
Contents 

Concepts  
Scheduler  
FifoWorker  
ExceptionTranslator  
StateBase  
SimpleState  
State  
Event  

state_machine.hpp  
Class template state_machine  

asynchronous_state_machine.hpp  
Class template asynchronous_state_machine  

event_processor.hpp  
Class template event_processor  

fifo_scheduler.hpp  
Class template fifo_scheduler  

exception_translator.hpp  
Class template exception_translator  

null_exception_translator.hpp  
Class null_exception_translator  

   
simple_state.hpp  

Enum history_mode  
Class template simple_state  

state.hpp  
Class template state  

shallow_history.hpp  
Class template shallow_history  

deep_history.hpp  
Class template deep_history  

   
event_base.hpp  

Class event_base  
event.hpp  

Class template event  
   
transition.hpp  

Class template transition  
in_state_reaction.hpp  

Class template in_state_reaction  
termination.hpp  

Class template termination  

 

The Boost Statechart 
Library 

Reference 

Page 1 of 42The Boost Statechart Library - Reference

2006/06/18



deferral.hpp  
Class template deferral  

custom_reaction.hpp  
Class template custom_reaction  

result.hpp  
Class result  

Concepts 

Scheduler concept 

A Scheduler type defines the following: 

� What is passed to the constructors of event_processor<> subtypes and how the lifetime 
of such objects is managed  

� Whether or not multiple event_processor<> subtype objects can share the same queue 
and scheduler thread  

� How events are added to the schedulers' queue  
� Whether and how to wait for new events when the schedulers' queue runs empty  
� Whether and what type of locking is used to ensure thread-safety  
� Whether it is possible to queue events for no longer existing event_processor<> subtype 

objects and what happens when such an event is processed  
� What happens when one of the serviced event_processor<> subtype objects propagates 

an exception  

For a Scheduler type S and an object cpc of type const S::processor_context the 
following expressions must be well-formed and have the indicated results: 

To protect against abuse, all members of S::processor_context should be declared private. 
As a result, event_processor<> must be a friend of S::processor_context. 

FifoWorker concept 

A FifoWorker type defines the following: 

� Whether and how to wait for new work items when the internal work queue runs empty  
� Whether and what type of locking is used to ensure thread-safety  

For a FifoWorker type F, an object f of that type, a const object cf of that type, a parameterless 
function object w of arbitrary type and an unsigned long value n the following 
expressions/statements must be well-formed and have the indicated results: 

Expression Type Result
cpc.my_scheduler() S & A reference to the scheduler

cpc.my_handle() S::processor_handle The handle identifying the 
event_processor<> subtype object

Page 2 of 42The Boost Statechart Library - Reference

2006/06/18



Expression/Statement Type Effects/Result

F::work_item
boost::function0< 
  void >  

F() or F( false ) F

Constructs a non-blocking (see below) 
object of the FifoWorker type. In single-
threaded builds the second expression is not 
well-formed

F( true ) F
Constructs a blocking (see below) object of 
the FifoWorker type. Not well-formed in 
single-threaded builds

f.queue_work_item( w );  
Constructs and queues an object of type 
F::work_item, passing w as the only 
argument

f.terminate();  

Creates and queues an object of type 
F::work_item that, when later executed in 
operator()(), leads to a modification of 
internal state so that terminated() 
henceforth returns true

cf.terminated(); bool

true if terminate() has been called and the 
resulting work item has been executed in 
operator()(). Returns false otherwise 
 
Must only be called from the thread that 
also calls operator()()

f( n ); unsigned long

Enters a loop that, with each cycle, dequeues 
and calls operator()() on the oldest work 
item in the queue. 

The loop is left and the number of executed 
work items returned if one or more of the 
following conditions are met: 

� f.terminated() == true  
� The application is single-threaded and 

the internal queue is empty  
� The application is multi-threaded and 

the internal queue is empty and the 
worker was created as non-blocking  

� n != 0 and the number of work items 
that have been processed since 
operator()() was called equals n  

If the queue is empty and none of the above 
conditions are met then the thread calling 
operator()() is put into a wait state until 
f.queue_work_item() is called from 
another thread. 
 
Must only be called from exactly one 
thread 

Page 3 of 42The Boost Statechart Library - Reference

2006/06/18



ExceptionTranslator concept 

An ExceptionTranslator type defines how C++ exceptions occurring during state machine operation 
are translated to exception events. 

For an ExceptionTranslator object et, a parameterless function object a of arbitrary type returning 
result and a function object eh of arbitrary type taking a const event_base & parameter 
and returning result the following expression must be well-formed and have the indicated results: 

StateBase concept 

A StateBase type is the common base of all states of a given state machine type. 
state_machine<>::state_base_type is a model of the StateBase concept. 

For a StateBase type S and a const object cs of that type the following expressions must be well-
formed and have the indicated results: 

SimpleState concept 

f(); unsigned long Has exactly the same semantics as f( n ); 
with n == 0 (see above)

Expression Type Effects/Result

et( a, eh ); result

1. Attempts to execute return a();  
2. If a() propagates an exception, the exception is caught  
3. Inside the catch block calls eh, passing a suitable stack-

allocated model of the Event concept  
4. Returns the result returned by eh  

Expression Type Result

cs.outer_state_ptr() const S *
0 if cs is an outermost state, a pointer to the 
direct outer state of cs otherwise

cs.dynamic_type() S::id_type

A value unambiguously identifying the most-
derived type of cs. S::id_type values are 
comparable with operator==() and operator!=
(). An unspecified collating order can be 
established with std::less< S::id_type >

cs.custom_dynamic_type_ptr< 
  Type >()

const Type 
*

A pointer to the custom type identifier or 0. If != 
0, Type must match the type of the previously set 
pointer. This function is only available if 
BOOST_STATECHART_USE_NATIVE_RTTI 
is not defined

typeid( cs )

const 
std:: 
type_info 
&

A value unambiguously identifying the most-
derived type of cs, if 
BOOST_STATECHART_USE_NATIVE_RTTI 
is defined. Otherwise, a value identifying the 
StateBase type is returned

Page 4 of 42The Boost Statechart Library - Reference

2006/06/18



A SimpleState type defines one state of a particular state machine. 

For a SimpleState type S and a pointer pS pointing to an object of type S allocated with new the 
following expressions/statements must be well-formed and have the indicated effects/results: 

State concept 

A State is a refinement of SimpleState (that is, except for the default constructor a State type must 
also satisfy SimpleState requirements). For a State type S, a pointer pS of type S * pointing to an 
object of type S allocated with new, and an object mc of type state< S, C, I, h 
>::my_context the following expressions/statements must be well-formed: 

Expression/Statement Type Effects/Result/Notes

simple_state< 
  S, C, I, h > * pB = 
    pS;

 

simple_state< S, C, I, h > must be 
an unambiguous public base of S. See 
simple_state<> documentation for the 
requirements and semantics of C, I and h

new S() S *

Enters the state S. Certain functions 
must not be called from S::S(), see 
simple_state<> documentation for 
more information

pS->exit();  

Exits the state S (first stage). The 
definition of an exit member function 
within models of the SimpleState 
concept is optional since 
simple_state<> already defines the 
following public member: void exit() 
{}. exit() is not called when a state is 
exited while an exception is pending, see 
simple_state<>::terminate() for 
more information

delete pS;  Exits the state S (second stage)

S::reactions

An mpl::list<> that is 
either empty or contains 
instantiations of the 
custom_reaction, 
in_state_reaction, 
deferral, termination or 
transition class 
templates. If there is only a 
single reaction then it can 
also be typedefed directly, 
without wrapping it into an 
mpl::list<>

The declaration of a reactions member 
typedef within models of the 
SimpleState concept is optional since 
simple_state<> already defines the 
following public member: typedef 
mpl::list<> reactions;

Expression/Statement Type Effects/Result/Notes

state< S, C, I, h > * 
  pB = pS;  state< S, C, I, h > must be an 

unambiguous public base of S. See 

Page 5 of 42The Boost Statechart Library - Reference

2006/06/18



Event concept 

A Event type defines an event for which state machines can define reactions. 

