The Boost Statechart Libra- Referenc Pagel of 42

The Boost Statechart

& bOOSt Library

c + LI RARI E S

Reference

Contents

Concepts
Scheduler

FifoWworker

ExceptionTranslator

StateBase

SimpleState

State

Event
state_machine.hpp

Class templatst at e_nmachi ne
asynchronous_state_machine.hpp

Class templatasynchr onous st ate _machi ne
event_processor.hpp

Class templatevent pr ocessor
fifo_scheduler.hpp

Class templatéi f o_schedul er
exception_translator.hpp

Class templatexcepti on_transl at or
null_exception_translator.hpp

Classnul | _exception transl ator

simple_state.hpp
Enumhi st ory node

Class templatsi npl e_st at e

state.hpp

Class templatst at e
shallow_history.hpp

Class templatshal | ow_hi story
deep_history.hpp

Class templatdeep_hi st ory

event_base.hpp
Classevent base

event.hpp
Class templatevent

transition.hpp
Class templatér ansi ti on

in_state_reaction.hpp

Class template in_state reaction
termination.hpp

Class templatéer m nati on

2006/08/2:

The Boost Statechart Libra- Referenc Page2 of 42

deferral.hpp
Class templatdef err al

custom_reaction.hpp
Class templateust om r eacti on

result.hpp
Classr esul t

Concepts
Scheduler concept

A Scheduler type defines the following:

o What is passed to the constructorgweént _pr ocessor <> subtypes and how the lifetime
of such objects is managed

o Whether or not multiplevent _pr ocessor <> subtype objects can share the same queue

and scheduler thread

How events are added to the schedulers' queue

Whether and how to wait for new events when the sdbesl queue runs empty

Whether and what type of locking is used to ensuesathisafety

Whether it is possible to queue events for no longistieg event _pr ocessor <> subtype

objects and what happens when such an event is processed

o What happens when one of the servieggnt _pr ocessor <> subtype objects propagates
an exception

For a Scheduler typ® and an objeatpc of typeconst S:: processor _cont ext the
following expressions must be well-formed and haverntdeated results:

|Expron ||Type ||Resu|t |
|CpC- my_schedul er () ||S & ||A reference to the scheduler |

The handle identifying the
event _processor <> subtype object

cpc. ny_handl e() S: . processor _handl e

To protect against abuse, all memberS:of pr ocessor _cont ext should be declared private.
As a resultevent _processor <> must be a friend db: : processor _cont ext .

Fifoworker concept
A FifoWorker type defines the following:

o Whether and how to wait for new work items when titernal work queue runs empty
o Whether and what type of locking is used to ensuesathisafety

For a FifoWorker typé-, an objecf of that type, &onst objectcf of that type, a parameterless
function objectw of arbitrary type and amnsi gned | ong valuen the following
expressions/statements must be well-formed and have toatediresults:

2006/08/2:

The Boost Statechart Libra- Referenc

Expression/Statement

”Type

Page3 of 42

Effects/Result |

F::work_item

boost: : functi on0O<
void >

F() orF(false)

Constructs aon-blocking (see below)

object of the FifoWorker type. In single-
threaded builds the second expression is [pot
well-formed

F(true)

Constructs &locking (see below) object of
the FifoWorker type. Not well-formed in
single-threaded builds

f.queue_work_ item w);

Constructs and queues an object of type
F: :wor k_i t em passingv as the only
argument

f.termnate();

Creates and queues an object of type
F::wor k_i t emthat, when later executed inj
operator () (), leads to a modification of
internal state so thatr m nat ed()
henceforth returnsr ue

cf.term nated();

bool

true if term nate() has been called and
resulting work item has been executed in
operator () (). Returnd al se otherwise

Must only be called from the thread that
also callsoperator () ()

f(n);

unsi gned | ong

Enters a loop that, with each cycle, dequepes

and callsoper at or () () on the oldest work
item in the queue.

The loop is left and the number of executgd
work items returned if one or more of the
following conditions are met:

o f.termnated() == true

o The application is single-threaded and
the internal queue is empty 1

e The application is multi-threaded an
the internal queue is empty and the
worker was created as non-blocking

e n !'= 0 and the number of work itemg
that have been processed since
operator () () was called equals

If the queue is empty and none of the abg
conditions are met then the thread calling
operator () () IS putinto a wait state until
f.queue_work_item() is called from
another thread.

Must only be called from exactly one
thread

2006/08/2:

The Boost Statechart Libra- Referenc Paged of 42

ExceptionTranslator concept

f();

unsi gned | ong

Has exactly the same semantics @) ;
with n == 0 (see above)

An ExceptionTranslator type defines how C++ exceptioccurring during state machine operation
are translated to exception events.

For an ExceptionTranslator objeit, a parameterless function objecof arbitrary type returning
resul t and a function objecth of arbitrary type taking aonst event _base & parameter
and returning esul t the following expression must be well-formed and htheeindicated results:

Expression ||Type ||Effects/ResuIt |

1. Attempts to executeeturn a();
2. Ifa() propagates an exception, the exception is caught
et(a, eh); result 3. Inside the catch block caks, passing a suitable stack

allocated model of thEventconcept
4. Returns the result returned &y

StateBase concept

A StateBase type is the common base of all states @oka gtate machine type.
st at e_machi ne<>: : st at e_base_t ype is a model of the StateBase concept.

For a StateBase tyggand aconst objectcs of that type the following expressions must be well-
formed and have the indicated results:

Expression ||Type ||R$ult

0 if cs is anoutermost statea pointer to the
direct outer state afs otherwise

cs.outer_state ptr() const S *

A value unambiguously identifying the most-
derived type ofs. S: :i d_t ype values are
comparable witlvper at or ==() andoperator! =
() . An unspecified collating order can be

cs. dynam c_type() S::id_type|established witlstd: : 1 ess< S::id_type >.1In
contrast ta ypei d(cs), this function is
available even on platforms that do not suppojft
C++ RTTI (or have been configured to not
support it)

A pointer to the custom type identifier @rlf ! =
0, Type must match the type of the previously get
pointer. This function is only available if
BOOST _STATECHART _USE_ NATIVE_RTT
IS not defined

cs.custom dynam c_type_ptr<ilconst Type
Type >() *

SimpleState concept

2006/08/2:

The Boost Statechart Libra- Referenc

Page5 of 42

A SimpleState type defines one state of a particudde shachine.

For a SimpleState typg@ and a pointepS pointing to an object of typ® allocated witmew the
following expressions/statements must be well-formed ane thee indicated effects/results:

Expression/Statement ||Type ||Effects/ResuIt/Notes
- . sinmple_state< S, C, |, h >must be
el gp g Sf atﬁ > % pB = an unambiguous public baseSfSee
‘s si npl e_st at e<> documentation for the
requirements and semantics@f andh
Enters the state. Certain functions
new S() g * must not be called froms : S(), see
si npl e_st at e<> documentation for
more information
Exits the stats (first stage). The
definition of anexi t member function
within models of the SimpleState
concept is optional since
DS exit (): si npl e_st at e<> already dgflnes .the
following public membervoi d exit ()
{}.exit() is not called when a state ij
exited while an exception is pending,
sinpl e_state<>::termi nate() for
more information
del ete pS; Exits the stat& (second stage)
Annpl::list<>thatis
either empty or contains
instantiations of the
custom reacti on, The declaration of eeacti ons membe
in state reaction, t ypedef within models of the
S - reactions deferral ,ternination or||SimpleState concept is optic_)nal since
transition class si npl e_st at e<> already defines the
templates. If there is only gfollowing public membert ypedef
single reaction then it can||"p! : : | i st <> reacti ons;
also be ypedef ed directly,
without wrapping it into ar
mpl::list<>

State concept

A State is aefinement of SimpleStatgthat is, except for the default constructor aeStgpe must
also satisfy SimpleState requirements). For a StateSyagointepS of typeS * pointing to an
object of typeS allocated witmew, and an objeadtt of typestate< S, C, |, h

>: 1 nmy_cont ext the following expressions/statements must be well-formed

Expression/Statement

[Type

||Effects/Result/Notes

state< S, C,
pB = pS;

h

>

*

state< S, C, |, h >mustbe an
unambiguous public base &fSee

2006/08/2:

The Boost Statechart Libra- Referenc Page6 of 42

st at e<> documentation for the
requirements and semantics®f andh

Enters the state. No restrictions exist
regarding the functions that can be
called froms: : S() (in contrast to the
new S(nt) S * constructors of models of the
SimpleState conceptjt must be

forwarded tostate< S, C, I, h
> :state()

Event concept

A Event type defines an event for which state machoaa define reactions.

