A digital camera
Spreading a state machine over multiple translation units
Deferring events
Guards
In-state reactions
Transition actions

Advanced topics
Specifying multiple reactions for a state
Posting events
History
Orthogonal states
State queries
State type information
Exception handling
Submachines & Parametrized States
Asynchronous state machines

Introduction

The Boost Statechart library is a framework that allows you to quickly transform a UML statechart
into executable C++ code, without needing to use a code generator. Thanks to support for almost all
UML features the transformation is straight-forward and the resulting C++ code is a nearly
redundancy-free textual description of the statechart.

How to read this tutorial

This tutorial was designed to be read linearly. First time users should start reading right at the
beginning and stop as soon as they know enough for the task at hand. Specifically:

The Boost Statechart
Library

Tutorial

Page 1 of 32The Boost Statechart Library - Tutorial

2006/06/18

� Small and simple machines with just a handful of states can be implemented reasonably well
by using the features described under Basic topics: A stop watch

� For larger machines with up to roughly a dozen states the features described under
Intermediate topics: A digital camera are often helpful

� Finally, users wanting to create even more complex machines and project architects evaluating
Boost.Statechart should also read the Advanced topics section at the end. Moreover, reading
the Limitations section in the Rationale is strongly suggested

Hello World!

We will use the simplest possible program to make our first steps. The statechart ...

... is implemented with the following code:

#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <iostream>

namespace sc = boost::statechart;

// We are declaring all types as structs only to av oid having to
// type public. If you don't mind doing so, you can just as well
// use class.

// We need to forward-declare the initial state bec ause it can
// only be defined at a point where the state machi ne is
// defined.
struct Greeting;

// Boost.Statechart makes heavy use of the curiousl y recurring
// template pattern. The deriving class must always be passed as
// the first parameter to all base class templates.
//
// The state machine must be informed which state i t has to
// enter when the machine is initiated. That's why Greeting is
// passed as the second template parameter.
struct Machine : sc::state_machine< Machine, Greeti ng > {};

// For each state we need to define which state mac hine it
// belongs to and where it is located in the statec hart. Both is
// specified with Context argument that is passed t o
// simple_state<>. For a flat state machine as we h ave it here,
// the context is always the state machine. Consequ ently,
// Machine must be passed as the second template pa rameter to
// Greeting's base (the Context parameter is explai ned in more
// detail in the next example).
struct Greeting : sc::simple_state< Greeting, Machi ne >

Page 2 of 32The Boost Statechart Library - Tutorial

2006/06/18

{
 // Whenever the state machine enters a state, it creates an
 // object of the corresponding state class. The o bject is then
 // kept alive as long as the machine remains in t he state.
 // Finally, the object is destroyed when the stat e machine
 // exits the state. Therefore, a state entry acti on can be
 // defined by adding a constructor and a state ex it action can
 // be defined by adding a destructor.
 Greeting() { std::cout << "Hello World!\n"; } // entry
 ~Greeting() { std::cout << "Bye Bye World!\n"; } // exit
};

int main()
{
 Machine myMachine;
 // The machine is not yet running after construct ion. We start
 // it by calling initiate(). This triggers the co nstruction of
 // the initial state Greeting
 myMachine.initiate();
 // When we leave main(), myMachine is destructed what leads to
 // the destruction of all currently active states .
 return 0;
}

This prints Hello World! and Bye Bye World! before exiting.

Basic topics: A stop watch

Next we will model a simple mechanical stop watch with a state machine. Such watches typically
have two buttons:

� Start/Stop
� Reset

And two states:

� Stopped: The hands reside in the position where they were last stopped:
� Pressing the reset button moves the hands back to the 0 position. The watch remains in

the Stopped state
� Pressing the start/stop button leads to a transition to the Running state

� Running: The hands of the watch are in motion and continually show the elapsed time
� Pressing the reset button moves the hands back to the 0 position and leads to a transition

to the Stopped state
� Pressing the start/stop button leads to a transition to the Stopped state

Here is one way to specify this in UML:

Page 3 of 32The Boost Statechart Library - Tutorial

2006/06/18

Defining states and events

The two buttons are modeled by two events. Moreover, we also define the necessary states and the
initial state. The following code is our starting point, subsequent code snippets must be inserted:

#include <boost/statechart/event.hpp>
#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>

namespace sc = boost::statechart;

struct EvStartStop : sc::event< EvStartStop > {};
struct EvReset : sc::event< EvReset > {};

struct Active;
struct StopWatch : sc::state_machine< StopWatch, Ac tive > {};

struct Stopped;

// The simple_state class template accepts up to fo ur parameters:
// - The third parameter specifies the inner initia l state, if
// there is one. Here, only Active has inner stat es, which is
// why it needs to pass its inner initial state S topped to its
// base
// - The fourth parameter specifies whether and wha t kind of
// history is kept

// Active is the outermost state and therefore need s to pass the
// state machine class it belongs to
struct Active : sc::simple_state<
 Active, StopWatch, Stopped > {};

// Stopped and Running both specify Active as their Context,
// which makes them nested inside Active
struct Running : sc::simple_state< Running, Active > {};
struct Stopped : sc::simple_state< Stopped, Active > {};

// Because the context of a state must be a complet e type (i.e.
// not forward declared), a machine must be defined from
// "outside to inside". That is, we always start wi th the state
// machine, followed by outermost states, followed by the direct
// inner states of outermost states and so on. We c an do so in a

Page 4 of 32The Boost Statechart Library - Tutorial

2006/06/18

// breadth-first or depth-first way or employ a mix ture of the
// two.

int main()
{
 StopWatch myWatch;
 myWatch.initiate();
 return 0;
}

This compiles but doesn't do anything observable yet.