For a Event type E and a pointer pCE of type const E * pointing to an object of type E allocated 
with new the following expressions/statements must be well-formed and have the indicated 
effects/results: 

Header <boost/statechart/state_machine.hpp> 

Class template state_machine 

This is the base class template of all synchronous state machines. 

Class template state_machine parameters 

state<> documentation for the 
requirements and semantics of C, I and h

new S( mc ) S *

Enters the state S. No restrictions exist 
regarding the functions that can be 
called from S::S() (in contrast to the 
constructors of models of the 
SimpleState concept). mc must be 
forwarded to state< S, C, I, h 
>::state()

Expression/Statement Type Effects/Result/Notes

const event< E > * 
pCB = pCE;  

event< E > must be an unambiguous 
public base of E

new E( *pCE ) E * Makes a copy of pE

Template parameter Requirements Semantics Default

MostDerived
The most-derived 
subtype of this class 
template

  

InitialState

A model of the 
SimpleState or 
State concepts. The 
Context argument 
passed to the 
simple_state<> or 
state<> base of  
InitialState 
must be 
MostDerived. That 
is, InitialState 

The state that is 
entered when 
state_machine<> 

::initiate() is 
called

 

Page 6 of 42The Boost Statechart Library - Reference

2006/06/18



Class template state_machine synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< 
    class MostDerived, 
    class InitialState, 
    class Allocator = std::allocator< void >, 
    class ExceptionTranslator = null_exception_translator > 
  class state_machine : noncopyable 
  { 
    public: 
      typedef MostDerived outermost_context_type; 
 
      void initiate(); 
      void terminate(); 
      bool terminated() const; 
 
      void process_event( const event_base & ); 
 
      template< class Target > 
      Target state_cast() const; 
      template< class Target > 
      Target state_downcast() const; 
 
      // a model of the StateBase concept 
      typedef implementation-defined state_base_type; 
      // a model of the standard Forward Iterator concept 
      typedef implementation-defined state_iterator; 
 
      state_iterator state_begin() const; 
      state_iterator state_end() const; 
 
      void unconsumed_event( const event_base & ) {} 
 
    protected: 
      state_machine(); 
      ~state_machine(); 
 

must be an 
outermost state of 
this state machine

Allocator
A model of the 
standard Allocator 
concept

 std::allocator< void >

ExceptionTranslator
A model of the 
ExceptionTranslator 
concept

see 
ExceptionTranslator 
concept

null_exception_translator

Page 7 of 42The Boost Statechart Library - Reference

2006/06/18



      void post_event( 
        const intrusive_ptr< const event_base > & ); 
      void post_event( const event_base & ); 
  }; 
} 
} 

Class template state_machine constructor and destructor 

state_machine(); 

Effects: Constructs a non-running state machine 

~state_machine(); 

Effects: Destructs the currently active outermost state and all its direct and indirect inner states. 
Innermost states are destructed first. Other states are destructed as soon as all their direct and indirect 
inner states have been destructed. The inner states of each state are destructed according to the 
number of their orthogonal region. The state in the orthogonal region with the highest number is 
always destructed first, then the state in the region with the second-highest number and so on 
Note: Does not attempt to call any exit member functions 

Class template state_machine modifier functions 

void initiate(); 

Effects: 

1. Calls terminate()  
2. Constructs a function object action with a parameter-less operator()() returning 

result that 
a. enters (constructs) the state specified with the InitialState template parameter  
b. enters the tree formed by the direct and indirect inner initial states of InitialState 

depth first. The inner states of each state are entered according to the number of their 
orthogonal region. The state in orthogonal region 0 is always entered first, then the state 
in region 1 and so on  

3. Constructs a function object exceptionEventHandler with an operator()() 
returning result and accepting an exception event parameter that processes the passed 
exception event, with the following differences to the processing of normal events: 

� From the moment when the exception has been thrown until right after the execution of 
the exception event reaction, states that need to be exited are only destructed but no 
exit member functions are called  

� Reaction search always starts with the outermost unstable state  
� As for normal events, reaction search moves outward when the current state cannot 

handle the event. However, if there is no outer state (an outermost state has been 
reached) the reaction search is considered unsuccessful. That is, exception events will 
never be dispatched to orthogonal regions other than the one that caused the exception 
event  

� Should an exception be thrown during exception event reaction search or reaction 
execution then the exception is propagated out of the exceptionEventHandler 
function object (that is, ExceptionTranslator is not used to translate exceptions 
thrown while processing an exception event)  

Page 8 of 42The Boost Statechart Library - Reference

2006/06/18



� If no reaction could be found for the exception event or if the state machine is not stable 
after processing the exception event, the original exception is rethrown. Otherwise, a 
result object is returned equal to the one returned by 
simple_state<>::discard_event()  

4. Passes action and exceptionEventHandler to 
ExceptionTranslator::operator()(). If 
ExceptionTranslator::operator()() throws an exception, the exception is 
propagated to the caller. If the caller catches the exception, the currently active outermost state 
and all its direct and indirect inner states are destructed. Innermost states are destructed first. 
Other states are destructed as soon as all their direct and indirect inner states have been 
destructed. The inner states of each state are destructed according to the number of their 
orthogonal region. The state in the orthogonal region with the highest number is always 
destructed first, then the state in the region with the second-highest number and so on. 
Continues with step 5 otherwise (the return value is discarded)  

5. Processes all posted events (see process_event()). Returns to the caller if there are no 
more posted events  

Throws: Any exceptions propagated from ExceptionTranslator::operator()(). 
Exceptions never originate in the library itself but only in code supplied through template 
parameters: 

� operator new() (used to allocate states)  
� Allocator::allocate()  
� state constructors  
� react member functions  
� exit member functions  
� transition-actions  

void terminate(); 

Effects: 

1. Constructs a function object action with a parameter-less operator()() returning 
result that terminates the currently active outermost state, discards all remaining events and 
clears all history information  

2. Constructs a function object exceptionEventHandler with an operator()() 
returning result and accepting an exception event parameter that processes the passed 
exception event, with the following differences to the processing of normal events: 

� From the moment when the exception has been thrown until right after the execution of 
the exception event reaction, states that need to be exited are only destructed but no 
exit member functions are called  

� Reaction search always starts with the outermost unstable state  
� As for normal events, reaction search moves outward when the current state cannot 

handle the event. However, if there is no outer state (an outermost state has been 
reached) the reaction search is considered unsuccessful. That is, exception events will 
never be dispatched to orthogonal regions other than the one that caused the exception 
event  

� Should an exception be thrown during exception event reaction search or reaction 
execution then the exception is propagated out of the exceptionEventHandler 
function object (that is, ExceptionTranslator is not used to translate exceptions 
thrown while processing an exception event)  

� If no reaction could be found for the exception event or if the state machine is not stable 
after processing the exception event, the original exception is rethrown. Otherwise, a 

Page 9 of 42The Boost Statechart Library - Reference

2006/06/18



result object is returned equal to the one returned by 
simple_state<>::discard_event()  

3. Passes action and exceptionEventHandler to 
ExceptionTranslator::operator()(). If 
ExceptionTranslator::operator()() throws an exception, the exception is 
propagated to the caller. If the caller catches the exception, the currently active outermost state 
and all its direct and indirect inner states are destructed. Innermost states are destructed first. 
Other states are destructed as soon as all their direct and indirect inner states have been 
destructed. The inner states of each state are destructed according to the number of their 
orthogonal region. The state in the orthogonal region with the highest number is always 
destructed first, then the state in the region with the second-highest number and so on. 
Otherwise, returns to the caller  