For a Event typ& and a pointepCE of typeconst E * pointing to an object of type allocated
with new the following expressions/statements must be well-forametihave the indicated
effects/results:

|Expron/Statement ||Type ||Effects/ResuIt/Notes |
const event< E > * event < E > must be an unambiguous
pCB = pCE; public base of

new E(*pCE) E * Makes a copy afE

Header <boost/statechart/state_machine.hpp>

Classtemplatest at e_nachi ne

This is the base class template of all synchronous stateimes.

Classtemplate st at e_nmachi ne parameters

|Temp|ate parameter ||Requirements ||Semantics ||Defau|t
The most-derived

Most Deri ved subtype of this clag
template

A model of the

SimpleStateor
Stateconcepts. Thg; _
Cont ext argument || The state that is

passed to the entered when
sinpl e _state<>or st ?t fE_-miChl ng<>
st at e<> base of crinitiate() IS
Initial State called

must be

Most Deri ved. That
is,Initial State

Initial State

2006/08/2:

The Boost Statechart Libra- Referenc

must be an
outermost statef

this state machine

Page7 of 42

Al | ocat or

A model of the
standard Allocator
concept

std::allocator< void >

Excepti onTr ansl at or

A model of the
ExceptionTranslatd
concept

see

ExceptionTranslatgnul | _exception_transl at or

concept

Classtemplate st at e_nmachi ne synopsis

nanmespace boost

{

nanmespace statechart

{
t enpl at e<

cl ass Most Deri ved,
class Initial State,
class Allocator = std::allocator< void >,

cl ass ExceptionTransl at or
class state_

{
publi c:

nul | _exception_transl ator >

machi ne : noncopyabl e

t ypedef MostDerived outernpst _context type;

void initiate();
void term nate();
bool term nated() const;

voi d process event(const event base &);

tenpl ate< class Target >

Target state cast() const;

tenpl ate< class Target >
Target state downcast() const;

// a nodel

of the StateBase concept

t ypedef inpl enentation-defined state_base_type;

// a nodel

t ypedef

of the standard Forward |terator concept

i npl enment ati on-defined state_iterator;

state_ iterator state begin() const;
state_iterator state end() const;

voi d unconsuned event (const event base &) {}

pr ot ect ed:

state_machi ne();

~state _nmachi ne();

2006/08/2:

The Boost Statechart Libra- Referenc Page8 of 42

voi d post_event (
const intrusive_ptr< const event base > &);
voi d post event(const event base &);

}
}
}

Classtemplate st at e_nmachi ne constructor and destructor
state_machi ne();

Effects: Constructs a non-running state machine

~state_machi ne();

Effects: Destructs the currently active outermost state dntsalirect and indirect inner states.
Innermost states are destructed first. Other stateeateidted as soon as all their direct and ind
inner states have been destructed. The inner stataslobtate are destructed according to the
number of their orthogonal region. The state indtteogonal region with the highest number is
always destructed first, then the state in the regitmtive second-highest number and so on
Note: Does not attempt to call amxi t member functions

Classtemplate st at e_machi ne modifier functions
void initiate();
Effects:

1. Callst erm nate()
2. Constructs a function objeatt i on with a parameter-lessper at or () () returning
resul t that
a. enters (constructs) the state specified witH thiet i al St at e template parameter
b. enters the tree formed by the direct and indirewtii initial states dfni ti al St at e
depth first. The inner states of each state are endemdding to the number of their
orthogonal region. The state in orthogonal regiamdlways entered first, then the state
in region 1 and so on
3. Constructs a function objegkcept i onEvent Handl er with anoper at or () ()
returningr esul t and accepting an exception event parameter thaégses the passed
exception event, with the following differences he processing of normal events:

e From the moment when the exception has been throwrighti after the execution of
the exception event reaction, states that need ¢éxiberl are only destructed but no
exi t member functions are called

e Reactionsearch always starts with the outermosdtable state

¢ As for normal events, reaction search moves outwarah Wiecurrent state cannot
handle the event. However, if there is no outer gEteutermost statbas been
reached) the reaction search is considered unsuccédsétlis, exception events will
never be dispatched to orthogonal regions othertti@nne that caused the exception
event

o Should an exception be thrown during exception exearction search or reaction
execution then the exception is propagated outeoéxitept i onEvent Handl er
function object (that igexcept i onTr ansl at or isnot used to translate exceptions
thrown while processing an exception eve

2006/08/2:

The

4.

Boost Statechart Libra- Referenc Page9 of 42

¢ If no reaction could be found for the exceptionréwa if the state machine is not stable

after processing the exception event, the originegption is rethrown. Otherwise, a

resul t object is returned equal to the one returned by

sinpl e_state<>::discard_event ()
Passeact i on andexcepti onEvent Handl er to
ExceptionTransl ator::operator()().If
ExceptionTransl ator::operator() () throws an exception, the exception is
propagated to the caller. If the caller catchestweption, the currently active outermost s
and all its direct and indirect inner states are dettd. Innermost states are destructed first.
Other states are destructed as soon as all their dimddhdirect inner states have been
destructed. The inner states of each state are destaatterding to the number of their
orthogonal region. The state in the orthogonal regrah the highest number is always
destructed first, then the state in the region withsticond-highest number and so on.
Continues with step 5 otherwise (the return valuesesated)
Processes all posted events (seecess_event ()). Returns to the caller if there are no
more posted events

Throws: Any exceptions propagated frdaxcept i onTransl ator: : operator () ().
Exceptions never originate in the library itself baty in code supplied through template
parameters:

operator new() (used to allocate states)
Al l ocator::allocate()

state constructors

react member functions

exi t member functions

transition-actions

void term nate();

Effects:

1.

Constructs a function objeatt i on with a parameter-lesgper at or () () returning
resul t thatterminateghe currently active outermost state, discards all r@n@ievents an
clears all history information

Constructs a function objegkcept i onEvent Handl er with anoperator () ()
returningr esul t and accepting an exception event parameter thaégses the passed
exception event, with the following differences lie processing of normal events:

e From the moment when the exception has been throwmrighti after the execution of
the exception event reaction, states that need ¢éxiberl are only destructed but no
exi t member functions are called

o Reactionsearch always starts with the outermosdtable state

¢ As for normal events, reaction search moves outwarah Wiecurrent state cannot
handle the event. However, if there is no outer gEteutermost statbas been
reached) the reaction search is considered unsuccédsétlis, exception events will
never be dispatched to orthogonal regions otherttit@nne that caused the exception
event

e Should an exception be thrown during exception exkearction search or reaction
execution then the exception is propagated outeoéxitept i onEvent Handl er
function object (that igexcept i onTr ansl at or is not used to translate exceptions
thrown while processing an exception event)

¢ If no reaction could be found for the exceptionréwa if the state machine is not stable
after processing the exception event, the origineg¢ption is rethrown. Otherwise

2006/08/2:

The Boost Statechart Libra- Referenc PagelC of 42

3.

resul t objectis returned equal to the one returned by

si npl e_state<>::discard_event ()
Passeact i on andexcepti onEvent Handl er to
ExceptionTransl ator::operator()().If
ExceptionTransl ator::operator () () throws an exception, the exception is
propagated to the caller. If the caller catchesitueption, the currently active outermost s
and all its direct and indirect inner states are detd. Innermost states are destructed first.
Other states are destructed as soon as all their dimddhdirect inner states have been
destructed. The inner states of each state are desdtaatterding to the number of their
orthogonal region. The state in the orthogonal mregih the highest number is always
destructed first, then the state in the region wighsiacond-highest number and so on.
Otherwise, returns to the caller

Throws: Any exceptions propagated frdaxcept i onTransl at or: : operator ().
Exceptions never originate in the library itself baty in code supplied through template
parameters:

operator new() (used to allocate states)
Al l ocator::allocate()

state constructors
react member functions

exi t member functions
transition-actions

voi d process_event (const event base &);

Effects:
1. Selects the passed event as the current event (beghaeferred to asur r ent Event)
2. Starts a neweactionsearch
3. Selects an arbitrary but in this reaction searclyebtisited state from all the currently active
innermost statesf no such state exists then continues with step 10
4. Constructs a function objegtt i on with a parameter-lesyper at or () () returning
resul t that does the following:

a. Searches a reaction suitabledar r ent Event , starting with the current innermost
state and moving outward until a state definingaztien for the event is found. Retu
si npl e_state<>::forward_event () if no reaction has been found

b. Executes the found reaction. If the reaction rasudtjual to the return value of
si npl e_state<>::forward_event () then resumes the reaction search (ste
Returns the reaction result otherwise

5. Constructs a function objegkcept i onEvent Handl er returningr esul t and accepting

an exception event parameter that processes the pasgpti@x event, with the following
differences to the processing of normal events:

e From the moment when the exception has been throwmrighti after the execution of
the exception event reaction, states that need ¢éxiberl are only destructed but no
exi t member functions are called

o If the state machine is stable when the exceptiontéesgmocessed then exception e\
reaction search starts with the innermost state thatagavisited during the last norn
event reaction search (the exception event was gedeaa a result of this normal
reaction search)

o If the state machine isnstablewhen the exception event is processed then exception
event reaction search starts with the outermpstable state

¢ As for normal events, reaction search moves outwarcdh wWieecurrent state canr

2006/08/2:

The

6.