Adding reactions

For the moment we will use only one type of reaction: transitions. We insert the bold parts of the
following code:

#include <boost/statechart/transition.hpp>

// ...

struct Stopped;
struct Active : sc::simple_state< Active, StopWatch , Stopped >
{
 typedef sc::transition< EvReset, Active > reactions;
};

struct Running : sc::simple_state< Running, Active >
{
 typedef sc::transition< EvStartStop, Stopped > reactions;
};

struct Stopped : sc::simple_state< Stopped, Active >
{
 typedef sc::transition< EvStartStop, Running > reactions;
};

// A state can define an arbitrary number of reacti ons. That's
// why we have to put them into an mpl::list<> as s oon as there
// is more than one of them
// (see Specifying multiple reactions for a state).

int main()
{
 StopWatch myWatch;
 myWatch.initiate();
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvReset());
 return 0;
}

Page 5 of 32The Boost Statechart Library - Tutorial

2006/06/18

Now we have all the states and all the transitions in place and a number of events are also sent to the
stop watch. The machine dutifully makes the transitions we would expect, but no actions are
executed yet.

State-local storage

Next we'll make the stop watch actually measure time. Depending on the state the stop watch is in,
we need different variables:

� Stopped: One variable holding the elapsed time
� Running: One variable holding the elapsed time and one variable storing the point in time at

which the watch was last started.

We observe that the elapsed time variable is needed no matter what state the machine is in.
Moreover, this variable should be reset to 0 when we send an EvReset event to the machine. The
other variable is only needed while the machine is in the Running state. It should be set to the current
time of the system clock whenever we enter the Running state. Upon exit we simply subtract the start
time from the current system clock time and add the result to the elapsed time.

#include <ctime>

// ...

struct Stopped;
struct Active : sc::simple_state< Active, StopWatch , Stopped >
{
 public:
 typedef sc::transition< EvReset, Active > react ions;

 Active() : elapsedTime_(0.0) {}
 double ElapsedTime() const { return elapsedTime_; }
 double & ElapsedTime() { return elapsedTime_; }
 private:
 double elapsedTime_;
};

struct Running : sc::simple_state< Running, Active >
{
 public:
 typedef sc::transition< EvStartStop, Stopped > reactions;

 Running() : startTime_(std::time(0)) {}
 ~Running()
 {
 // Similar to when a derived class object acc esses its
 // base class portion, context<>() is used to gain
 // access to the direct or indirect context o f a state.
 // This can either be a direct or indirect ou ter state
 // or the state machine itself
 // (e.g. here: context< StopWatch >()).
 context< Active >().ElapsedTime() +=
 std::difftime(std::time(0), startTime_);
 }

Page 6 of 32The Boost Statechart Library - Tutorial

2006/06/18

 private:
 std::time_t startTime_;
};

// ...

The machine now measures the time, but we cannot yet retrieve it from the main program.

At this point, the advantages of state-local storage (which is still a relatively little-known feature)
may not yet have become apparent. The FAQ item "What's so cool about state-local storage?" tries
to explain them in more detail by comparing this StopWatch with one that does not make use of
state-local storage.

Getting state information out of the machine

To retrieve the measured time, we need a mechanism to get state information out of the machine.
With our current machine design there are two ways to do that. For the sake of simplicity we use the
less efficient one: state_cast<>() (StopWatch2.cpp shows the slightly more complex
alternative). As the name suggests, the semantics are very similar to the ones of dynamic_cast .
For example, when we call myWatch.state_cast< const Stopped & >() and the
machine is currently in the Stopped state, we get a reference to the Stopped state. Otherwise
std::bad_cast is thrown. We can use this functionality to implement a StopWatch member
function that returns the elapsed time. However, rather than ask the machine in which state it is and
then switch to different calculations for the elapsed time, we put the calculation into the Stopped and
Running states and use an interface to retrieve the elapsed time:

#include <iostream>

// ...

struct IElapsedTime
{
 virtual double ElapsedTime() const = 0;
};

struct Active;
struct StopWatch : sc::state_machine< StopWatch, Ac tive >
{
 double ElapsedTime() const
 {
 return state_cast< const IElapsedTime & >().ElapsedTime();
 }
};

// ...

struct Running : IElapsedTime,
 sc::simple_state< Running, Active >
{
 public:
 typedef sc::transition< EvStartStop, Stopped > reactions;

 Running() : startTime_(std::time(0)) {}

Page 7 of 32The Boost Statechart Library - Tutorial

2006/06/18

 ~Running()
 {
 context< Active >().ElapsedTime() = ElapsedTime();
 }

 virtual double ElapsedTime() const
 {
 return context< Active >().ElapsedTime() +
 std::difftime(std::time(0), startTime_);
 }
 private:
 std::time_t startTime_;
};

struct Stopped : IElapsedTime,
 sc::simple_state< Stopped, Active >
{
 typedef sc::transition< EvStartStop, Running > re actions;

 virtual double ElapsedTime() const
 {
 return context< Active >().ElapsedTime();
 }
};

int main()
{
 StopWatch myWatch;
 myWatch.initiate();
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvReset());
 std::cout << myWatch.ElapsedTime() << "\n";
 return 0;
}

To actually see time being measured, you might want to single-step through the statements in main
() . The StopWatch example extends this program to an interactive console application.

Intermediate topics: A digital camera

So far so good. However, the approach presented above has a few limitations:

� Bad scalability: As soon as the compiler reaches the point where
state_machine::initiate() is called, a number of template instantiations take place,
which can only succeed if the full declaration of each and every state of the machine is known.
That is, the whole layout of a state machine must be implemented in one single translation unit
(actions can be compiled separately, but this is of no importance here). For bigger (and more

Page 8 of 32The Boost Statechart Library - Tutorial

2006/06/18

real-world) state machines, this leads to the following limitations:
� At some point compilers reach their internal template instantiation limits and give up.