Throws: Any exceptions propagated from ExceptionTranslator::operator(). 
Exceptions never originate in the library itself but only in code supplied through template 
parameters: 

� operator new() (used to allocate states)  
� Allocator::allocate()  
� state constructors  
� react member functions  
� exit member functions  
� transition-actions  

void process_event( const event_base & ); 

Effects: 

1. Selects the passed event as the current event (henceforth referred to as currentEvent)  
2. Starts a new reaction search  
3. Selects an arbitrary but in this reaction search not yet visited state from all the currently active 

innermost states. If no such state exists then continues with step 10  
4. Constructs a function object action with a parameter-less operator()() returning 

result that does the following: 
a. Searches a reaction suitable for currentEvent, starting with the current innermost 

state and moving outward until a state defining a reaction for the event is found. Returns 
simple_state<>::forward_event() if no reaction has been found  

b. Executes the found reaction. If the reaction result is equal to the return value of 
simple_state<>::forward_event() then resumes the reaction search (step a). 
Returns the reaction result otherwise  

5. Constructs a function object exceptionEventHandler returning result and accepting 
an exception event parameter that processes the passed exception event, with the following 
differences to the processing of normal events: 

� From the moment when the exception has been thrown until right after the execution of 
the exception event reaction, states that need to be exited are only destructed but no 
exit member functions are called  

� If the state machine is stable when the exception event is processed then exception event 
reaction search starts with the innermost state that was last visited during the last normal 
event reaction search (the exception event was generated as a result of this normal 
reaction search)  

� If the state machine is unstable when the exception event is processed then exception 
event reaction search starts with the outermost unstable state  

� As for normal events, reaction search moves outward when the current state cannot 

Page 10 of 42The Boost Statechart Library - Reference

2006/06/18



handle the event. However, if there is no outer state (an outermost state has been 
reached) the reaction search is considered unsuccessful. That is, exception events will 
never be dispatched to orthogonal regions other than the one that caused the exception 
event  

� Should an exception be thrown during exception event reaction search or reaction 
execution then the exception is propagated out of the exceptionEventHandler 
function object (that is, ExceptionTranslator is not used to translate exceptions 
thrown while processing an exception event)  

� If no reaction could be found for the exception event or if the state machine is not stable 
after processing the exception event, the original exception is rethrown. Otherwise, a 
result object is returned equal to the one returned by 
simple_state<>::discard_event()  

6. Passes action and exceptionEventHandler to 
ExceptionTranslator::operator()(). If 
ExceptionTranslator::operator()() throws an exception, the exception is 
propagated to the caller. If the caller catches the exception, the currently active outermost state 
and all its direct and indirect inner states are destructed. Innermost states are destructed first. 
Other states are destructed as soon as all their direct and indirect inner states have been 
destructed. The inner states of each state are destructed according to the number of their 
orthogonal region. The state in the orthogonal region with the highest number is always 
destructed first, then the state in the region with the second-highest number and so on. 
Otherwise continues with step 7  

7. If the return value of ExceptionTranslator::operator()() is equal to the one of 
simple_state<>::forward_event() then continues with step 3  

8. If the return value of ExceptionTranslator::operator()() is equal to the one of 
simple_state<>::defer_event() then the return value of 
currentEvent.intrusive_from_this() is stored in a state-specific queue. 
Continues with step 11  

9. If the return value of ExceptionTranslator::operator()() is equal to the one of 
simple_state<>::discard_event() then continues with step 11  

10. Calls static_cast< MostDerived * >( this )->unconsumed_event
( currentEvent ). If unconsumed_event() throws an exception, the exception is 
propagated to the caller. Such an exception never leads to the destruction of any states (in 
contrast to exceptions propagated from ExceptionTranslator::operator()())  

11. If the posted events queue is non-empty then dequeues the first event, selects it as 
currentEvent and continues with step 2. Returns to the caller otherwise  

Throws: Any exceptions propagated from MostDerived::unconsumed_event() or 
ExceptionTranslator::operator(). Exceptions never originate in the library itself but 
only in code supplied through template parameters: 

� operator new() (used to allocate states)  
� Allocator::allocate()  
� state constructors  
� react member functions  
� exit member functions  
� transition-actions  
� MostDerived::unconsumed_event()  

void post_event( 
  const intrusive_ptr< const event_base > & ); 

Page 11 of 42The Boost Statechart Library - Reference

2006/06/18



Effects: Pushes the passed event into the posted events queue 
Throws: Any exceptions propagated from Allocator::allocate() 

void post_event( const event_base & evt ); 

Effects: post_event( evt.intrusive_from_this() ); 
Throws: Any exceptions propagated from Allocator::allocate() 

void unconsumed_event( const event_base & evt ); 

Effects: None 
Note: This function (or, if present, the equally named derived class member function) is called by 
process_event() whenever a dispatched event did not trigger a reaction, see process_event() effects, 
point 10 for more information. 

Class template state_machine observer functions 

bool terminated() const; 

Returns: true, if the machine is terminated. Returns false otherwise 
Note: Is equivalent to state_begin() == state_end() 

template< class Target > 
Target state_cast() const; 

Returns: Depending on the form of Target either a reference or a pointer to const if at least one 
of the currently active states can successfully be dynamic_cast to Target. Returns 0 for pointer 
targets and throws std::bad_cast for reference targets otherwise. Target can take either of the 
following forms: const Class * or const Class & 
Throws: std::bad_cast if Target is a reference type and none of the active states can be 
dynamic_cast to Target 
Note: The search sequence is the same as for process_event() 

template< class Target > 
Target state_downcast() const; 

Requires: For reference targets the compiler must support partial specialization of class templates, 
otherwise a compile-time error will result. The type denoted by Target must be a model of the 
SimpleState or State concepts 
Returns: Depending on the form of Target either a reference or a pointer to const if Target is 
equal to the most-derived type of a currently active state. Returns 0 for pointer targets and throws 
std::bad_cast for reference targets otherwise. Target can take either of the following forms: 
const Class * or const Class & 
Throws: std::bad_cast if Target is a reference type and none of the active states has a most 
derived type equal to Target 
Note: The search sequence is the same as for process_event() 

state_iterator state_begin() const; 

state_iterator state_end() const; 

Return: Iterator objects, the range [state_begin(), state_end()) refers to all currently 

Page 12 of 42The Boost Statechart Library - Reference

2006/06/18



active innermost states. For an object i of type state_iterator, *i returns a const 
state_base_type & and i.operator->() returns a const state_base_type * 
Note: The position of a given innermost state in the range is arbitrary. It may change with each call 
to a modifier function. Moreover, all iterators are invalidated whenever a modifier function is called 

Header <boost/statechart/ 
asynchronous_state_machine.hpp> 

Class template asynchronous_state_machine 

This is the base class template of all asynchronous state machines. 