10.

11.

Boost Statechart Libra- Referenc Pagell of 42

handle the event. However, if there is no outer gEteutermost statbas been
reached) the reaction search is considered unsuccédsétlis, exception events will
never be dispatched to orthogonal regions othertti@nne that caused the exception
event
e Should an exception be thrown during exception ekearction search or reaction
execution then the exception is propagated outeoéxitept i onEvent Handl er
function object (that igexcept i onTr ansl at or is not used to translate exceptions
thrown while processing an exception event)
¢ If no reaction could be found for the exceptionréwa if the state machine is not stable
after processing the exception event, the origine¢ption is rethrown. Otherwise, a
resul t object is returned equal to the one returned by
si npl e_state<>::discard_event ()
Passeact i on andexcepti onEvent Handl er to
ExceptionTransl ator::operator()().If
ExceptionTransl ator::operator () () throws an exception, the exception is
propagated to the caller. If the caller catchesiueption, the currently active outermost s
and all its direct and indirect inner states are det#d. Innermost states are destructed first.
Other states are destructed as soon as all their divdahdirect inner states have been
destructed. The inner states of each state are dedtaatterding to the number of their
orthogonal region. The state in the orthogonal regrah the highest number is always
destructed first, then the state in the region wighsiacond-highest number and so on.
Otherwise continues with step 7
If the return value dExcept i onTransl at or: : operator () () is equal to the one of
si npl e_state<>::forward_event () then continues with step 3
If the return value dExcept i onTransl at or: : operator () () is equal to the one of
si npl e_st at e<>: : def er _event () then the return value of
current Event.intrusive fromthis() isstored in a state-specific queue.
Continues with step 11
If the return value dExcept i onTransl at or: : operator () () is equal to the one of
si npl e_stat e<>::di scard_event () then continues with step 11
Callsstatic_cast< MstDerived * >(this)->unconsuned_event
(currentEvent).If unconsunmed_event () throws an exception, the exception is
propagated to the caller. Such an exception nexagis|to the destruction of any states (in
contrast to exceptions propagated frlercept i onTransl at or: : operator () ())
If the posted events queue is non-empty then deguleedirst event, selects it as
current Event and continues with step 2. Returns to the callemaike

Throws: Any exceptions propagated frawst Der i ved: : unconsuned_event () or
Excepti onTransl at or: : oper at or () . Exceptions never originate in the library itself bu

only

in code supplied through template parameters:

operator new() (used to allocate states)
Al l ocator::allocate()
state constructors

e react member functions

exi t member functions
transition-actions

e Most Derived: : unconsunmed_event ()

voi d post_event (
const intrusive_ptr< const event base > &);

2006/08/2:

The Boost Statechart Libra- Referenc Pagel2 of 42

Effects: Pushes the passed event into the posted events queue
Throws: Any exceptions propagated froth| ocat or: : al | ocat e()

voi d post _event(const event base & evt);

Effects: post _event (evt.intrusive_fromthis());
Throws: Any exceptions propagated frodh| ocat or: : al | ocat e()

voi d unconsuned_event (const event base & evt);

Effects: None

Note: This function (or, if present, the equally namedwzt class member function) is called by
process_eve(twhenever a dispatched event did not trigger etie@a segrocess_eve(jteffects,
point 10 for more information.

Classtemplate st at e_nmachi ne observer functions
bool term nated() const;

Returns: t r ue, if the machine is terminated. Retufral se otherwise
Note: Is equivalent tet at e_begi n() == state_end()

tenpl ate< class Target >
Target state_cast() const;

Returns: Depending on the form dfar get either a reference or a pointerctonst if at least one
of the currently active states can successfullgypgam c_cast to Tar get . Returnd for pointe
targets and throwst d: : bad_cast for reference targets otherwidar get can take either of tl
following forms:const Cl ass * orconst C ass &

Throws: st d: : bad_cast if Tar get is a reference type and none of the active statebecan
dynam c_cast to Target

Note: The search sequence is the same agrforess_event ()

tenpl ate< class Target >
Target state_downcast() const;

Requires: For reference targets the compiler must support papgexialization of class templates,
otherwise a compile-time error will result. The typaaked byTar get must be a model of the
SimpleStateor Stateconcepts

Returns: Depending on the form dfar get either a reference or a pointerctonst if Tar get is
equal to the most-derived type of a currently acshate. Return® for pointer targets and throws
std: : bad_cast for reference targets otherwidar get can take either of the following forms:
const Class * orconst Class &

Throws: st d: : bad_cast if Tar get is a reference type and none of the active states st
derived type equal tbar get

Note: The search sequence is the same asrfocess_event ()

state_iterator state_begin() const;

state_iterator state_end() const;

Return: Iterator objects, the rangst[at e_begi n(), st at e_end()) refers to all currently

2006/08/2:

The Boost Statechart Libra- Referenc Pagel3d of 42

activeinnermost stateg-or an object of typestate_iterator,*i returns &onst
state_base_type &andi.operator->() returns &onst state_base_type *

Note: The position of a given innermost state in the raagebitrary. It may change with each call
to a modifier function. Moreover, all iterators angalidated whenever a modifier function is called

Header <boost/statechart/
asynchronous_state_machine.hpp>

Classtemplateasynchr onous_st at e_nachi ne
This is the base class template of all asynchronousretatkines.

Classtemplateasynchr onous_st at e_nmachi ne parameters

Template parameter |[Requirements Semantics Default
The most-derived

Most Der i ved subtype of this clag
template

A model of the
SimpleStateor

Stateconcepts. The
Cont ext argument

passed to the .
simpl e_st at e<> oF The state that is

entered when the
L t at S
InitialState srate=s base of lstate machine is

initiated through th

must be .
Schedul
Most Deri ved. That chedul er object

is,Initial State
must be an
outermost statef
this state machine

Schedul er A model of the seeScheduler fifo_schedul er<>
Scheduler conceptj|concept
A model of the

Al | ocat or standard Allocator std::allocator< void >
concept
A model of the see

Excepti onTr ansl at or ExceptionTranslatg ExceptionTranslatginul I _exception_transl ator
concept concept

Classtemplateasynchr onous_st at e_nmachi ne synopsis

nanmespace boost

{

namespace statechart

{

2006/08/2:

The Boost Statechart Libra- Referenc Pagelq of 42

t enpl at e<
cl ass Most Deri ved,
class Initial State,
class Schedul er = fifo_schedul er <>,
class Allocator = std::allocator< void >,
cl ass ExceptionTranslator = null _exception_translator >
cl ass asynchronous_state_nachi ne :
public state machi ne<
MostDerived, Initial State, Allocator, ExceptionTranslator
publ i c event _processor< Schedul er >

{
pr ot ect ed:
t ypedef asynchronous_state_machi ne ny_base;
asynchronous_st at e_machi ne(
t ypenane event _processor< Schedul er >::ny_context ctx);
~asynchronous_state_machi ne() ;
}
}
}

Classtemplateasynchr onous_st at e_machi ne constructor and
destructor

asynchronous_st at e_nmachi ne(
t ypenane event _processor< Schedul er >::ny_context ctx);

Effects: Constructs a non-running asynchronous state machine
Note: Users cannot creagsynchr onous_st at e_nmachi ne<> subtype objects directly. This
can only be done through an object of @odedul er class

~asynchronous_state_machi ne() ;

Effects: Destructs the state machine
Note: Users cannot destrugsynchr onous_st at e_nmachi ne<> subtype objects directly. This

can only be done through an object of @odedul er class

Header
<boost/statechart/event_processor.hpp>
Classtemplateevent processor

This is the base class template of all types that presesgs.
asynchr onous_st at e_nmachi ne<> is just one possible event processor implementation.