This can happen even for moderately-sized machines. For example, in debug mode one
popular compiler refused to compile earlier versions of the BitMachine example for
anything above 3 bits. This means that the compiler reached its limits somewhere
between 8 states, 24 transitions and 16 states, 64 transitions

� Multiple programmers can hardly work on the same state machine simultaneously
because every layout change will inevitably lead to a recompilation of the whole state
machine

� Maximum one reaction per event: According to UML a state can have multiple reactions
triggered by the same event. This makes sense when all reactions have mutually exclusive
guards. The interface we used above only allows for at most one unguarded reaction for each
event. Moreover, the UML concepts junction and choice point are not directly supported

All these limitations can be overcome with custom reactions. Warning: It is easy to abuse custom
reactions up to the point of invoking undefined behavior. Please study the documentation
before employing them!

Spreading a state machine over multiple translation units

Let's say your company would like to develop a digital camera. The camera has the following
controls:

� Shutter button, which can be half-pressed and fully-pressed. The associated events are
EvShutterHalf , EvShutterFull and EvShutterReleased

� Config button, represented by the EvConfig event
� A number of other buttons that are not of interest here

One use case for the camera says that the photographer can half-press the shutter anywhere in the
configuration mode and the camera will immediately go into shooting mode. The following
statechart is one way to achieve this behavior:

The Configuring and Shooting states will contain numerous nested states while the Idle state is
relatively simple. It was therefore decided to build two teams. One will implement the shooting
mode while the other will implement the configuration mode. The two teams have already agreed on

Page 9 of 32The Boost Statechart Library - Tutorial

2006/06/18

the interface that the shooting team will use to retrieve the configuration settings. We would like to
ensure that the two teams can work with the least possible interference. So, we put the two states in
their own translation units so that machine layout changes within the Configuring state will never
lead to a recompilation of the inner workings of the Shooting state and vice versa.

Unlike in the previous example, the excerpts presented here often outline different options to
achieve the same effect. That's why the code is often not equal to the Camera example code.
Comments mark the parts where this is the case.

Camera.hpp:

#ifndef CAMERA_HPP_INCLUDED
#define CAMERA_HPP_INCLUDED

#include <boost/statechart/event.hpp>
#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <boost/statechart/custom_reaction.hpp>

namespace sc = boost::statechart;

struct EvShutterHalf : sc::event< EvShutterHalf > { };
struct EvShutterFull : sc::event< EvShutterFull > { };
struct EvShutterRelease : sc::event< EvShutterRelea se > {};
struct EvConfig : sc::event< EvConfig > {};

struct NotShooting;
struct Camera : sc::state_machine< Camera, NotShoot ing >
{
 bool IsMemoryAvailable() const { return true; }
 bool IsBatteryLow() const { return false; }
};

struct Idle;
struct NotShooting : sc::simple_state<
 NotShooting, Camera, Idle >
{
 // With a custom reaction we only specify that we might do
 // something with a particular event, but the act ual reaction
 // is defined in the react member function, which can be
 // implemented in the .cpp file.
 typedef sc::custom_reaction< EvShutterHalf > reactions;

 // ...
 sc::result react(const EvShutterHalf &);
};

struct Idle : sc::simple_state< Idle, NotShooting >
{
 typedef sc::custom_reaction< EvConfig > reactions;

 // ...
 sc::result react(const EvConfig &);

Page 10 of 32The Boost Statechart Library - Tutorial

2006/06/18

};

#endif

Camera.cpp:

#include "Camera.hpp"

// The following includes are only made here but no t in
// Camera.hpp
// The Shooting and Configuring states can themselv es apply the
// same pattern to hide their inner implementation, which
// ensures that the two teams working on the Camera state
// machine will never need to disturb each other.
#include "Configuring.hpp"
#include "Shooting.hpp"

// ...

// not part of the Camera example
sc::result NotShooting::react(const EvShutterHalf &)
{
 return transit< Shooting >();
}

sc::result Idle::react(const EvConfig &)
{
 return transit< Configuring >();
}

Caution: Any call to simple_state<>::transit<>() or
simple_state<>::terminate() (see reference) will inevitably destruct the state object
(similar to delete this;)! That is, code executed after any of these calls may invoke
undefined behavior! That's why these functions should only be called as part of a return statement.

Deferring events

The inner workings of the Shooting state could look as follows:

Page 11 of 32The Boost Statechart Library - Tutorial

2006/06/18

When the user half-presses the shutter, Shooting and its inner initial state Focusing are entered. In
the Focusing entry action the camera instructs the focusing circuit to bring the subject into focus.
The focusing circuit then moves the lenses accordingly and sends the EvInFocus event as soon as it
is done. Of course, the user can fully-press the shutter while the lenses are still in motion. Without
any precautions, the resulting EvShutterFull event would simply be lost because the Focusing state
does not define a reaction for this event. As a result, the user would have to fully-press the shutter
again after the camera has finished focusing. To prevent this, the EvShutterFull event is deferred
inside the Focusing state. This means that all events of this type are stored in a separate queue, which
is emptied into the main queue when the Focusing state is exited.

struct Focusing : sc::state< Focusing, Shooting >
{
 typedef mpl::list<
 sc::custom_reaction< EvInFocus >,
 sc::deferral< EvShutterFull >
 > reactions;

 Focusing(my_context ctx);
 sc::result react(const EvInFocus &);
};

Guards

Both transitions originating at the Focused state are triggered by the same event but they have
mutually exclusive guards. Here is an appropriate custom reaction:

// not part of the Camera example
sc::result Focused::react(const EvShutterFull &)
{

Page 12 of 32The Boost Statechart Library - Tutorial

2006/06/18

 if (context< Camera >().IsMemoryAvailable())
 {
 return transit< Storing >();
 }
 else
 {
 // The following is actually a mixture between an in-state
 // reaction and a transition. See later on how to implement
 // proper transition actions.
 std::cout << "Cache memory full. Please wait... \n";
 return transit< Focused >();
 }
}

Custom reactions can of course also be implemented directly in the state declaration, which is often
preferable for easier browsing.

Next we will use a guard to prevent a transition and let outer states react to the event if the battery is
low:

Camera.cpp:

// ...
sc::result NotShooting::react(const EvShutterHalf &)
{
 if (context< Camera >().IsBatteryLow())
 {
 // We cannot react to the event ourselves, so w e forward it
 // to our outer state (this is also the default if a state
 // defines no reaction for a given event).
 return forward_event();
 }
 else
 {
 return transit< Shooting >();
 }
}
// ...