Class template asynchronous_state_machine parameters 

Class template asynchronous_state_machine synopsis 

namespace boost 
{ 
namespace statechart 
{ 

Template parameter Requirements Semantics Default

MostDerived
The most-derived 
subtype of this class 
template

  

InitialState

A model of the 
SimpleState or 
State concepts. The 
Context argument 
passed to the 
simple_state<> or 
state<> base of 
InitialState 
must be 
MostDerived. That 
is, InitialState 
must be an 
outermost state of 
this state machine

The state that is 
entered when the 
state machine is 
initiated through the 
Scheduler object

 

Scheduler A model of the 
Scheduler concept

see Scheduler 
concept

fifo_scheduler<>

Allocator
A model of the 
standard Allocator 
concept

 std::allocator< void >

ExceptionTranslator
A model of the 
ExceptionTranslator 
concept

see 
ExceptionTranslator 
concept

null_exception_translator

Page 13 of 42The Boost Statechart Library - Reference

2006/06/18



  template< 
    class MostDerived, 
    class InitialState, 
    class Scheduler = fifo_scheduler<>, 
    class Allocator = std::allocator< void >, 
    class ExceptionTranslator = null_exception_translator > 
  class asynchronous_state_machine : 
    public state_machine< 
      MostDerived, InitialState, Allocator, ExceptionTranslator >,
    public event_processor< Scheduler > 
  { 
    protected: 
      typedef asynchronous_state_machine my_base; 
 
      asynchronous_state_machine( 
        typename event_processor< Scheduler >::my_context ctx ); 
      ~asynchronous_state_machine();   
  }; 
} 
} 

Class template asynchronous_state_machine constructor and 
destructor 

asynchronous_state_machine( 
  typename event_processor< Scheduler >::my_context ctx ); 

Effects: Constructs a non-running asynchronous state machine 
Note: Users cannot create asynchronous_state_machine<> subtype objects directly. This 
can only be done through an object of the Scheduler class 

~asynchronous_state_machine(); 

Effects: Destructs the state machine 
Note: Users cannot destruct asynchronous_state_machine<> subtype objects directly. This 
can only be done through an object of the Scheduler class 

Header 
<boost/statechart/event_processor.hpp> 

Class template event_processor 

This is the base class template of all types that process events. 
asynchronous_state_machine<> is just one possible event processor implementation. 

Class template event_processor parameters 

Template 
parameter Requirements Semantics Default

Page 14 of 42The Boost Statechart Library - Reference

2006/06/18



Class template event_processor synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class Scheduler > 
  class event_processor 
  { 
    public: 
      virtual ~event_processor(); 
 
      Scheduler & my_scheduler() const; 
 
      typedef typename Scheduler::processor_handle 
        processor_handle; 
      processor_handle my_handle() const; 
 
      void initiate(); 
      void process_event( const event_base & evt ); 
      void terminate(); 
 
    protected: 
      typedef const typename Scheduler::processor_context & 
        my_context; 
      event_processor( my_context ctx ); 
 
    private: 
      virtual void initiate_impl() = 0; 
      virtual void process_event_impl( 
        const event_base & evt ) = 0; 
      virtual void terminate_impl() = 0; 
  }; 
} 
} 

Class template event_processor constructor and destructor 

event_processor( my_context ctx ); 

Effects: Constructs an event processor object and stores copies of the reference returned by 
myContext.my_scheduler() and the object returned by myContext.my_handle() 
Note: Users cannot create event_processor<> subtype objects directly. This can only be done 
through an object of the Scheduler class 

virtual ~event_processor(); 

Effects: Destructs an event processor object 

Scheduler A model of the Scheduler concept see Scheduler 
concept

 

Page 15 of 42The Boost Statechart Library - Reference

2006/06/18



Note: Users cannot destruct event_processor<> subtype objects directly. This can only be 
done through an object of the Scheduler class 

Class template event_processor modifier functions 

void initiate(); 

Effects: initiate_impl(); 
Throws: Any exceptions propagated from the implementation of initiate_impl() 

void process_event( const event_base & evt ); 

Effects: process_event_impl( evt ); 
Throws: Any exceptions propagated from the implementation of process_event_impl() 

void terminate(); 

Effects: terminate_impl(); 
Throws: Any exceptions propagated from the implementation of terminate_impl() 

Class template event_processor observer functions 

Scheduler & my_scheduler() const; 

Returns: The Scheduler reference obtained in the constructor 

processor_handle my_handle() const; 

Returns: The processor_handle object obtained in the constructor 

Header <boost/statechart/fifo_scheduler.hpp> 

Class template fifo_scheduler 

This class template is a model of the Scheduler concept. 

Class template fifo_scheduler parameters 

Class template fifo_scheduler synopsis 

namespace boost 

Template 
parameter Requirements Semantics Default

FifoWorker A model of the FifoWorker 
concept see FifoWorker concept fifo_worker<>

Allocator A model of the standard 
Allocator concept

 std::allocator< void >

Page 16 of 42The Boost Statechart Library - Reference

2006/06/18



{ 
namespace statechart 
{ 
  template< 
    class FifoWorker = fifo_worker<>, 
    class Allocator = std::allocator< void > > 
  class fifo_scheduler : noncopyable 
  { 
    public: 
      fifo_scheduler( bool waitOnEmptyQueue = false ); 
 
      typedef implementation-defined processor_handle; 
 
      class processor_context : noncopyable 
      { 
        processor_context( 
          fifo_scheduler & scheduler, 
          const processor_handle & theHandle ); 
 
        fifo_scheduler & my_scheduler() const; 
        const processor_handle & my_handle() const; 
 
        friend class fifo_scheduler; 
        friend class event_processor< fifo_scheduler >; 
      }; 
 
      template< class Processor > 
      processor_handle create_processor(); 
      template< class Processor, typename Param1 > 
      processor_handle create_processor( Param1 param1 ); 
 
      // More create_processor overloads 
 
      void destroy_processor( processor_handle processor ); 
 
      void initiate_processor( processor_handle processor ); 
      void terminate_processor( processor_handle processor ); 
 
      typedef intrusive_ptr< const event_base > event_ptr_type; 
 
      void queue_event( 
        const processor_handle & processor, 
        const event_ptr_type & pEvent ); 
 
      typedef typename FifoWorker::work_item work_item; 
 
      void queue_work_item( const work_item & item ); 
 
      void terminate(); 
      bool terminated() const; 
 
      unsigned long operator()( 
        unsigned long maxEventCount = 0 ); 

Page 17 of 42The Boost Statechart Library - Reference

2006/06/18



  }; 
} 
} 

Class template fifo_scheduler constructor 

fifo_scheduler( bool waitOnEmptyQueue = false ); 

Effects: Constructs a fifo_scheduler<> object. In multi-threaded builds, 
waitOnEmptyQueue is forwarded to the constructor of a data member of type FifoWorker. In 
single-threaded builds, the FifoWorker data member is default-constructed 
Note: In single-threaded builds the fifo_scheduler<> constructor does not accept any 
parameters and operator()() thus always returns to the caller when the event queue is empty 

Class template fifo_scheduler modifier functions 

template< class Processor > 
processor_handle create_processor(); 

Requires: The Processor type must be a direct or indirect subtype of the event_processor 
class template 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to the constructor of Processor, passing an appropriate processor_context 
object as the only argument 
Returns: A processor_handle object that henceforth identifies the created event processor 
object 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 
Caution: The current implementation of this function makes an (indirect) call to global operator 
new(). Unless global operator new() is replaced, care must be taken when to call this 
function in applications with hard real-time requirements 

template< class Processor, typename Param1 > 
processor_handle create_processor( Param1 param1 ); 

Requires: The Processor type must be a direct or indirect subtype of the event_processor 
class template 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to the constructor of Processor, passing an appropriate processor_context 
object and param1 as arguments 
Returns: A processor_handle object that henceforth identifies the created event processor 
object 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 
Note: boost::ref() and boost::cref() can be used to pass arguments by reference rather 
than by copy. fifo_scheduler<> has 5 additional create_processor<> overloads, 
allowing to pass up to 6 custom arguments to the constructors of event processors 
Caution: The current implementation of this and all other overloads make (indirect) calls to global 
operator new(). Unless global operator new() is replaced, care must be taken when to 

Page 18 of 42The Boost Statechart Library - Reference

2006/06/18



call these overloads in applications with hard real-time requirements 

void destroy_processor( processor_handle processor ); 

Requires: processor was obtained from a call to one of the create_processor<>() 
overloads on the same fifo_scheduler<> object 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to the destructor of the event processor object associated with processor. The 
object is silently discarded if the event processor object has been destructed before 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 
Caution: The current implementation of this function leads to an (indirect) call to global operator 
delete() (the call is made when the last processor_handle object associated with the event 
processor object is destructed). Unless global operator delete() is replaced, care must be 
taken when to call this function in applications with hard real-time requirements 

void initiate_processor( processor_handle processor ); 