Classtemplateevent _processor parameters

Template

parameter Requirements Semantics Default

2006/08/2:

The Boost Statechart Libra- Referenc Pagelt of 42

seeScheduler
concept

Schedul er ||A model of the Scheduler concept

Classtemplateevent _processor synopsis

nanmespace boost

{

namespace statechart
{
tenpl at e< cl ass Schedul er >
cl ass event _processor
{
publi c:
virtual ~event processor();

Schedul er & ny schedul er () const;

t ypedef typename Schedul er:: processor_handl e
processor _handl e;
processor _handl e ny handl e() const;

void initiate();
voi d process _event(const event_base & evt);
void term nate();

pr ot ect ed:
t ypedef const typenanme Schedul er:: processor_context &
ny_cont ext ;
event processor(nmy_context ctx);

private:
virtual void initiate_inpl()
virtual void process_event i
const event base & evt) =
virtual void term nate_inpl (
b
}
}

Classtemplate event _pr ocessor constructor and destructor
event processor(mnmy_context ctx);

Effects: Constructs an event processor object and stores cdplesreference returned by

nmyCont ext . my_schedul er () and the object returned oy Cont ext . ny_handl e()

Note: Users cannot creaé/ent _pr ocessor <> subtype objects directly. This can only be done
through an object of th&chedul er class

virtual ~event processor();

Effects: Destructs an event processor ot

2006/08/2:

The Boost Statechart Libra- Referenc Pagel€ of 42

Note: Users cannot destruevent _pr ocessor <> subtype objects directly. This can only be
done through an object of tkehedul er class

Classtemplate event _pr ocessor modifier functions
void initiate();

Effectsi nitiate_i npl ();
Throws: Any exceptions propagated from the implementationmoft i at e_i npl ()

voi d process_event(const event_base & evt);

Effects. pr ocess_event _i npl (evt);
Throws: Any exceptions propagated from the implementatioprafcess_event _i npl ()

void term nate();

Effects:t erm nate_i npl () ;
Throws: Any exceptions propagated from the implementatiohesfm nat e_i npl ()

Classtemplateevent _pr ocessor observer functions
Schedul er & ny_schedul er() const;

Returns: TheSchedul er reference obtained in the constructor

processor _handl e nmy_handl e() const;

Returns: Thepr ocessor _handl e object obtained in the constructor

Header <boost/statechart/fifo_scheduler.hpp>

Classtemplatefi f o_schedul er

This class template is a model of ®eheduleiconcept.

Classtemplatefi f o_schedul er parameters

Template

par ameter Requirements Semantics Default

Fi f oWor ker A model of the FifoWorke

' fifo worker<>
concept seeFifoWorker concept _

A model of the standard

std::allocator< void >
Allocator concept

Al | ocat or

Classtemplatefi f o_schedul er synopsis

nanmespace boost

2006/08/2:

The Boost Statechart Libra- Referenc Pagel7 of 42

{

namespace statechart
{
tenpl at e<
cl ass Fifowrker = fifo_worker<>,
class Allocator = std::allocator< void > >
class fifo_schedul er : noncopyabl e
{
publi c:
fifo schedul er(bool waitOnEnptyQueue = false);

t ypedef i npl enentation-defined processor_handl e;

cl ass processor_context : noncopyabl e
{
processor _cont ext (
fifo_schedul er & schedul er,
const processor_handl e & theHandl e);

fifo_schedul er & ny_schedul er() const;
const processor_handl e & ny_handl e() const;

friend class fifo_schedul er;
friend class event _processor< fifo_schedul er >;

¥

tenpl ate< cl ass Processor >

processor _handl e create processor();

t enpl at e< cl ass Processor, typenane Paranil >
processor_handl e create_processor(Paranl parani);

/1 More create_processor overl oads

voi d destroy processor(processor_handl e processor);

void initiate processor(processor_handl e processor);
void term nate processor(processor_handl e processor);

typedef intrusive_ptr< const event_base > event _ptr_type;

voi d queue_event (
const processor_handl e & processor,
const event ptr_type & pEvent);

t ypedef typename FifoWbrker::work itemwork item

voi d queue work itenm(const work item& item);

void term nate();
bool term nated() const;

unsi gned | ong operator()(
unsi gned | ong nmaxEvent Count = 0);

2006/08/2:

The Boost Statechart Libra- Referenc Pagel8 of 42

¥
}
}

Classtemplatefi f o_schedul er constructor
fifo_schedul er(bool waitOnEnptyQueue = false);

Effects: Constructs &i f o_schedul er <> object. In multi-threaded builds,

wai t OnEnpt yQueue is forwarded to the constructor of a data membeypeFi f oWbr ker . In
single-threaded builds, the f oWor ker data member is default-constructed

Note: In single-threaded builds tiie f o_schedul er <> constructor does not accept any
parameters anadper at or () () thus always returns to the caller when the eventejissempty

Classtemplatefi f o_schedul er modifier functions

tenpl at e< cl ass Processor >
processor _handl e create_processor();

Requires: ThePr ocessor type must be a direct or indirect subtype ofé¢lent _pr ocessor
class template

Effects: Creates and passesHiof oWbr ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedfin f oWbr ker : : operator () (),
leads to a call to the constructorRsfocessor , passing an approprigi& ocessor _cont ext
object as the only argument

Returns: A processor _handl e object that henceforth identifies the created epemtessor
object

Throws: Any exceptions propagated frdan f oWor ker : : work_i ten() and

Fi f oWor ker: : queue_work _item()

Caution: The current implementation of this function makesiadirect) call to globabper at or
new() . Unless globabper at or new() is replaced, care must be taken when to call this
function in applications with hard real-time requirernse

t enpl at e< cl ass Processor, typenane Paranl >
processor_handl e create_processor(Paranl parani);

Requires: ThePr ocessor type must be a direct or indirect subtype ofé¢lent _pr ocessor
class template

Effects: Creates and passesHiof oWbr ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedin f oWbr ker : : operator () (),
leads to a call to the constructorRsfocessor , passing an approprigi& ocessor _cont ext
object andpar anil as arguments

Returns: A processor _handl e object that henceforth identifies the created epemtessor
object

Throws: Any exceptions propagated frdan f oWor ker : : work_i t en() and

Fi f oWor ker: : queue_work_item()

Note: boost : : ref () andboost: : cref () can be used to pass arguments by reference rather
than by copyf i f o_schedul er <> has 5 additionatr eat e_pr ocessor <> overloads,
allowing to pass up to 6 custom arguments to the congtsuat event processors

Caution: The current implementation of this and all otherrtmagls make (indirect) calls to global
operator new() . Unless globabper at or new() is replaced, care must be taken when to

2006/08/2:

The Boost Statechart Libra- Referenc PagelS of 42

call these overloads in applications with hard remétrequirements

voi d destroy_processor(processor_handl e processor);

Requires: processor was obtained from a call to one of gheeat e_pr ocessor <>()
overloads on the sanfié f o_schedul er <> object

Effects: Creates and passesHiof oWbr ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedin f oWbr ker : : operator () (),
leads to a call to the destructor of the event procedgect associated withr ocessor . The
object is silently discarded if the event processoealjas been destructed before

Throws: Any exceptions propagated frdan f oWor ker : : work_i t en() and

Fi f oWor ker: : queue_work _item()

Caution: The current implementation of this function leadanqindirect) call to globadper at or
del et e() (the call is made when the lgstocessor _handl e object associated with the event
processor object is destructed). Unless glolpalr at or del et e() is replaced, care must be
taken when to call this function in applications whthrd real-time requirements

void initiate_processor(processor_handl e processor);

Requires: pr ocessor was obtained from a call to one of #heeat e_pr ocessor () overloads
on the saméi f o_schedul er <> object

Effects: Creates and passesHiof oWbr ker : : queue_wor k_i t en{) an object of type

Fi f oWwor ker: : wor k_i t emthat, when later executed fin f oWbr ker : : operator () (),
leadsto acalltoni ti at e() onthe event processor object associated pvithcessor . The
object is silently discarded if the event processoealjas been destructed before

Throws: Any exceptions propagated frdan f oWor ker : : work_i ten() and

Fi f oWor ker: : queue_work_item()

voi d term nate_processor(processor_handl e processor);

Requires: pr ocessor was obtained from a call to one of #hieeat e_pr ocessor <>()
overloads on the sanfieé f o_schedul er <> object

Effects: Creates and passesHiof oWbr ker : : queue_wor k_i t en{) an object of type

Fi f oWwor ker: : wor k_i t emthat, when later executed fin f oWbr ker : : operator () (),
leads to a call tber m nat e() on the event processor object associated prithcessor . The
object is silently discarded if the event processoealjas been destructed before

Throws: Any exceptions propagated frdan f oWor ker : : work_i t en() and

Fi f oWor ker: : queue_work _item()

voi d queue_event (
const processor _handl e & processor,
const event_ptr_type & pEvent);