In-state reactions

The self-transition of the Focused state could also be implemented as an in-state reaction, which has
the same effect as long as Focused does not have any entry or exit actions:

Shooting.cpp:

// ...
sc::result Focused::react(const EvShutterFull &)
{
 if (context< Camera >().IsMemoryAvailable())
 {
 return transit< Storing >();
 }

Page 13 of 32The Boost Statechart Library - Tutorial

2006/06/18

 else
 {
 std::cout << "Cache memory full. Please wait... \n";
 // Indicate that the event can be discarded. So , the
 // dispatch algorithm will stop looking for a r eaction
 // and the machine remains in the Focused state .
 return discard_event();
 }
}
// ...

Because the in-state reaction is guarded, we need to employ a custom_reaction<> here. For
unguarded in-state reactions in_state_reaction <> should be used for better code-readability.

Transition actions

As an effect of every transition, actions are executed in the following order:

1. Starting from the innermost active state, all exit actions up to but excluding the innermost
common context

2. The transition action (if present)
3. Starting from the innermost common context, all entry actions down to the target state

followed by the entry actions of the initial states

Example:

Here the order is as follows: ~D(), ~C(), ~B(), ~A(), t(), X(), Y(), Z(). The transition action t() is
therefore executed in the context of the InnermostCommonOuter state because the source state has
already been left (destructed) and the target state has not yet been entered (constructed).

With Boost.Statechart, a transition action can be a member of any common outer context. That is,
the transition between Focusing and Focused could be implemented as follows:

Shooting.hpp:

Page 14 of 32The Boost Statechart Library - Tutorial

2006/06/18

// ...
struct Focusing;
struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >
{
 typedef sc::transition<
 EvShutterRelease, NotShooting > reactions;

 // ...
 void DisplayFocused(const EvInFocus &);
};

// ...

// not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >
{
 typedef sc::transition< EvInFocus, Focused ,
 Shooting, &Shooting::DisplayFocused > reactions;
};

Or , the following is also possible (here the state machine itself serves as the outermost context):

// not part of the Camera example
struct Camera : sc::state_machine< Camera, NotShoot ing >
{
 void DisplayFocused(const EvInFocus &);
};

// not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >
{
 typedef sc::transition< EvInFocus, Focused ,
 Camera, &Camera::DisplayFocused > reactions;
};

Naturally, transition actions can also be invoked from custom reactions:

Shooting.cpp:

// ...
sc::result Focusing::react(const EvInFocus & evt)
{
 // We have to manually forward evt
 return transit< Focused >(&Shooting::DisplayFocused, evt);
}

Advanced topics

Specifying multiple reactions for a state

Often a state must define reactions for more than one event. In this case, an mpl::list<> must be
used as outlined below:

Page 15 of 32The Boost Statechart Library - Tutorial

2006/06/18

// ...

#include <boost/mpl/list.hpp>

namespace mpl = boost::mpl;

// ...

struct Playing : sc::simple_state< Playing, Mp3Play er >
{
 typdef mpl::list<
 sc::custom_reaction< EvFastForward >,
 sc::transition< EvStop, Stopped > > reactions;

 /* ... */
};

Posting events

Non-trivial state machines often need to post internal events. Here's an example of how to do this:

Pumping::~Pumping()
{
 post_event(EvPumpingFinished());
}

The event is pushed into the main queue. The events in the queue are processed as soon as the
current reaction is completed. Events can be posted from inside react functions, entry-, exit- and
transition actions. However, posting from inside entry actions is a bit more complicated (see e.g.
Focusing::Focusing() in Shooting.cpp in the Camera example):

struct Pumping : sc::state< Pumping, Purifier >
{
 Pumping(my_context ctx) : my_base(ctx)
 {
 post_event(EvPumpingStarted());
 }
 // ...
};

As soon as an entry action of a state needs to contact the "outside world" (here: the event queue in
the state machine), the state must derive from state<> rather than from simple_state<> and
must implement a forwarding constructor as outlined above (apart from the constructor, state<>
offers the same interface as simple_state<>). Hence, this must be done whenever an entry
action makes one or more calls to the following functions:

� simple_state<>::post_event()
� simple_state<>::clear_shallow_history<>()
� simple_state<>::clear_deep_history<>()
� simple_state<>::outermost_context()
� simple_state<>::context<>()
� simple_state<>::state_cast<>()

Page 16 of 32The Boost Statechart Library - Tutorial

2006/06/18

� simple_state<>::state_downcast<>()
� simple_state<>::state_begin()
� simple_state<>::state_end()

In my experience, these functions are needed only rarely in entry actions so this workaround should
not uglify user code too much.

History

Photographers testing beta versions of our digital camera said that they really liked that half-pressing
the shutter anytime (even while the camera is being configured) immediately readies the camera for
picture-taking. However, most of them found it unintuitive that the camera always goes into the idle
mode after releasing the shutter. They would rather see the camera go back into the state it had
before half-pressing the shutter. This way they can easily test the influence of a configuration setting
by modifying it, half- and then fully-pressing the shutter to take a picture. Finally, releasing the
shutter will bring them back to the screen where they have modified the setting. To implement this
behavior we'd change the state chart as follows:

As mentioned earlier, the Configuring state contains a fairly complex and deeply nested inner
machine. Naturally, we'd like to restore the previous state down to the innermost state(s) in
Configuring, that's why we use a deep history pseudo state. The associated code looks as follows:

// not part of the Camera example
struct NotShooting : sc::simple_state<
 NotShooting, Camera, Idle, sc::has_deep_history >
{
 // ...
};

// ...