Requires: processor was obtained from a call to one of the create_processor() overloads 
on the same fifo_scheduler<> object 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to initiate() on the event processor object associated with processor. The 
object is silently discarded if the event processor object has been destructed before 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 

void terminate_processor( processor_handle processor ); 

Requires: processor was obtained from a call to one of the create_processor<>() 
overloads on the same fifo_scheduler<> object 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to terminate() on the event processor object associated with processor. The 
object is silently discarded if the event processor object has been destructed before 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 

void queue_event( 
  const processor_handle & processor, 
  const event_ptr_type & pEvent ); 

Requires: pEvent.get() != 0 and processor was obtained from a call to one of the 
create_processor<>() overloads on the same fifo_scheduler<> object 
Effects: Creates and passes to FifoWorker::queue_work_item() an object of type 
FifoWorker::work_item that, when later executed in FifoWorker::operator()(), 
leads to a call to process_event( *pEvent ) on the event processor object associated with 
processor. The object is silently discarded if the event processor object has been destructed 
before 
Throws: Any exceptions propagated from FifoWorker::work_item() and 
FifoWorker::queue_work_item() 

Page 19 of 42The Boost Statechart Library - Reference

2006/06/18



void queue_work_item( const work_item & item ); 

Effects: FifoWorker::queue_work_item( item ); 
Throws: Any exceptions propagated from the above call 

void terminate(); 

Effects: FifoWorker::terminate() 
Throws: Any exceptions propagated from the above call 

unsigned long operator()( unsigned long maxEventCount = 0 ); 

Requires: Must only be called from exactly one thread 
Effects: FifoWorker::operator()( maxEventCount ) 
Returns: The return value of the above call 
Throws: Any exceptions propagated from the above call 

Class template fifo_scheduler observer functions 

bool terminated() const; 

Requires: Must only be called from the thread that also calls operator()() 
Returns: FifoWorker::terminated(); 

Header 
<boost/statechart/exception_translator.hpp> 

Class template exception_translator 

This class template is a model of the ExceptionTranslator concept. 

Class template exception_translator parameters 

Class template exception_translator synopsis & semantics 

namespace boost 
{ 
namespace statechart 
{ 
  class exception_thrown : public event< exception_thrown > {}; 
 

Template 
parameter Requirements Semantics Default

ExceptionEvent A model of the Event 
concept

The type of event that is 
dispatched when an exception 
is propagated into the 
framework

exception_thrown

Page 20 of 42The Boost Statechart Library - Reference

2006/06/18



  template< class ExceptionEvent = exception_thrown > 
  class exception_translator 
  { 
    public: 
      template< class Action, class ExceptionEventHandler > 
      result operator()( 
        Action action, 
        ExceptionEventHandler eventHandler ) 
      { 
        try 
        { 
          return action(); 
        } 
        catch( ... ) 
        { 
          return eventHandler( ExceptionEvent() ); 
        } 
      } 
  }; 
} 
} 

Header <boost/statechart/ 
null_exception_translator.hpp> 

Class null_exception_translator 

This class is a model of the ExceptionTranslator concept. 

Class null_exception_translator synopsis & semantics 

namespace boost 
{ 
namespace statechart 
{ 
  class null_exception_translator 
  { 
    public: 
      template< class Action, class ExceptionEventHandler > 
      result operator()( 
        Action action, ExceptionEventHandler ) 
      { 
        return action(); 
      } 
  }; 
} 
} 

Header <boost/statechart/simple_state.hpp> 

Page 21 of 42The Boost Statechart Library - Reference

2006/06/18



Enum history_mode 

Defines the history type of a state. 

namespace boost 
{ 
namespace statechart 
{ 
  enum history_mode 
  { 
    has_no_history, 
    has_shallow_history, 
    has_deep_history, 
    has_full_history // shallow & deep 
  }; 
} 
} 

Class template simple_state 

This is the base class template for all models of the SimpleState concept. Such models must not call 
any of the following simple_state<> member functions from their constructors: 

void post_event( 
  const intrusive_ptr< const event_base > & ); 
void post_event( const event_base & ); 
 
template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_shallow_history(); 
template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_deep_history(); 
 
outermost_context_type & outermost_context(); 
const outermost_context_type & outermost_context() const; 
 
template< class OtherContext > 
OtherContext & context(); 
template< class OtherContext > 
const OtherContext & context() const; 
 
template< class Target > 
Target state_cast() const; 
template< class Target > 
Target state_downcast() const; 
 
state_iterator state_begin() const; 

Page 22 of 42The Boost Statechart Library - Reference

2006/06/18



state_iterator state_end() const; 

States that need to call any of these member functions from their constructors must derive from the 
state class template. 

Class template simple_state parameters 

Class template simple_state synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< 
    class MostDerived, 

Template 
parameter Requirements Semantics Default

MostDerived The most-derived subtype of this class 
template

  

Context

A most-derived direct or indirect subtype of 
the state_machine or 
asynchronous_state_machine class 
templates or a model of the SimpleState or 
State concepts or an instantiation of the 
simple_state<>::orthogonal class 
template. Must be a complete type

Defines the 
states' position 
in the state 
hierarchy

 

InnerInitial

An mpl::list<> containing models of the 
SimpleState or State concepts or instantiations 
of the shallow_history or deep_history 
class templates. If there is only a single inner 
initial state that is not a template instantiation 
then it can also be passed directly, without 
wrapping it into an mpl::list<>. The 
Context argument passed to the 
simple_state<> or state<> base of each 
state in the list must correspond to the 
orthogonal region it belongs to. That is, the 
first state in the list must pass 
MostDerived::orthogonal< 0 >, the second 
MostDerived::orthogonal< 1 > and so 
forth. MostDerived::orthogonal< 0 > and 
MostDerived are synonymous

Defines the 
inner initial 
state for each 
orthogonal 
region. By 
default, a state 
does not have 
inner states

unspecified

historyMode One of the values defined in the history_mode 
enumeration

Defines 
whether the 
state saves 
shallow, deep 
or both 
histories upon 
exit

has_no_history

Page 23 of 42The Boost Statechart Library - Reference

2006/06/18



    class Context, 
    class InnerInitial = unspecified, 
    history_mode historyMode = has_no_history > 
  class simple_state : implementation-defined 
  { 
    public: 
      // by default, a state has no reactions 
      typedef mpl::list<> reactions; 
 
      // see template parameters 
      template< implementation-defined-unsigned-integer-type 
        innerOrthogonalPosition > 
      struct orthogonal 
      { 
        // implementation-defined 
      }; 
 
      typedef typename Context::outermost_context_type 
        outermost_context_type; 
 
      outermost_context_type & outermost_context(); 
      const outermost_context_type & outermost_context() const; 
 
      template< class OtherContext > 
      OtherContext & context(); 
      template< class OtherContext > 
      const OtherContext & context() const; 
 
      template< class Target > 
      Target state_cast() const; 
      template< class Target > 
      Target state_downcast() const; 
 
      // a model of the StateBase concept 
      typedef implementation-defined state_base_type; 
      // a model of the standard Forward Iterator concept 
      typedef implementation-defined state_iterator; 
 
      state_iterator state_begin() const; 
      state_iterator state_end() const; 
 
      void post_event( 
        const intrusive_ptr< const event_base > & ); 
      void post_event( const event_base & ); 
 
      result discard_event(); 
      result forward_event(); 
      result defer_event(); 
      template< class DestinationState > 
      result transit(); 
      template< 
        class DestinationState, 
        class TransitionContext, 

Page 24 of 42The Boost Statechart Library - Reference

2006/06/18



        class Event > 
      result transit( 
        void ( TransitionContext::* )( const Event & ), 
        const Event & ); 
      result terminate(); 
 
      template< 
        class HistoryContext, 
        implementation-defined-unsigned-integer-type 
          orthogonalPosition > 
      void clear_shallow_history(); 
      template< 
        class HistoryContext, 
        implementation-defined-unsigned-integer-type 
          orthogonalPosition > 
      void clear_deep_history(); 
 
      static id_type static_type(); 
 
      template< class CustomId > 
      static const CustomId * custom_static_type_ptr(); 
 
      template< class CustomId > 
      static void custom_static_type_ptr( const CustomId * ); 
 
      // see transit() or terminate() effects 
      void exit() {} 
 
    protected: 
      simple_state(); 
      ~simple_state(); 
  }; 
} 
} 

Class template simple_state constructor and destructor 

simple_state(); 

Requires: The constructors of all direct and indirect subtypes must be exception-neutral 
Effects: Constructs a state object 
Throws: Any exceptions propagated from Allocator::allocate() (the template parameter 
passed to the base class of outermost_context_type) 

~simple_state(); 

Effects: Pushes all events deferred by the state into the posted events queue 

Class template simple_state modifier functions 

void post_event( 
  const intrusive_ptr< const event_base > & pEvt ); 

Page 25 of 42The Boost Statechart Library - Reference

2006/06/18



Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template. All direct and indirect callers must be 
exception-neutral 
Effects: outermost_context().post_event( pEvt ); 
Throws: Whatever the above call throws 

void post_event( const event_base & evt ); 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template. All direct and indirect callers must be 
exception-neutral 
Effects: outermost_context().post_event( evt ); 
Throws: Whatever the above call throws 

result discard_event(); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: Instructs the state machine to discard the current event and to continue with the processing 
of the remaining events (see state_machine<>::process_event() for details) 
Returns: A result object. The user-supplied react member function must return this object to 
its caller 

result forward_event(); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: Instructs the state machine to forward the current event to the next state (see 
state_machine<>::process_event() for details) 
Returns: A result object. The user-supplied react member function must return this object to 
its caller 

result defer_event(); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: Instructs the state machine to defer the current event and to continue with the processing of 
the remaining events (see state_machine<>::process_event() for details) 
Returns: A result object. The user-supplied react member function must return this object to 
its caller 
Throws: Any exceptions propagated from Allocator::allocate() (the template parameter 
passed to the base class of outermost_context_type) 

template< class DestinationState > 
result transit(); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: 

1. Exits all currently active direct and indirect inner states of the innermost common context of 
this state and DestinationState. Innermost states are exited first. Other states are exited 

Page 26 of 42The Boost Statechart Library - Reference

2006/06/18



as soon as all their direct and indirect inner states have been exited. The inner states of each 
state are exited according to the number of their orthogonal region. The state in the orthogonal 
region with the highest number is always exited first, then the state in the region with the 
second-highest number and so on. 
The process of exiting a state consists of the following steps: 

1. If there is an exception pending that has not yet been handled successfully then only step 
5 is executed  

2. Calls the exit member function (see synopsis) of the most-derived state object. If 
exit() throws then steps 3 and 4 are not executed  

3. If the state has shallow history then shallow history information is saved  
4. If the state is an innermost state then deep history information is saved for all direct and 

indirect outer states that have deep history  
5. The state object is destructed  

2. Enters (constructs) the state that is both a direct inner state of the innermost common context 
and either the DestinationState itself or a direct or indirect outer state of 
DestinationState  

3. Enters (constructs) the tree formed by the direct and indirect inner states of the previously 
entered state down to the DestinationState and beyond depth first. The inner states of 
each state are entered according to the number of their orthogonal region. The state in 
orthogonal region 0 is always entered first, then the state in region 1 and so on  

4. Instructs the state machine to discard the current event and to continue with the processing of 
the remaining events (see state_machine<>::process_event() for details)  

Returns: A result object. The user-supplied react member function must return this object to 
its caller 
Throws: Any exceptions propagated from: 

� operator new() (used to allocate states)  
� Allocator::allocate() (the template parameter passed to the base class of 
outermost_context_type)  

� state constructors  
� exit member functions  

Caution: Inevitably destructs this state before returning to the calling react member function, 
which must therefore not attempt to access anything except stack objects before returning to its caller 

template< 
  class DestinationState, 
  class TransitionContext, 
  class Event > 
result transit( 
  void ( TransitionContext::* )( const Event & ), 
  const Event & ); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: 

1. Exits all currently active direct and indirect inner states of the innermost common context of 
this state and DestinationState. Innermost states are exited first. Other states are exited 
as soon as all their direct and indirect inner states have been exited. The inner states of each 
state are exited according to the number of their orthogonal region. The state in the orthogonal 
region with the highest number is always exited first, then the state in the region with the 

Page 27 of 42The Boost Statechart Library - Reference

2006/06/18



second-highest number and so on. 
The process of exiting a state consists of the following steps: 

1. If there is an exception pending that has not yet been handled successfully then only step 
5 is executed  

2. Calls the exit member function (see synopsis) of the most-derived state object. If 
exit() throws then steps 3 and 4 are not executed  

3. If the state has shallow history then shallow history information is saved  
4. If the state is an innermost state then deep history information is saved for all direct and 

indirect outer states that have deep history  
5. The state object is destructed  

2. Executes the passed transition action, forwarding the passed event  
3. Enters (constructs) the state that is both a direct inner state of the innermost common context 

and either the DestinationState itself or a direct or indirect outer state of 
DestinationState  

4. Enters (constructs) the tree formed by the direct and indirect inner states of the previously 
entered state down to the DestinationState and beyond depth first. The inner states of 
each state are entered according to the number of their orthogonal region. The state in 
orthogonal region 0 is always entered first, then the state in region 1 and so on  

5. Instructs the state machine to discard the current event and to continue with the processing of 
the remaining events (see state_machine<>::process_event() for details)  

Returns: A result object. The user-supplied react member function must return this object to 
its caller 
Throws: Any exceptions propagated from: 

� operator new() (used to allocate states)  
� Allocator::allocate() (the template parameter passed to the base class of 
outermost_context_type)  

� state constructors  
� exit member functions  
� the transition action  

Caution: Inevitably destructs this state before returning to the calling react member function, 
which must therefore not attempt to access anything except stack objects before returning to its caller 

result terminate(); 

Requires: Must only be called from within react member functions, which are called by 
custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral 
Effects: Exits this state and all its direct and indirect inner states. Innermost states are exited first. 
Other states are exited as soon as all their direct and indirect inner states have been exited. The inner 
states of each state are exited according to the number of their orthogonal region. The state in the 
orthogonal region with the highest number is always exited first, then the state in the region with the 
second-highest number and so on. 
The process of exiting a state consists of the following steps: 

1. If there is an exception pending that has not yet been handled successfully then only step 5 is 
executed  

2. Calls the exit member function (see synopsis) of the most-derived state object. If exit() 
throws then steps 3 and 4 are not executed  

3. If the state has shallow history then shallow history information is saved  
4. If the state is an innermost state then deep history information is saved for all direct and 

indirect outer states that have deep history  

Page 28 of 42The Boost Statechart Library - Reference

2006/06/18



5. The state object is destructed  

Also instructs the state machine to discard the current event and to continue with the processing of 
the remaining events (see state_machine<>::process_event() for details) 
Returns: A result object. The user-supplied react member function must return this object to 
its caller 
Throws: Any exceptions propagated from: 

� Allocator::allocate() (the template parameter passed to the base class of 
outermost_context_type, used to allocate space to save history)  