Requires: pEvent . get () != 0 andpr ocessor was obtained from a call to one of the
creat e_processor <>() overloads on the sanfié f o_schedul er <> object

Effects: Creates and passesiiof oWor ker : : queue_wor k_i t en{) an object of type

Fi f oWbr ker : : wor k_i t emthat, when later executedfin f oWbr ker : : operator () (),

leads to a call tpr ocess_event (*pEvent) on the event processor object associated with
processor . The object is silently discarded if the event pssoe object has been destructed
before

Throws: Any exceptions propagated frdan f oWor ker : : work_i t en() and

Fi f oWor ker: : queue_work _item()

2006/08/2:

The Boost Statechart Libra- Referenc Page2C of 42

voi d queue_work_itenm const work _item& item);

Effects: Fi f oWbr ker: : queue_work _iten(item);
Throws: Any exceptions propagated from the above call

void term nate();

Effects: Fi f oWor ker: :term nat e()
Throws: Any exceptions propagated from the above call

unsi gned | ong operator()(unsigned | ong maxEvent Count = 0);

Requires: Must only be called from exactly one thread
Effects. Fi f oWbr ker : : operator () (maxEvent Count)

Returns: The return value of the above call
Throws: Any exceptions propagated from the above call
Classtemplatef i f o_schedul er observer functions

bool term nated() const;

Requires: Must only be called from the thread that also aafisr at or () ()
Returns: Fi f oWor ker: :term nated();

Header
<boost/statechart/exception_translator.hpp>

Classtemplateexcepti on_transl at or

This class template is a model of theceptionTranslatoconcept.

Classtemplateexcepti on_transl at or parameters

Template

par ameter Requirements Semantics Default

The type of event that is

Except i onEvent A model of theEvent dispatched when an exceptimgxcept i on_t hr own
concept is propagated into the
framework

Classtemplateexcepti on_transl at or synopsis& semantics

nanmespace boost

{

nanespace st at echart

{

cl ass exception_thrown : public event< exception_thrown > {};

2006/08/2:

The Boost Statechart Libra- Referenc Page21 of 42

tenpl at e< cl ass Excepti onEvent = exception_thrown >
cl ass exception_transl ator

{
publi c:

tenpl at e< cl ass Action, class ExceptionEvent Handl er >

result operator()(
Action action,
Excepti onEvent Handl er event Handl er)

{
try
{

return action();

}
catch(...)

{

return event Handl er (Excepti onEvent ());

Header <boost/statechart/
null_exception_translator.hpp>

Classnul | _exception_transl ator

This class is a model of thexceptionTranslatoconcept.

Classnul | _excepti on_transl at or synopsis& semantics

nanmespace boost

{
namespace statechart
{
cl ass nul |l _exception_transl ator
{
publi c:
tenpl at e< cl ass Action, class ExceptionEventHandl er >
result operator()(
Action action, ExceptionEventHandler)
{
return action();
}
3
}
}

Header <boost/statechart/ssmple_state.hpp>

2006/08/2:

The Boost Statechart Libra- Referenc Page22 of 42

Enum hi st ory_node

Defines the history type of a state.

nanmespace boost

{

namespace statechart

{

enum hi story_node
{
has_no_hi story,
has_shal | ow_hi st ory,
has_deep_hi story,
has full _history // shallow & deep
}
}
}

Classtemplatesi npl e_st at e

This is the base class template for all models oStheleStateeoncept. Such models must not call
any of the followingsi npl e_st at e<> member functions from their constructors:

voi d post _event (
const intrusive_ptr< const event_base > &);
voi d post_event(const event_base &);

t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on- defi ned-unsi gned-i nteger-type
ort hogonal Position >
voi d cl ear_shal |l ow _history();
t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on-defi ned-unsi gned-i nteger-type
ort hogonal Position >
voi d cl ear_deep_history();

out er nost _context _type & outernost_context();
const outernost_context_type & outernost_context() const;

tenpl ate< class O her Cont ext >

Ot her Cont ext & context();

tenpl ate< class O her Cont ext >

const O her Context & context() const;

tenpl ate< class Target >
Target state cast() const;
tenpl ate< cl ass Target >
Target state downcast() const;

state_iterator state begin() const;

2006/08/2:

The Boost Statechart Libra- Referenc Page23 of 42

state_iterator state_end() const;

States that need to call any of these member functionstheir constructors must derive from the
st at e class template.

Classtemplatesi npl e_st at e parameters

Template

parameter Requirements Semantics Default

The most-derived subtype of this class

Most Deri ved
template

A most-derived direct or indirect subtype of
thest at e_machi ne or

asynchronous_st ate_nmachi ne class Etg?ense:s tohseitio I
Cont ext templates or a model of ti#mpleStateor in the s?ate
Stateconcepts or an instantiation of the hierarchy

si npl e_st at e<>: : ort hogonal class
template. Must be a complete type

An npl : : | i st <> containing models of the
SimpleStateor Stateconcepts or instantiation
of theshal | ow _hi story ordeep_hi story
class templates. If there is only a single inngr
initial state that is not a template instantiatiqiDefines the
then it can also be passed directly, without |[inner initial

)

wrapping it into ampl : : 1ist<> The state for each
| nner | nitial Opnt ext argument passed to the orthogonal unspeci fi ed
si npl e_st at e<> orst at e<> base of each | region. By
state in the list must correspond to the default, a statg
orthogonal region it belongs to. That is, the [does not have
first state in the list must pass inner states

Most Deri ved: : ort hogonal < 0 >, the second
Most Deri ved: : ort hogonal < 1 > and so
forth. Most Deri ved: : ort hogonal < 0 > and
Mbst Der i ved are Synonymous

Defines

whether the
state saves
shallow, deep||has_no_hi story
or both
histories upon
exit

One of the values defined in thiest ory _node
enumeration

hi st or yMode

Classtemplatesi npl e_st at e synopsis

nanmespace boost

{

nanmespace statechart

{
t enpl at e<

cl ass Most Deri ved,

2006/08/2:

The Boost Statechart Libra- Referenc Page24 of 42

cl ass Cont ext,
class Innerlnitial = unspecified,
hi story_node hi storyMode = has_no_history >

class sinple_state : inplenentation-defined
{
publ i c:
/1l by default, a state has no reactions
typedef npl::list<> reactions;

/'l see tenplate paraneters

t enpl at e< i npl enent ati on-defi ned- unsi gned-i nt eger-type
i nner Ot hogonal Position >

struct orthogonal

{
/'l inpl enentation-defined

}

t ypedef typename Context::outernost_context_type
out er nost _cont ext _type;

out er nost _context _type & outernost_context();
const outernost_context_type & outernost_context() const;

tenpl ate< class O her Cont ext >

O her Cont ext & context ();

tenpl ate< class O her Cont ext >

const O herContext & context() const;

tenpl ate< class Target >
Target state cast() const;
tenpl ate< class Target >
Target state downcast() const;

/1 a nodel of the StateBase concept

t ypedef inpl enentation-defined state_base_type;

/1 a nodel of the standard Forward Iterator concept
t ypedef inplenentation-defined state_iterator;

state_iterator state begin() const;
state iterator state end() const;

voi d post_event (
const intrusive_ptr< const event base > &);
voi d post event(const event base &);

result discard event();
result forward_event();
result defer_event();
tenpl ate< class DestinationState >
result transit();
t enpl at e<
cl ass DestinationState,
cl ass TransitionCont ext,

2006/08/2:

The Boost Statechart Libra- Referenc Page2t of 42

cl ass Event >

result transit(
void (TransitionContext::*)(const Event &),
const Event &);

result term nate();

tenpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on- defi ned-unsi gned-i nt eger-type
ort hogonal Position >
voi d clear shallow history();
tenpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on-defi ned-unsi gned-i nteger-type
ort hogonal Position >
voi d clear deep_history();

static id type static type();

tenpl ate< class Custonld >
static const Customd * customstatic type ptr();

tenpl ate< class Custonmd >
static void customstatic type ptr(const Customd *);

/'l see transit() or termnate() effects
void exit() {}

pr ot ect ed:
sinple state();
~sinple state();

3
}
}
Classtemplatesi npl e_st at e constructor and destructor
sinple_state();

Requires: The constructors of all direct and indirect subtypesst be exception-neutral
Effects: Constructs a state object
Throws: Any exceptions propagated froth | ocat or: : al | ocat e() (the template parameter
passed to the base clas®aot er nost _cont ext _type)
~sinple_state();
Effects: Pushes all events deferred by the state into thegesents queue

Classtemplate si npl e_st at e modifier functions

voi d post _event (
const intrusive_ptr< const event_base > & pEvt);

2006/08/2:

The Boost Statechart Libra- Referenc Page2€ of 42

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class templateéAll direct and indirect callers must be

exception-neutral
Effects: out er nost _cont ext (). post _event (pEvt);

Throws. Whatever the above call throws

voi d post _event(const event base & evt);

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class templateAll direct and indirect callers must be

exception-neutral
Effects. out er nost _context (). post _event(evt);

Throws: Whatever the above call throws

result discard_event();

Requires. Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers mustéxception-neutral
Effects: Instructs the state machine to discard the curremtewel to continue with the processing
of the remaining events (seéat e_nachi ne<>: : process_event () for details)

Returns: Aresul t object. The user-suppligdeact member function must return this object to
its caller

result forward_event();

Requires: Must only be called from withineact member functions, which are called by
cust om r eact i on<> instantiations. All direct and indirect callers mustexception-neutral

Effects: Instructs the state machine to forward the curreahet the next state (see
state_machi ne<>:: process_event () for details)

Returns: Aresul t object. The user-suppligdeact member function must return this object to
its caller

result defer_event();

Requires: Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers mustéxception-neutral
Effects: Instructs the state machine to defer the currentt@rahto continue with the processing of
the remaining events (seé¢at e_nmachi ne<>:: process_event () for details)

Returns: Aresul t object. The user-suppligdeact member function must return this object to
its caller

Throws: Any exceptions propagated frodh| ocat or: : al | ocat e() (the template parameter
passed to the base clas®aot er nost _cont ext _type)

tenpl ate< cl ass DestinationState >
result transit();

Requires: Must only be called from withineact member functions, which are called by
cust om r eact i on<> instantiations. All direct and indirect callers mustexception-neutral
Effects:

1. Exits all currently active direct and indirect @nrstates of the innermost common context of
this state anfdest i nat i onSt at e. Innermost states are exited first. Other states atedexi

2006/08/2:

The Boost Statechart Libra- Referenc Page27 of 42

as soon as all their direct and indirect inner states haen exited. The inner states of each
state are exited according to the number of thérogional region. The state in the orthogonal
region with the highest number is always exited firsgntthe state in the region with the
second-highest number and so on.
The process of exiting a state consists of the followstegs:
1. If there is an exception pending that has not yem eadled successfully then only <
5 is executed
2. Calls theexi t member function (seg/nopsi$ of the most-derived state object. If
exi t () throws then steps 3 and 4 are not executed
3. If the state has shallow history then shallow histofgrmation is saved
4. If the state is an innermost state then deep histtogmiation is saved for all direct and
indirect outer states that have deep history
5. The state object is destructed
2. Enters (constructs) the state that is both a dineetristate of the innermost common context
and either th&®est i nat i onSt at e itself or a direct or indirect outer state of
Destinati onState
3. Enters (constructs) the tree formed by the direciradicect inner states of the previously
entered state down to tRest i nat i onSt at e and beyond depth first. The inner states of
each state are entered according to the numberiobttigogonal region. The state in
orthogonal region O is always entered first, therstage in region 1 and so on
4. Instructs the state machine to discard the current @ngl to continue with the processing of
the remaining events (seé¢at e_nmachi ne<>:: process_event () for details)

Returns: Aresul t object. The user-suppligceact member function must return this object to
its caller
Throws: Any exceptions propagated from:

e Operator new() (used to allocate states)

e Al locator::allocate() (thetemplate parameter passed to the base class of
out er nost _cont ext _t ype)

e state constructors

e exit member functions

Caution: Inevitably destructs this state before returnindhedallingr eact member function,
which must therefore not attempt to access anythingpmstack objects before returning to its caller

t enpl at e<
cl ass DestinationState,
cl ass Transiti onCont ext,
cl ass Event >
result transit(
void (TransitionContext::*)(const Event &),
const Event &);

Requires. Must only be called from withineact member functions, which are called by
cust om r eact i on<> instantiations. All direct and indirect callers mustexception-neutral
Effects:

1. Exits all currently active direct and indirect @nrstates of the innermost common context of
this state an@est i nat i onSt at e. Innermost states are exited first. Other states atedexi
as soon as all their direct and indirect inner states haen exited. The inner states of each
state are exited according to the number of thérogional region. The state in the orthogonal
region with the highest number is always exited fitstntthe state in the region with 1

2006/08/2:

The Boost Statechart Libra- Referenc Page28 of 42

second-highest number and so on.
The process of exiting a state consists of the followstegs:
1. If there is an exception pending that has not yem eadled successfully then only <
5 is executed
2. Calls theexi t member function (seg/nopsi$ of the most-derived state object. If
exi t () throws then steps 3 and 4 are not executed
3. If the state has shallow history then shallow histofgrmation is saved
4. If the state is an innermost state then deep histtogmiation is saved for all direct and
indirect outer states that have deep history
5. The state object is destructed
2. Executes the passed transition action, forwardingakssed event
3. Enters (constructs) the state that is both a dineetristate of the innermost common context
and either th&®est i nat i onSt at e itself or a direct or indirect outer state of
Destinati onState
4. Enters (constructs) the tree formed by the direciradicect inner states of the previously
entered state down to tRest i nat i onSt at e and beyond depth first. The inner states of
each state are entered according to the numberiobttigogonal region. The state in
orthogonal region O is always entered first, therstage in region 1 and so on
5. Instructs the state machine to discard the current @nel to continue with the processing of
the remaining events (seéat e_nmachi ne<>:: process_event () for details)

Returns: Aresul t object. The user-suppligdeact member function must return this object to

its caller
Throws: Any exceptions propagated from:

e Operator new() (used to allocate states)

e Al locator::allocate() (thetemplate parameter passed to the base class of
out er nost _cont ext _t ype)

¢ state constructors

e exit member functions

¢ the transition action

Caution: Inevitably destructs this state before returnindgheodallingr eact member function,
which must therefore not attempt to access anythingmbstack objects before returning to its caller

result term nate();

Requires: Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers mustexception-neutral
Effects: Exits this state and all its direct and indirectanstates. Innermost states are exited first.
Other states are exited as soon as all their diredndiréct inner states have been exited. The inner
states of each state are exited according to the mushbigeir orthogonal region. The state in the
orthogonal region with the highest number is alwaytedXirst, then the state in the region with the
second-highest number and so on.

The process of exiting a state consists of the followtegs:

1. If there is an exception pending that has not genhthandled successfully then only step 5 is
executed

2. Calls theexi t member function (seg/nopsi$ of the most-derived state objectelfi t ()

throws then steps 3 and 4 are not executed

If the state has shallow history then shallow histofgrmation is saved

If the state is an innermost state then deep histtogmiation is saved for all direct and

indirect outer states that have deep his

Hw

2006/08/2:

The Boost Statechart Libra- Referenc Page2S of 42

5. The state object is destructed

Also instructs the state machine to discard the cuewesit and to continue with the processing of
the remaining events (seé¢at e_nmachi ne<>:: process_event () for details)

Returns: Aresul t object. The user-suppligdeact member function must return this object to
its caller

Throws: Any exceptions propagated from:

e Allocator::allocate() (thetemplate parameter passed to the base class of
out er nbst _cont ext _t ype, used to allocate space to save history)
e exit member functions

Note: If this state is the only currently active inneatstof its direct outer state then the direct outer
state is terminated also. The same applies recursivefl fimdirect outer states
Caution: Inevitably destructs this state before returnindgheodallingr eact member function,

which must therefore not attempt to access anythingmstack objects before returning to its caller

t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on- defi ned-unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear_shal |l ow history();

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class template. Tha st or yMbde argument passed
to thesi npl e_st at e<> orst at e<> base oHi st or yCont ext must be equal to

has_shal | ow_hi story orhas_full _history

Effects: Clears the shallow history of the orthogonal regipacified byor t hogonal Posi ti on
of the state specified By st or yCont ext

Throws. Any exceptions propagated frodh| ocat or: : al | ocat e() (the template parameter
passed to the base clas®uof er nost _cont ext _type)

t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on-defi ned-unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear_deep_history();

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class template. THa st or yMode argument passed
to thesi npl e_st at e<> orst at e<> base oHi st or yCont ext must be equal to
has_deep_hi story orhas_ful |l _history

Effects: Clears the deep history of the orthogonal regiogifipd byor t hogonal Posi ti on of
the state specified by st or yCont ext

Throws: Any exceptions propagated frodh | ocat or: : al | ocat e() (the template parameter
passed to the base clas®aot er nost _cont ext _type)

Classtemplatesi npl e_st at e observer functions
out er nbst _cont ext _type & outernost_context();

Requires: If called from a constructor of a direct or indirsabtype then the mc-derived type mu:

2006/08/2:

The Boost Statechart Libra- Referenc Page3C of 42

directly or indirectly derive from thet at e class template
Returns: A reference to the outermost context, which is amag state machine this state belongs
to

const outernost_context _type & outernost_context() const;

Requires: If called from a constructor of a direct or indireabtype then the moderived type mu:
directly or indirectly derive from thet at e class template

Returns: A reference to the const outermost context, whiéivisys the state machine this state
belongs to

tenpl ate< class O her Cont ext >
O her Cont ext & context();

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class template
Returns: A reference to a direct or indirect context

tenpl ate< class O her Cont ext >
const O herContext & context() const;

Requires: If called from a constructor of a direct or indireabtype then the moderived type mu:
directly or indirectly derive from thet at e class template
Returns: A reference to a const direct or indirect context

tenpl ate< class Target >
Target state _cast() const;

Requires: If called from a constructor of a direct or indirsabtype then the moderived type mu:
directly or indirectly derive from thet at e class template

Returns: Has exactly the same semanticsaat e_nmachi ne<>: : st ate_cast <>()

Throws: Has exactly the same semanticshat e_nmachi ne<>: : state_cast <>()

Note: The result isinspecified if this function is called when the machineuisstable

tenpl ate< class Target >
Target state_downcast() const;

Requires: If called from a constructor of a direct or indireabtype then the moderived type mu:
directly or indirectly derive from thet at e class template. Moreover,

state_machi ne<>::state_downcast <>() requirements also apply

Returns: Has exactly the same semanticsagt e_nmachi ne<>: : st at e_downcast <>()
Throws: Has exactly the same semanticstat e_nachi ne<>: : st at e_downcast <>()
Note: The result isinspecified if this function is called when the machinauisstable

state_iterator state_begin() const;
state iterator state_end() const;

Require: If called from a constructor of a direct or indirsabtype then the most-derived type must
directly or indirectly derive from thet at e class template

Return: Have exactly the same semanticstat e_nmachi ne<>: : st at e_begi n() and

state machi ne<>::state _end()

2006/08/2:

The Boost Statechart Libra- Referenc Page31 of 42

Note: The result isinspecified if these functions are called when the machinsgable

Classtemplate si npl e_st at e static functions
static id_type static_type();

Returns: A value unambiguously identifying the typeMist Deri ved
Note: i d_t ype values are comparable witiper at or ==() andoper ator! =().An
unspecified collating order can be established @itH: : | ess< i d_type >

tenpl ate< class Customd >
static const Customd * customstatic_type ptr();

Requires: If a custom type identifier has been set tiest om d must match the type of the
previously set pointer

Returns: The pointer to the custom type identifier fdrst Der i ved or0

Note: This function is not available BOOST_STATECHART USE NATI VE_RTTI is defined

tenpl ate< class Customd >
static void customstatic_type ptr(const Customd *);

Effects: Sets the pointer to the custom type identifieiMost Der i ved
Note: This function is not available BOOST_STATECHART_USE_NATI VE_RTTI is defined

Header <boost/statechart/state.hpp>

Classtemplate st at e

This is the base class template for all models ofthgconcept. Such models typically need to call
at least one of the followingji npl e_st at e<> member functions from their constructors:

voi d post_event (
const intrusive_ptr< const event_base > &);
voi d post _event (const event_base &);

t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on- defi ned-unsi gned-i nteger-type
ort hogonal Position >
voi d cl ear_shal l ow history();
t enpl at e<
cl ass Hi st oryCont ext,
i npl enent ati on- defi ned-unsi gned-i nteger-type
ort hogonal Position >
voi d cl ear_deep_history();

out er nbst _context _type & outernost _context();
const outernost_context_type & outernost_context() const;

tenpl ate< class O her Cont ext >
O her Context & context ();

2006/08/2:

The Boost Statechart Libra- Referenc Page32 of 42

tenpl ate< class O her Cont ext >
const O her Context & context() const;

tenpl ate< class Target >
Target state cast() const;
tenpl ate< class Target >
Target state downcast() const;

state_iterator state begin() const;
state_iterator state_end() const;

States that do not need to call any of these memhetidms from their constructors should rather
derive from thesi npl e_st at e class template, what saves the implementation of theafdimg
constructor.

Classtemplate st at e synopsis

nanmespace boost

{

namespace statechart
{
t enpl at e<
cl ass Most Deri ved,
cl ass Cont ext,
class Innerlinitial = unspecified,
hi story_node hi storyMode = has_no_history >
class state : public sinple_state<
Most Deri ved, Context, Innerlnitial, historyMde >

{
pr ot ect ed:
struct my_cont ext
{
/'l i nmpl ement at i on-defi ned
3
typedef state my_base;
state(nmy_context ctx);
~state();
3
}
}

Direct and indirect subtypes sf at e<> must provide a constructor with the same signaturleeas t
st at e<> constructor, forwarding the context parameter.

Header
<boost/statechart/shallow_history.hpp>

Classtemplateshal | ow_hi story

2006/08/2:

The Boost Statechart Libra- Referenc

Page33 of 42

This class template is used to specify a shallow histongitran target or a shallow history inner

initial state.

Classtemplateshal | ow_hi st ory parameters

Template
parameter

Requirements

Semantics

Def aul t St at e

A model of theSimpleStateor Stateconcepts. The
type passed a®nt ext argument to the

si npl e_st at e<> or st at e<> base

of Def aul t St at e must itself pass

has_shal | ow_hi story orhas_full _history as
hi st or yMbde argument to itsi npl e_st at e<> or

st at e<> base

The state that is entered
shallow history is not

available

Classtemplateshal | ow_hi st ory synopsis

namespace boost

{

namespace statechart

{

tenpl ate< class DefaultState >
cl ass shal l ow_hi story

{

}
}
}

/'l i nmpl ement at i on-defi ned

Header <boost/statechart/deep_history.hpp>

Classtemplatedeep_hi st ory

This class template is used to specify a deep histonyitteamtarget or a deep history inner initial
state. The current deep history implementation has §omniations.

Classtemplate deep_hi st ory parameters

Template
parameter

Requirements

Semantics

Def aul t St at e

A model of theSimpleStateor Stateconcepts. The
type passed a&nt ext argument to the

si npl e_st at e<> or st at e<> base

of Def aul t St at e must itself pass

has_deep_hi story orhas_full _history as

hi st or yMbde argument to itsi npl e_st at e<> or
st at e<> base

available

The state that is entered
deep history is not

2006/08/2:

The Boost Statechart Libra- Referenc

Classtemplatedeep_hi st ory synopsis

nanmespace boost

{

nanmespace statechart

{

tenpl ate< class DefaultState >
cl ass deep_history

{
/'l i nmpl ement at i on-defi ned

}
}
}

Page34 of 42

Header <boost/statechart/event _base.hpp>

Classevent base

This is the common base of all events.

Classevent _base synopsis

nanmespace boost

{
namespace statechart
{
cl ass event base
{ |
publi c:
intrusive_ptr< const event base >
intrusive fromthis() const;
t ypedef inplenentation-defined id_type;
id type dynam c_type() const;
tenpl ate< typenanme Custom d >
const Custom d * custom dynam c_type ptr() const;
pr ot ect ed:
event _base(unspecified-paraneter);
virtual -~event base();
3
}
}

Classevent base constructor and destructor

event _base(unspecified-paraneter);

Effects: Constructs the common base portion of an ¢

2006/08/2:

The Boost Statechart Libra- Referenc Page3t of 42

virtual ~event base();
Effects: Destructs the common base portion of an event

Classevent base observer functions
intrusive ptr< const event base > intrusive fromthis() const;

Returns: Anotheri nt rusi ve_ptr< const event_base > referencing hi sifthis is
already referenced by amt r usi ve_pt r <>, Otherwise, returns damt r usi ve_pt r < const
event _base > referencing a newly created copy of the most-derolgdct

id_type dynam c_type() const;

Returns: A value unambiguously identifying the most-deriveplet

Note: i d_t ype values are comparable witiper at or ==() andoperator! =().An
unspecified collating order can be established @fth: : | ess< i d_type >.In contrast to
t ypei d(cs), this function is available even on platforms thahdosupport C++ RTTI (or
have been configured to not support it)

tenpl at e< typenane Custom d >
const Customd * custom dynam c_type _ptr() const;

Requires: If a custom type identifier has been set tiest om d must match the type of the
previously set pointer

Returns: A pointer to the custom type identifier @r

Note: This function is not available BOOST_STATECHART USE NATI VE_RTTI is defined

Header <boost/statechart/event.npp>

Classtemplate event
This is the base class template of all events.