Page 17 of 32The Boost Statechart Library - Tutorial

2006/06/18

struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >
{
 typedef sc::transition<
 EvShutterRelease, sc::deep_history< Idle > > reactions;

 // ...
};

History has two phases: Firstly, when the state containing the history pseudo state is exited,
information about the previously active inner state hierarchy must be saved. Secondly, when a
transition to the history pseudo state is made later, the saved state hierarchy information must be
retrieved and the appropriate states entered. The former is expressed by passing either
has_shallow_history , has_deep_history or has_full_history (which combines
shallow and deep history) as the last parameter to the simple_state and state class templates.
The latter is expressed by specifying either shallow_history<> or deep_history<> as a
transition destination or, as we'll see in an instant, as an inner initial state. Because it is possible that
a state containing a history pseudo state has never been entered before a transition to history is made,
both class templates demand a parameter specifying the default state to enter in such situations.

The redundancy necessary for using history is checked for consistency at compile time. That is, the
state machine wouldn't have compiled had we forgotten to pass has_deep_history to the base
of NotShooting .

Another change request filed by a few beta testers says that they would like to see the camera go
back into the state it had before turning it off when they turn it back on. Here's the implementation:

Page 18 of 32The Boost Statechart Library - Tutorial

2006/06/18

// ...

// not part of the Camera example
struct NotShooting : sc::simple_state< NotShooting, Camera,
 mpl::list< sc::deep_history< Idle > >,
 sc::has_deep_history >
{
 // ...
};

// ...

Unfortunately, there is a small inconvenience due to some template-related implementation details.
When the inner initial state is a class template instantiation we always have to put it into an
mpl::list<> , although there is only one inner initial state. Moreover, the current deep history
implementation has some limitations.

Orthogonal states

To implement this statechart you simply specify more than one inner initial state (see the Keyboard
example):

struct Active;
struct Keyboard : sc::state_machine< Keyboard, Acti ve > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
 mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > > {};

Page 19 of 32The Boost Statechart Library - Tutorial

2006/06/18

Active's inner states must declare which orthogonal region they belong to:

struct EvNumLockPressed : sc::event< EvNumLockPress ed > {};
struct EvCapsLockPressed : sc::event< EvCapsLockPre ssed > {};
struct EvScrollLockPressed :
 sc::event< EvScrollLockPressed > {};

struct NumLockOn : sc::simple_state<
 NumLockOn, Active ::orthogonal< 0 > >
{
 typedef sc::transition<
 EvNumLockPressed, NumLockOff > reactions;
};

struct NumLockOff : sc::simple_state<
 NumLockOff, Active ::orthogonal< 0 > >
{
 typedef sc::transition<
 EvNumLockPressed, NumLockOn > reactions;
};

struct CapsLockOn : sc::simple_state<
 CapsLockOn, Active ::orthogonal< 1 > >
{
 typedef sc::transition<
 EvCapsLockPressed, CapsLockOff > reactions;
};

struct CapsLockOff : sc::simple_state<
 CapsLockOff, Active ::orthogonal< 1 > >
{
 typedef sc::transition<
 EvCapsLockPressed, CapsLockOn > reactions;
};

struct ScrollLockOn : sc::simple_state<
 ScrollLockOn, Active ::orthogonal< 2 > >
{
 typedef sc::transition<
 EvScrollLockPressed, ScrollLockOff > reactions;
};

struct ScrollLockOff : sc::simple_state<
 ScrollLockOff, Active ::orthogonal< 2 > >
{
 typedef sc::transition<
 EvScrollLockPressed, ScrollLockOn > reactions;
};

orthogonal< 0 > is the default, so NumLockOn and NumLockOff could just as well pass
Active instead of Active::orthogonal< 0 > to specify their context. The numbers passed
to the orthogonal member template must correspond to the list position in the outer state.
Moreover, the orthogonal position of the source state of a transition must correspond to the

Page 20 of 32The Boost Statechart Library - Tutorial

2006/06/18

orthogonal position of the target state. Any violations of these rules lead to compile time errors.
Examples:

// Example 1: does not compile because Active speci fies
// only 3 orthogonal regions
struct WhateverLockOn: sc::simple_state<
 WhateverLockOn, Active ::orthogonal< 3 > > {};

// Example 2: does not compile because Active speci fies
// that NumLockOff is part of the "0th" orthogonal region
struct NumLockOff : sc::simple_state<
 NumLockOff, Active ::orthogonal< 1 > > {};

// Example 3: does not compile because a transition between
// different orthogonal regions is not permitted
struct CapsLockOn : sc::simple_state<
 CapsLockOn, Active ::orthogonal< 1 > >
{
 typedef sc::transition<
 EvCapsLockPressed, CapsLockOff > reactions;
};

struct CapsLockOff : sc::simple_state<
 CapsLockOff, Active ::orthogonal< 2 > >
{
 typedef sc::transition<
 EvCapsLockPressed, CapsLockOn > reactions;
};

State queries

Often reactions in a state machine depend on the active state in one or more orthogonal regions. This
is because orthogonal regions are not completely orthogonal or a certain reaction in an outer state
can only take place if the inner orthogonal regions are in particular states. For this purpose, the
state_cast<> function introduced under Getting state information out of the machine is also
available within states.

As a somewhat far-fetched example, let's assume that our keyboard also accepts
EvRequestShutdown events, the reception of which makes the keyboard terminate only if all
lock keys are in the off state. We would then modify the Keyboard state machine as follows:

struct EvRequestShutdown : sc::event< EvRequestShut down > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
 mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > >
{
 typedef sc::custom_reaction< EvRequestShutdown > reactions;

 sc::result react(const EvRequestShutdown &)
 {

Page 21 of 32The Boost Statechart Library - Tutorial

2006/06/18

 if ((state_downcast< const NumLockOff * >() ! = 0) &&
 (state_downcast< const CapsLockOff * >() != 0) &&
 (state_downcast< const ScrollLockOff * >() != 0))
 {
 return terminate();
 }
 else
 {
 return discard_event();
 }
 }
};

Passing a pointer type instead of reference type results in 0 pointers being returned instead of
std::bad_cast being thrown when the cast fails. Note also the use of state_downcast<>()
instead of state_cast<>() . Similar to the differences between
boost::polymorphic_downcast<>() and dynamic_cast , state_downcast<>() is
a much faster variant of state_cast<>() and can only be used when the passed type is a most-
derived type. state_cast<>() should only be used if you want to query an additional base.

Custom state queries

It is often desirable to find out exactly which state(s) a machine currently resides in. To some extent
this is already possible with state_cast<>() and state_downcast<>() but their utility is
rather limited because both only return a yes/no answer to the question "Are you in state X?". It is
possible to ask more sophisticated questions when you pass an additional base class rather than a
state class to state_cast<>() but this involves more work (all states need to derive from and
implement the additional base), is slow (under the hood state_cast<>() uses
dynamic_cast), forces projects to compile with C++ RTTI turned on and has a negative impact
on state entry/exit speed.

Especially for debugging it would be so much more useful being able to ask "In which state(s) are
you?". For this purpose it is possible to iterate over all active innermost states with
state_machine<>::state_begin() and state_machine<>::state_end() .
Dereferencing the returned iterator returns a reference to const
state_machine<>::state_base_type , the common base of all states. We can thus print
the currently active state configuration as follows (see the Keyboard example for the complete code):

void DisplayStateConfiguration(const Keyboard & kb d)
{
 char region = 'a';

 for (
 Keyboard::state_iterator pLeafState = kbd.state _begin();
 pLeafState != kbd.state_end(); ++pLeafState)
 {
 std::cout << "Orthogonal region " << region << ": ";
 // The following use of typeid assumes that
 // BOOST_STATECHART_USE_NATIVE_RTTI is defined
 std::cout << typeid(*pLeafState).name() << "\ n";
 ++region;
 }
}

Page 22 of 32The Boost Statechart Library - Tutorial

2006/06/18

If necessary, the outer states can be accessed with
state_machine<>::state_base_type::outer_state_ptr() , which returns a pointer
to const state_machine<>::state_base_type . When called on an outermost state this
function simply returns 0.

State type information

To cut down on executable size some applications must be compiled with C++ RTTI turned off. This
would render the ability to iterate over all active states pretty much useless if it weren't for the
following two functions:

� static unspecified_type simple_state<>::static_type()
� unspecified_type

 state_machine<>::state_base_type::dynamic_type() const

Both return a value that is comparable via operator==() and std::less<> . This alone would
be enough to implement the DisplayStateConfiguration function above without the help of
typeid but it is still somewhat cumbersome as a map must be used to associate the type
information values with the state names.

Custom state type information

That's why the following functions are also provided (only available when
BOOST_STATECHART_USE_NATIVE_RTTI is not defined):

� template< class T >
static void simple_state<>::custom_static_type_ptr(const T
*);

� template< class T >
static const T * simple_state<>::custom_static_type _ptr();

� template< class T >
const T * state_machine<>::
 state_base_type::custom_dynamic_type_ptr() const;

These allow us to directly associate arbitrary state type information with each state ...

// ...

int main()
{
 NumLockOn::custom_static_type_ptr("NumLockOn");
 NumLockOff::custom_static_type_ptr("NumLockOff");
 CapsLockOn::custom_static_type_ptr("CapsLockOn");
 CapsLockOff::custom_static_type_ptr("CapsLockOff ");
 ScrollLockOn::custom_static_type_ptr("ScrollLock On");
 ScrollLockOff::custom_static_type_ptr("ScrollLoc kOff");

 // ...
}

... and rewrite the display function as follows:

Page 23 of 32The Boost Statechart Library - Tutorial

2006/06/18

void DisplayStateConfiguration(const Keyboard & kb d)
{
 char region = 'a';

 for (
 Keyboard::state_iterator pLeafState = kbd.state _begin();
 pLeafState != kbd.state_end(); ++pLeafState)
 {
 std::cout << "Orthogonal region " << region << ": ";
 std::cout <<
 pLeafState->custom_dynamic_type_ptr< char >() << "\n";
 ++region;
 }
}

Exception handling

Exceptions can be propagated from all user code except from state destructors. Out of the box, the
state machine framework is configured for simple exception handling and does not catch any of
these exceptions, so they are immediately propagated to the state machine client. A scope guard
inside the state_machine<> ensures that all state objects are destructed before the exception is
caught by the client. The scope guard does not attempt to call any exit functions (see Two stage
exit below) that states might define as these could themselves throw other exceptions which would
mask the original exception. Consequently, if a state machine should do something more sensible
when exceptions are thrown, it has to catch them before they are propagated into the
Boost.Statechart framework. This exception handling scheme is often appropriate but it can lead to
considerable code duplication in state machines where many actions can trigger exceptions that need
to be handled inside the state machine (see Error handling in the Rationale).
That's why exception handling can be customized through the ExceptionTranslator
parameter of the state_machine class template. Since the out-of-the box behavior is to not
translate any exceptions, the default argument for this parameter is
null_exception_translator . A state_machine<> subtype can be configured for
advanced exception handling by specifying the library-supplied exception_translator<>
instead. This way, the following happens when an exception is propagated from user code:

1. The exception is caught inside the framework
2. In the catch block, an exception_thrown event is allocated on the stack
3. Also in the catch block, an immediate dispatch of the exception_thrown event is

attempted. That is, possibly remaining events in the queue are dispatched only after the
exception has been handled successfully

4. If the exception was handled successfully, the state machine returns to the client normally. If
the exception could not be handled successfully, the original exception is rethrown so that the
client of the state machine can handle the exception

On platforms with buggy exception handling implementations users would probably want to
implement their own model of the ExceptionTranslator concept (see also Discriminating exceptions).

Successful exception handling

An exception is considered handled successfully, if:

� an appropriate reaction for the exception_thrown event has been found, and
� the state machine is in a stable state after the reaction has completed.

Page 24 of 32The Boost Statechart Library - Tutorial

2006/06/18

The second condition is important for scenarios 2 and 3 in the next section. In these scenarios, the
state machine is in the middle of a transition when the exception is handled. The machine would be
left in an invalid state, should the reaction simply discard the event without doing anything else.
exception_translator<> simply rethrows the original exception if the exception handling
was unsuccessful. Just as with simple exception handling, in this case a scope guard inside the
state_machine<> ensures that all state objects are destructed before the exception is caught by
the client.

Which states can react to an exception_thrown event?

Short answer: If the state machine is stable when the exception is thrown, the state that caused the
exception is first tried for a reaction. Otherwise the outermost unstable state is first tried for a
reaction.

Longer answer: There are three scenarios:

1. A react member function propagates an exception before calling any of the reaction
functions or the action executed during an in-state reaction propagates an exception. The state
that caused the exception is first tried for a reaction, so the following machine will transit to
Defective after receiving an EvStart event:

2. A state entry action (constructor) propagates an exception:
� If there are no orthogonal regions, the direct outer state of the state that caused the

exception is first tried for a reaction, so the following machine will transit to Defective
after trying to enter Stopped:

� If there are orthogonal regions, the outermost unstable state is first tried for a reaction.

The outermost unstable state is found by first selecting the direct outer state of the state
that caused the exception and then moving outward until a state is found that is unstable

Page 25 of 32The Boost Statechart Library - Tutorial

2006/06/18

but has no direct or indirect outer states that are unstable. This more complex rule is
necessary because only reactions associated with the outermost unstable state (or any of
its direct or indirect outer states) are able to bring the machine back into a stable state.
Consider the following statechart:

Whether this state machine will ultimately transition to E or F after initiation depends on
which of the two orthogonal regions is initiated first. If the upper orthogonal region is
initiated first, the entry sequence is as follows: A, D, B, (exception is thrown). Both D
and B were successfully entered, so B is the outermost unstable state when the exception
is thrown and the machine will therefore transition to F. However, if the lower
orthogonal region is initiated first, the sequence is as follows: A, B, (exception is
thrown). D was never entered so A is the outermost unstable state when the exception is
thrown and the machine will therefore transition to E.
In practice these differences rarely matter as top-level error recovery is adequate for
most state machines. However, since the sequence of initiation is clearly defined
(orthogonal region 0 is always initiated first, then region 1 and so forth), users can
accurately control when and where they want to handle exceptions

3. A transition action propagates an exception: The innermost common outer state of the source
and the target state is first tried for a reaction, so the following machine will transit to
Defective after receiving an EvStartStop event:

Page 26 of 32The Boost Statechart Library - Tutorial

2006/06/18

As with a normal event, the dispatch algorithm will move outward to find a reaction if the first tried
state does not provide one (or if the reaction explicitly returned forward_event();). However,
in contrast to normal events, it will give up once it has unsuccessfully tried an outermost state,
so the following machine will not transit to Defective after receiving an EvNumLockPressed event:

Instead, the machine is terminated and the original exception rethrown.

Discriminating exceptions

Because the exception_thrown event is dispatched from within the catch block, we can rethrow
and catch the exception in a custom reaction:

struct Defective : sc::simple_state<

Page 27 of 32The Boost Statechart Library - Tutorial

2006/06/18

 Defective, Purifier > {};

// Pretend this is a state deeply nested in the Pur ifier
// state machine
struct Idle : sc::simple_state< Idle, Purifier >
{
 typedef mpl::list<
 sc::custom_reaction< EvStart >,
 sc::custom_reaction< sc::exception_thrown >
 > reactions;

 sc::result react(const EvStart &)
 {
 throw std::runtime_error("");
 }

 sc::result react(const sc::exception_thrown &)
 {
 try
 {
 throw;
 }
 catch (const std::runtime_error &)
 {
 // only std::runtime_errors will lead to a tr ansition
 // to Defective ...
 return transit< Defective >();
 }
 catch (...)
 {
 // ... all other exceptions are forwarded to our outer
 // state(s). The state machine is terminated and the
 // exception rethrown if the outer state(s) c an't
 // handle it either...
 return forward_event();
 }

 // Alternatively, if we want to terminate the m achine
 // immediately, we can also either rethrow or t hrow
 // a different exception.
 }
};

Unfortunately, this idiom (using throw; inside a try block nested inside a catch block) does
not work on at least one very popular compiler. If you have to use one of these platforms, you can
pass a customized exception translator class to the state_machine class template. This will
allow you to generate different events depending on the type of the exception.

Two stage exit

If a simple_state<> or state<> subtype declares a public member function with the signature
void exit() then this function is called just before the state object is destructed. As explained
under Error handling in the Rationale, this is useful for two things that would otherwise be difficult

Page 28 of 32The Boost Statechart Library - Tutorial

2006/06/18

or cumbersome to achieve with destructors only:

1. To signal a failure in an exit action
2. To execute certain exit actions only during a transition or a termination but not when the state

machine object is destructed

A few points to consider before employing exit() :

� There is no guarantee that exit() will be called:
� If the client destructs the state machine object without calling terminate()

beforehand then the currently active states are destructed without calling exit() . This
is necessary because an exception that is possibly thrown from exit() could not be
propagated on to the state machine client

� exit() is not called when a previously executed action propagated an exception and
that exception has not (yet) been handled successfully. This is because a new exception
that could possibly be thrown from exit() would mask the original exception

� A state is considered exited, even if its exit function propagated an exception. That is, the
state object is inevitably destructed right after calling exit() , regardless of whether exit()
propagated an exception or not. A state machine configured for advanced exception handling
is therefore always unstable while handling an exception propagated from an exit function

� In a state machine configured for advanced exception handling the processing rules for an
exception event resulting from an exception propagated from exit() are analogous to the
ones defined for exceptions propagated from state constructors. That is, the outermost unstable
state is first tried for a reaction and the dispatcher then moves outward until an appropriate
reaction is found

Submachines & parameterized states

Submachines are to event-driven programming what functions are to procedural programming,
reusable building blocks implementing often needed functionality. The associated UML notation is
not entirely clear to me. It seems to be severely limited (e.g. the same submachine cannot appear in
different orthogonal regions) and does not seem to account for obvious stuff like e.g. parameters.

Boost.Statechart is completely unaware of submachines but they can be implemented quite nicely
with templates. Here, a submachine is used to improve the copy-paste implementation of the
keyboard machine discussed under Orthogonal states:

enum LockType
{
 NUM_LOCK,
 CAPS_LOCK,
 SCROLL_LOCK
};

template< LockType lockType >
struct Off;
struct Active : sc::simple_state<
 Active, Keyboard, mpl::list<
 Off< NUM_LOCK >, Off< CAPS_LOCK >, Off< SCROLL_LO CK > > > {};

template< LockType lockType >
struct EvPressed : sc::event< EvPressed< lockType > > {};

Page 29 of 32The Boost Statechart Library - Tutorial

2006/06/18

template< LockType lockType >
struct On : sc::simple_state<
 On< lockType >, Active::orthogonal< lockType > >
{
 typedef sc::transition<
 EvPressed< lockType >, Off< lockType > > reacti ons;
};

template< LockType lockType >
struct Off : sc::simple_state<
 Off< lockType >, Active::orthogonal< lockType > >
{
 typedef sc::transition<
 EvPressed< lockType >, On< lockType > > reactio ns;
};

Asynchronous state machines

Why asynchronous state machines are necessary

As the name suggests, a synchronous state machine processes each event synchronously. This
behavior is implemented by the state_machine class template, whose process_event
function only returns after having executed all reactions (including the ones provoked by internal
events that actions might have posted). This function is strictly non-reentrant (just like all other
member functions, so state_machine<> is not thread-safe). This makes it difficult for two
state_machine<> subtype objects to communicate via events in a bi-directional fashion
correctly, even in a single-threaded program. For example, state machine A is in the middle of
processing an external event. Inside an action, it decides to send a new event to state machine B (by
calling B::process_event()). It then "waits" for B to send back an answer via a
boost::function<> -like call-back, which references A::process_event() and was
passed as a data member of the event. However, while A is "waiting" for B to send back an event,
A::process_event() has not yet returned from processing the external event and as soon as B
answers via the call-back, A::process_event() is unavoidably reentered. This all really
happens in a single thread, that's why "wait" is in quotes.

How it works

The asynchronous_state_machine class template has none of the member functions the
state_machine class template has. Moreover, asynchronous_state_machine<> subtype
objects cannot even be created or destroyed directly. Instead, all these operations must be performed
through the Scheduler object each asynchronous state machine is associated with. All these
Scheduler member functions only push an appropriate item into the schedulers' queue and then
return immediately. A dedicated thread will later pop the items out of the queue to have them
processed.

Applications will usually first create a fifo_scheduler<> object and then call
fifo_scheduler<>::create_processor<>() and
fifo_scheduler<>::initiate_processor() to schedule the creation and initiation of
one or more asynchronous_state_machine<> subtype objects. Finally,
fifo_scheduler<>::operator()() is either called directly to let the machine(s) run in the
current thread, or, a boost::function<> object referencing operator()() is passed to a
new boost::thread . Alternatively, the latter could also be done right after constructing the

Page 30 of 32The Boost Statechart Library - Tutorial

2006/06/18

fifo_scheduler<> object. In the following code, we are running one state machine in a new
boost::thread and the other in the main thread (see the PingPong example for the full source
code):

struct Waiting;
struct Player :
 sc::asynchronous_state_machine< Player, Waiting >
{
 // ...
};

// ...

int main()
{
 // Create two schedulers that will wait for new e vents
 // when their event queue runs empty
 sc::fifo_scheduler<> scheduler1(true);
 sc::fifo_scheduler<> scheduler2(true);

 // Each player is serviced by its own scheduler
 sc::fifo_scheduler<>::processor_handle player1 =
 scheduler1.create_processor< Player >(/* ... * /);
 scheduler1.initiate_processor(player1);
 sc::fifo_scheduler<>::processor_handle player2 =
 scheduler2.create_processor< Player >(/* ... * /);
 scheduler2.initiate_processor(player2);

 // the initial event that will start the game
 boost::intrusive_ptr< BallReturned > pInitialBall =
 new BallReturned();

 // ...

 scheduler2.queue_event(player2, pInitialBall);

 // ...

 // Up until here no state machines exist yet. The y
 // will be created when operator()() is called

 // Run first scheduler in a new thread
 boost::thread otherThread(boost::bind(
 &sc::fifo_scheduler<>::operator(), &scheduler1, 0));
 scheduler2(); // Run second scheduler in this thr ead
 otherThread.join();

 return 0;
}

We could just as well use two boost::threads:

int main()

Page 31 of 32The Boost Statechart Library - Tutorial

2006/06/18

{
 // ...

 boost::thread thread1(boost::bind(
 &sc::fifo_scheduler<>::operator(), &scheduler1, 0));
 boost::thread thread2(boost::bind(
 &sc::fifo_scheduler<>::operator(), &scheduler2, 0));

 // do something else ...

 thread1.join();
 thread2.join();

 return 0;
}

Or, run both machines in the same thread:

int main()
{
 sc::fifo_scheduler<> scheduler1(true);

 sc::fifo_scheduler<>::processor_handle player1 =
 scheduler1.create_processor< Player >(/* ... * /);
 sc::fifo_scheduler<>::processor_handle player2 =
 scheduler1.create_processor< Player >(/* ... * /);

 // ...

 scheduler1();

 return 0;
}

In all the examples above, fifo_scheduler<>::operator()() waits on an empty event
queue and will only return after a call to fifo_scheduler<>::terminate() . The Player
state machine calls this function on its scheduler object right before terminating.

Revised 18 June, 2006

© Copyright Andreas Huber Dönni 2003-2006. The link refers to a spam honeypot. Please remove
the words spam and trap to obtain my real address.

Distributed under the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Page 32 of 32The Boost Statechart Library - Tutorial

2006/06/18