� exit member functions  

Note: If this state is the only currently active inner state of its direct outer state then the direct outer 
state is terminated also. The same applies recursively for all indirect outer states 
Caution: Inevitably destructs this state before returning to the calling react member function, 
which must therefore not attempt to access anything except stack objects before returning to its caller 

template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_shallow_history(); 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template. The historyMode argument passed 
to the simple_state<> or state<> base of HistoryContext must be equal to 
has_shallow_history or has_full_history 
Effects: Clears the shallow history of the orthogonal region specified by orthogonalPosition 
of the state specified by HistoryContext 
Throws: Any exceptions propagated from Allocator::allocate() (the template parameter 
passed to the base class of outermost_context_type) 

template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_deep_history(); 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template. The historyMode argument passed 
to the simple_state<> or state<> base of HistoryContext must be equal to 
has_deep_history or has_full_history 
Effects: Clears the deep history of the orthogonal region specified by orthogonalPosition of 
the state specified by HistoryContext 
Throws: Any exceptions propagated from Allocator::allocate() (the template parameter 
passed to the base class of outermost_context_type) 

Class template simple_state observer functions 

outermost_context_type & outermost_context(); 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 

Page 29 of 42The Boost Statechart Library - Reference

2006/06/18



directly or indirectly derive from the state class template 
Returns: A reference to the outermost context, which is always the state machine this state belongs 
to 

const outermost_context_type & outermost_context() const; 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template 
Returns: A reference to the const outermost context, which is always the state machine this state 
belongs to 

template< class OtherContext > 
OtherContext & context(); 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template 
Returns: A reference to a direct or indirect context 

template< class OtherContext > 
const OtherContext & context() const; 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template 
Returns: A reference to a const direct or indirect context 

template< class Target > 
Target state_cast() const; 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template 
Returns: Has exactly the same semantics as state_machine<>::state_cast<>() 
Throws: Has exactly the same semantics as state_machine<>::state_cast<>() 
Note: The result is unspecified if this function is called when the machine is unstable 

template< class Target > 
Target state_downcast() const; 

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template. Moreover, 
state_machine<>::state_downcast<>() requirements also apply 
Returns: Has exactly the same semantics as state_machine<>::state_downcast<>() 
Throws: Has exactly the same semantics as state_machine<>::state_downcast<>() 
Note: The result is unspecified if this function is called when the machine is unstable 

state_iterator state_begin() const; 

state_iterator state_end() const; 

Require: If called from a constructor of a direct or indirect subtype then the most-derived type must 
directly or indirectly derive from the state class template 
Return: Have exactly the same semantics as state_machine<>::state_begin() and 
state_machine<>::state_end() 

Page 30 of 42The Boost Statechart Library - Reference

2006/06/18



Note: The result is unspecified if these functions are called when the machine is unstable 

Class template simple_state static functions 

static id_type static_type(); 

Returns: A value unambiguously identifying the type of MostDerived 
Note: id_type values are comparable with operator==() and operator!=(). An 
unspecified collating order can be established with std::less< id_type > 

template< class CustomId > 
static const CustomId * custom_static_type_ptr(); 

Requires: If a custom type identifier has been set then CustomId must match the type of the 
previously set pointer 
Returns: The pointer to the custom type identifier for MostDerived or 0 
Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined 

template< class CustomId > 
static void custom_static_type_ptr( const CustomId * ); 

Effects: Sets the pointer to the custom type identifier for MostDerived 
Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined 

Header <boost/statechart/state.hpp> 

Class template state 

This is the base class template for all models of the State concept. Such models typically need to call 
at least one of the following simple_state<> member functions from their constructors: 

void post_event( 
  const intrusive_ptr< const event_base > & ); 
void post_event( const event_base & ); 
 
template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_shallow_history(); 
template< 
  class HistoryContext, 
  implementation-defined-unsigned-integer-type 
    orthogonalPosition > 
void clear_deep_history(); 
 
outermost_context_type & outermost_context(); 
const outermost_context_type & outermost_context() const; 
 
template< class OtherContext > 
OtherContext & context(); 

Page 31 of 42The Boost Statechart Library - Reference

2006/06/18



template< class OtherContext > 
const OtherContext & context() const; 
 
template< class Target > 
Target state_cast() const; 
template< class Target > 
Target state_downcast() const; 
 
state_iterator state_begin() const; 
state_iterator state_end() const; 

States that do not need to call any of these member functions from their constructors should rather 
derive from the simple_state class template, what saves the implementation of the forwarding 
constructor. 

Class template state synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< 
    class MostDerived, 
    class Context, 
    class InnerInitial = unspecified, 
    history_mode historyMode = has_no_history > 
  class state : public simple_state< 
    MostDerived, Context, InnerInitial, historyMode > 
  { 
    protected: 
      struct my_context 
      { 
        // implementation-defined 
      }; 
 
      typedef state my_base; 
 
      state( my_context ctx ); 
      ~state(); 
  }; 
} 
} 

Direct and indirect subtypes of state<> must provide a constructor with the same signature as the 
state<> constructor, forwarding the context parameter. 

Header 
<boost/statechart/shallow_history.hpp> 

Class template shallow_history 

Page 32 of 42The Boost Statechart Library - Reference

2006/06/18



This class template is used to specify a shallow history transition target or a shallow history inner 
initial state. 

Class template shallow_history parameters 

Class template shallow_history synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class DefaultState > 
  class shallow_history 
  { 
    // implementation-defined 
  }; 
} 
} 

Header <boost/statechart/deep_history.hpp> 

Class template deep_history 

This class template is used to specify a deep history transition target or a deep history inner initial 
state. The current deep history implementation has some limitations. 

Class template deep_history parameters 

Template 
parameter Requirements Semantics

DefaultState

A model of the SimpleState or State concepts. The 
type passed as Context argument to the 
simple_state<> or state<> base 
of DefaultState must itself pass 
has_shallow_history or has_full_history as 
historyMode argument to its simple_state<> or 
state<> base

The state that is entered if 
shallow history is not 
available

Template 
parameter Requirements Semantics

DefaultState

A model of the SimpleState or State concepts. The 
type passed as Context argument to the 
simple_state<> or state<> base 
of DefaultState must itself pass 
has_deep_history or has_full_history as 
historyMode argument to its simple_state<> or 
state<> base

The state that is entered if 
deep history is not 
available

Page 33 of 42The Boost Statechart Library - Reference

2006/06/18



Class template deep_history synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class DefaultState > 
  class deep_history 
  { 
    // implementation-defined 
  }; 
} 
} 

Header <boost/statechart/event_base.hpp> 

Class event_base 

This is the common base of all events. 

Class event_base synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  class event_base 
  { 
    public: 
      intrusive_ptr< const event_base > 
        intrusive_from_this() const; 
 
      typedef implementation-defined id_type; 
 
      id_type dynamic_type() const; 
 
      template< typename CustomId > 
      const CustomId * custom_dynamic_type_ptr() const; 
       
    protected: 
      event_base( unspecified-parameter ); 
      virtual ~event_base(); 
  }; 
} 
} 

Class event_base constructor and destructor 

event_base( unspecified-parameter ); 

Effects: Constructs the common base portion of an event 

Page 34 of 42The Boost Statechart Library - Reference

2006/06/18



virtual ~event_base(); 

Effects: Destructs the common base portion of an event 

Class event_base observer functions 

intrusive_ptr< const event_base > intrusive_from_this() const; 

Returns: Another intrusive_ptr< const event_base > referencing this if this is 
already referenced by an intrusive_ptr<>. Otherwise, returns an intrusive_ptr< const 
event_base > referencing a newly created copy of the most-derived object 

id_type dynamic_type() const; 

Returns: A value unambiguously identifying the most-derived type 
Note: id_type values are comparable with operator==() and operator!=(). An 
unspecified collating order can be established with std::less< id_type > 

template< typename CustomId > 
const CustomId * custom_dynamic_type_ptr() const; 

Requires: If a custom type identifier has been set then CustomId must match the type of the 
previously set pointer 
Returns: A pointer to the custom type identifier or 0 
Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined 

Header <boost/statechart/event.hpp> 

Class template event 

This is the base class template of all events. 

Class template event synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class MostDerived > 
  class event : implementation-defined 
  { 
    public: 
      static id_type static_type(); 
 
      template< class CustomId > 
      static const CustomId * custom_static_type_ptr(); 
 
      template< class CustomId > 
      static void custom_static_type_ptr( const CustomId * ); 
 

Page 35 of 42The Boost Statechart Library - Reference

2006/06/18



    protected: 
      event(); 
      virtual ~event(); 
  }; 
} 
} 

Class template event constructor and destructor 

event(); 

Effects: Constructs an event 

virtual ~event(); 

Effects: Destructs an event 

Class template event static functions 

static id_type static_type(); 

Returns: A value unambiguously identifying the type of MostDerived 
Note: id_type values are comparable with operator==() and operator!=(). An 
unspecified collating order can be established with std::less< id_type > 

template< class CustomId > 
static const CustomId * custom_static_type_ptr(); 

Requires: If a custom type identifier has been set then CustomId must match the type of the 
previously set pointer 
Returns: The pointer to the custom type identifier for MostDerived or 0 
Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined 

template< class CustomId > 
static void custom_static_type_ptr( const CustomId * ); 

Effects: Sets the pointer to the custom type identifier for MostDerived 
Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined 

Header <boost/statechart/transition.hpp> 

Class template transition 

This class template is used to specify a transition reaction. Instantiations of this template can appear 
in the reactions member typedef in models of the SimpleState and State concepts. 

Class template transition parameters 

Template 

Page 36 of 42The Boost Statechart Library - Reference

2006/06/18



Class template transition synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< 
    class Event, 
    class Destination, 
    class TransitionContext = unspecified, 
    void ( TransitionContext::*pTransitionAction )( 
      const Event & ) = unspecified > 
  class transition 
  { 
    // implementation-defined 
  }; 
} 
} 

Class template transition semantics 

When executed, one of the following calls to a member function of the state for which the reaction 
was defined is made: 

parameter Requirements Semantics Default

Event A model of the Event concept or the 
class event_base

The event 
triggering the 
transition. If 
event_base is 
specified, the 
transition is 
triggered by all 
models of the 
Event concept

 

Destination

A model of the SimpleState or State 
concepts or an instantiation of the 
shallow_history or deep_history 
class templates. The source state (the 
state for which this transition is 
defined) and Destination must have a 
common direct or indirect context

The destination 
state to make a 
transition to

 

TransitionContext A common context of the source and 
Destination state

The state of which 
the transition 
action is a member

unspecified

pTransitionAction

A pointer to a member function of 
TransitionContext. The member 
function must accept a const Event & 
parameter and return void

The transition 
action that is 
executed during 
the transition. By 
default no 
transition action is 
executed

unspecified

Page 37 of 42The Boost Statechart Library - Reference

2006/06/18



� transit< Destination >(), if no transition action was specified  
� transit< Destination >( pTransitionAction, currentEvent ), if a 

transition action was specified  

Header 
<boost/statechart/in_state_reaction.hpp> 

Class template in_state_reaction 

This class template is used to specify an in-state reaction. Instantiations of this template can appear 
in the reactions member typedef in models of the SimpleState and State concepts. 

Class template in_state_reaction parameters 

Class template in_state_reaction synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< 
    class Event, 
    class ReactionContext, 
    void ( ReactionContext::*pAction )( const Event & ) > 
  class in_state_reaction 
  { 
    // implementation-defined 
  }; 
} 
} 

Class template in_state_reaction semantics 

Template 
parameter Requirements Semantics

Event A model of the Event concept or the class 
event_base

The event triggering the 
in-state reaction. If 
event_base is specified, 
the in-state reaction is 
triggered by all models of 
the Event concept

ReactionContext Either the state defining the in-state reaction itself 
or one of it direct or indirect contexts

The state of which the 
action is a member

pAction

A pointer to a member function of 
ReactionContext. The member function must 
accept a const Event & parameter and return 
void

The action that is 
executed during the in-
state reaction

Page 38 of 42The Boost Statechart Library - Reference

2006/06/18



When executed, pAction is called, passing the triggering event as the only argument. Afterwards, 
a call is made to the discard_event member function of the state for which the reaction was 
defined. 

Header <boost/statechart/termination.hpp> 

Class template termination 

This class template is used to specify a termination reaction. Instantiations of this template can 
appear in the reactions member typedef in models of the SimpleState and State concepts. 

Class template termination parameters 

Class template termination synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class Event > 
  class termination 
  { 
    // implementation-defined 
  }; 
} 
} 

Class template termination semantics 

When executed, a call is made to the terminate member function of the state for which the 
reaction was defined. 

Header <boost/statechart/deferral.hpp> 

Class template deferral 

This class template is used to specify a deferral reaction. Instantiations of this template can appear in 
the reactions member typedef in models of the SimpleState and State concepts. 

Template 
parameter Requirements Semantics

Event A model of the Event concept or the class 
event_base

The event triggering the 
termination. If 
event_base is specified, 
the termination is triggered 
by all models of the Event 
concept

Page 39 of 42The Boost Statechart Library - Reference

2006/06/18



Class template deferral parameters 

Class template deferral synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class Event > 
  class deferral 
  { 
    // implementation-defined 
  }; 
} 
} 

Class template deferral semantics 

When executed, a call is made to the defer_event member function of the state for which the 
reaction was defined. 

Header 
<boost/statechart/custom_reaction.hpp> 

Class template custom_reaction 

This class template is used to specify a custom reaction. Instantiations of this template can appear in 
the reactions member typedef in models of the SimpleState and State concepts. 

Class template custom_reaction parameters 

Template 
parameter Requirements Semantics

Event A model of the Event concept or the class 
event_base

The event triggering the 
deferral. If event_base is 
specified, the deferral is 
triggered by all models of 
the Event concept

Template 
parameter Requirements Semantics

Event A model of the Event concept or the class event_base

The event triggering 
the custom reaction. If 
event_base is 
specified, the custom 
reaction is triggered by 
all models of the Event 

Page 40 of 42The Boost Statechart Library - Reference

2006/06/18



Class template custom_reaction synopsis 

namespace boost 
{ 
namespace statechart 
{ 
  template< class Event > 
  class custom_reaction 
  { 
    // implementation-defined 
  }; 
} 
} 

Class template custom_reaction semantics 

When executed, a call is made to the user-supplied react member function of the state for which 
the reaction was defined. The react member function must have the following signature: 

result react( const Event & ); 

and must call exactly one of the following reaction functions and return the obtained result 
object: 

result discard_event(); 
result forward_event(); 
result defer_event(); 
template< class DestinationState > 
result transit(); 
template< 
  class DestinationState, 
  class TransitionContext, 
  class Event > 
result transit( 
  void ( TransitionContext::* )( const Event & ), 
  const Event & ); 
result terminate(); 

Header <boost/statechart/result.hpp> 

Class result 

Defines the nature of the reaction taken in a user-supplied react member function (called when a 
custom_reaction is executed). Objects of this type are always obtained by calling one of the 
reaction functions and must be returned from the react member function immediately. 

namespace boost 
{ 

concept

Page 41 of 42The Boost Statechart Library - Reference

2006/06/18



namespace statechart 
{ 
  class result 
  { 
    public: 
      result( const result & other ); 
      ~result(); 
 
    private: 
      // Result objects are not assignable 
      result & operator=( const result & other ); 
  }; 
} 
} 

Class result constructor and destructor 

result( const result & other ); 

Requires: other is not consumed 
Effects: Copy-constructs a new result object and marks other as consumed. That is, result 
has destructive copy semantics 

~result(); 

Requires: this is marked as consumed 
Effects: Destructs the result object 

Revised 18 May, 2006 

© Copyright Andreas Huber Dönni 2003-2006. The link refers to a spam honeypot. Please remove 
the words spam and trap to obtain my real address. 

Distributed under the Boost Software License, Version 1.0. (See accompanying file 
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) 

Page 42 of 42The Boost Statechart Library - Reference

2006/06/18