Classtemplate event synopsis

nanmespace boost

{

namespace statechart
{
tenpl ate< cl ass MostDerived >
class event : inplenentation-defined

{
public:
static id type static type();

tenpl ate< class Customd >
static const Customd * customstatic type ptr();

tenpl ate< class Customd >

2006/08/2:

The Boost Statechart Libra- Referenc Page3€ of 42

static void customstatic type ptr(const Customd *);

pr ot ect ed:
event ();
virtual -~event();
b
}
}

Classtemplate event constructor and destructor
event () ;

Effects: Constructs an event
virtual ~event();

Effects: Destructs an event

Classtemplate event static functions
static id_type static_type();

Returns: A value unambiguously identifying the typeMist Deri ved
Note: i d_t ype values are comparable witiper at or ==() andoperator! =().An
unspecified collating order can be established gitH: : | ess< id_type >

tenpl ate< class Customd >
static const Customld * customstatic_type ptr();

Requires: If a custom type identifier has been set tiest om d must match the type of the
previously set pointer

Returns: The pointer to the custom type identifier idyst Deri ved or0

Note: This function is not available BOOST_STATECHART _USE NATI VE RTTI is defined

tenpl ate< class Customd >
static void customstatic_type ptr(const Customd *);

Effects: Sets the pointer to the custom type identifieiMbst Der i ved
Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

Header <boost/statechart/transition.hpp>

Classtemplatet ransi ti on

This class template is used to specify a transition readtistantiations of this template can appear
in ther eact i ons membett ypedef in models of th&SimpleStateandStateconcepts.

Classtemplatet r ansi ti on parameters

2006/08/2:

The Boost Statechart Libra- Referenc Page37 of 42
Template Requirements Semantics Default
parameter

The event

triggering the

transition. If
Event A model of theEventconcept or the event _base IS

classevent _base

specified, the
transition is
triggered by all
models of the
Eventconcept

A model of theSimpleStateor State
concepts or an instantiation of the
shal | ow_hi story ordeep_hi story
class templates. The source state (th
state for which this transition is
defined) andest i nat i on must have 4§
common direct or indirect context

Destinati on

The destination
state to make a
transition to

A common context of the source and
Desti nati on state

Tr ansi ti onCont ext

The state of which
the transition
action is a membe

unspeci fi ed
I

A pointer to a member function of
Transi ti onCont ext . The member
function must accept@nst Event &
parameter and retukmi d

pTransi ti onAction

The transition
action that is
executed during
the transition. By
default no
transition action is
executed

unspeci fi ed

Classtemplatet r ansi ti on synopsis

namespace boost

onAction) (

{
nanmespace statechart
{
t enpl at e<
cl ass Event,
cl ass Destinati on,
class TransitionContext = unspecified,
void (TransitionContext::*pTransiti
const Event &) = unspecified >
class transition
{
/'l inpl enentation-defined
1
}
}

Classtemplatet r ansi t i on semantics

When executed, one of the following calls to a menfilnection of the state for which the react

2006/08/2:

The Boost Statechart Libra- Referenc Page38 of 42

was defined is made:

e transit< Destination >(), if notransition action was specified
e transit< Destination >(pTransitionAction, currentEvent),ifa
transition action was specified

Header
<boost/statechart/in_state reaction.npp>

Classtemplatei n_state_reaction

This class template is used to specify an in-state re@adtistantiations of this template can appear
in ther eact i ons membett ypedef in models of th&SimpleStateandStateconcepts.

Classtemplatei n_st at e_r eacti on parameters

Template

par ameter Requirements Semantics

The event triggering the
in-state reaction. If

A model of theEventconcept or the class event _base is specified,
event base the in-state reaction is
triggered by all models q
the Eventconcept

Event

—

Either the state defining the in-state reactionfitg@lhe state of which the

React i onCont ext o ., 9 . .
or one of it direct or indirect contexts action is a member

A pointer to a member function of
React i onCont ext . The member function must

accept aonst Event & parameter and return
voi d

The action that is
executed during the in-
state reaction

pActi on

Classtemplatei n_st at e_r eacti on synopsis

namespace boost

{
namespace statechart
{
t enpl at e<
cl ass Event,
cl ass Reacti onCont ext,
void (ReactionContext::*pAction)(const Event &) >
class in_state_reaction
{
/'l i nmpl ement at i on-defi ned
3
}
}

2006/08/2:

The Boost Statechart Libra- Referenc

Classtemplatei n_st ate_r eacti on semantics

Page3¢ of 42

When executedhAct i on is called, passing the triggering event as the omjyraent. Afterwards,
a call is made to théi scar d event member function of the state for which the reactias

defined.

Header <boost/statechart/ter mination.hpp>

Classtemplatet er m nati on

This class template is used to specify a termination oradtistantiations of this template can
appear in the eact i ons membett ypedef in models of th&impleStateandStateconcepts.

Classtemplatet er m nat i on parameters

Template
parameter

Requirements

Semantics

Event

A model of theEventconcept or the class
event base

event _base is specified,

The event triggering the
termination. If

the termination is triggergpl
by all models of thé&vent
concept

Classtemplatet er m nat i on synopsis

namespace boost

{

namespace statechart

{

tenpl at e< cl ass Event >
class term nation

{

}
}
}

/'l i nmpl ement at i on-defi ned

Classtemplatet er m nat i on semantics

When executed, a call is made to thleg i nat e member function of the state for which the
reaction was defined.

Header <boost/statechart/deferral.hpp>

Classtemplate def er r al

2006/08/2:

The Boost Statechart Libra- Referenc Page4C of 42

This class template is used to specify a deferral readtistantiations of this template can appear in
ther eact i ons membett ypedef in models of théSimpleStateandStateconcepts.

Classtemplatedef erral parameters

Template . .
parameter Requirements Semantics
The event triggering the
deferral. Ifevent _base is
Event Q\Vg?dgggl;théventconcept or the class specified, the deferral is
- triggered by all models of
the Eventconcept

Classtemplatedef err al synopsis

namespace boost

{

nanmespace statechart

{

tenpl at e< cl ass Event >
cl ass deferral

{
/'l i nmpl ement at i on-defi ned
b
}
}

Classtemplatedef erral semantics

When executed, a call is made to tled er _event member function of the state for which the
reaction was defined.

Header
<boost/statechart/custom_reaction.hpp>

Classtemplatecust om r eacti on

This class template is used to specify a custom reactistaniations of this template can appear in
ther eact i ons membett ypedef in models of th&sSimpleStateandStateconcepts.

Classtemplatecust om r eact i on parameters

Template

par ameter Requirements Semantics

The event triggering
the custom reaction. If
event base is

2006/08/2:

The Boost Statechart Libra- Referenc Page4l of 42

specified, the custom
reaction is triggered
all models of thé&vent
concept

Event A model of theEventconcept or the clagsent _base

Classtemplatecust om r eact i on synopsis

nanmespace boost

{

nanespace statechart

{
tenpl at e< cl ass Event >
class customreaction

{
/'l i nmpl ement at i on-defi ned
b
}
}

Classtemplatecust om r eact i on semantics

When executed, a call is made to the user-suppkett member function of the state for which
the reaction was defined. Theact member function must have the following signature:

result react(const Event &);

and must call exactly one of the following reactiandtions and return the obtainedsul t
object:

result discard_event();
result forward event();
result defer _event();
tenpl ate< cl ass DestinationState >
result transit();
t enpl at e<
cl ass DestinationState,
cl ass TransitionContext,
cl ass Event >
result transit(
void (TransitionContext::*)(const Event &),
const Event &);
result term nate();

Header <boost/statechart/result.npp>

Classr esul t

Defines the nature of the reaction taken in a usgpl@dr eact member function (called when a
cust om r eact i on is executed). Objects of this type are always obthlyy calling one of the
reaction functions and must be returned fromrttact member function immediately.

2006/08/2:

The Boost Statechart Libra- Referenc Page42 of 42

namespace boost

{

nanespace st at echart

{

class result

{
publi c:
result(const result & other);
~result();

private:

/'l Result objects are not assignable
result & operator=(const result & other);
1
}
}

Classr esul t constructor and destructor
result(const result & other);
Requires: ot her isnot consumed

Effects: Copy-constructs a nemesul t object and market her as consumed. That isesul t
has destructive copy semantics

~result();

Requires: t hi s is marked as consumed
Effects: Destructs the result object

~ HTML +
- .01
Revised 20 August, 2006

© CopyrightAndreas Huber Bnni 2003-2006

Distributed under the Boost Software License, Version($&e accompanying fi
LICENSE_1 0.t or copy athttp://www.boost.org/LICENSE_1_0)

2006/08/2:

