
Contents 

Introduction  
Hello World!  
A stop watch  

Defining states and events  
Adding reactions  
State-local storage  
Getting state information out of the machine  

A digital camera  
Spreading a state machine over multiple translation units  
Guards, junctions and choice points  
In-state reactions (aka inner transitions)  
Transition actions  

Advanced topics  
Reaction function reference  
Reaction reference  
Specifying multiple reactions for a state  
Posting events  
Deferring events  
Orthogonal states  
Exception handling  
Submachines  
Asynchronous state machines  

Introduction 

The boost::fsm library is a framework that allows you to quickly transform a UML state chart into 
executable C++ code. This tutorial requires some familiarity with the state machine concept and 
UML state charts. A nice introduction to both can be found in 
http://www.objectmentor.com/resources/articles/umlfsm.pdf. The UML specifications can be found 
in http://www.omg.org/cgi-bin/doc?formal/03-03-01 (see chapters 2.12 and 3.74). 

All examples have been tested with MSVC7.1 and boost distribution 1.30.0. 

Hello World! 

We follow the tradition and use the simplest possible program to make our first steps. We will 
implement the following state chart: 

 

The boost::fsm library 

Tutorial 
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#include <boost/fsm/state_machine.hpp> 
#include <boost/fsm/simple_state.hpp> 
#include <iostream> 
 
namespace fsm = boost::fsm; 
 
struct Greeting; 
struct Machine : fsm::state_machine< Machine, Greeting > {}; 
 
struct Greeting : fsm::simple_state< Greeting, Machine > 
{ 
  Greeting() { std::cout << "Hello World!\n"; } // entry 
  ~Greeting() { std::cout << "Bye Bye World!\n"; } // exit 
}; 
 
int main() 
{ 
  Machine myMachine; 
  myMachine.initiate(); 
  return 0; 
} 

This program prints Hello World! and Bye Bye World! before exiting. The first line is 
printed as a result of calling initiate(), which leads to the Greeting state begin entered. At 
the end of main(), the myMachine object is destroyed what automatically exits the Greeting 
state. 

A few remarks: � boost::fsm makes heavy use of the curiously recurring template pattern. The deriving class 
must always be passed as the first parameter to the base class template.  � The machine is not yet running after construction. We start it by calling initiate().  � All states reside in a context. For the moment, this context is the state machine. That's why 
Machine is passed as the second template parameter of Greeting's base.  � The state machine must be informed which state it has to enter when the machine is initiated. 
That's why Greeting is passed as the second template parameter of Machine's base. We 
have to forward declare Greeting for this purpose.  � We are declaring all types as structs only to avoid having to type public. If you don't 
mind doing so, you can just as well use class.  

A stop watch 

Next we will model a simple mechanical stop watch with a state machine. Such watches typically 
have two buttons: � Start/Stop  
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� Reset  

And two states: � Stopped: The hands reside in the position where they were last stopped. � Pressing the reset button moves the hands back to the 0 position. The watch remains in 
the Stopped state.  � Pressing the start/stop button leads to a transition to the Running state.  � Running: The hands of the watch are in motion and continually show the elapsed time. � Pressing the reset button moves the hands back to the 0 position and leads to a 
transition to the Stopped state.  � Pressing the start/stop button leads to a transition to the Stopped state.  

Here is one way to specify this in UML: 

 

Defining states and events 

The two buttons are modeled by two events. Moreover, we also define the necessary states and the 
initial state. The following code is our starting point, subsequent code snippets must be 
inserted: 

#include <boost/fsm/event.hpp> 
#include <boost/fsm/state_machine.hpp> 
#include <boost/fsm/simple_state.hpp> 
 
namespace fsm = boost::fsm; 
 
struct EvStartStop : fsm::event< EvStartStop > {}; 
struct EvReset : fsm::event< EvReset > {}; 
 
struct Active; 
struct StopWatch : fsm::state_machine< StopWatch, Active > {}; 
 
struct Stopped; 
struct Active : fsm::simple_state< Active, StopWatch, 
  fsm::no_reactions, Stopped > {}; 
struct Running : fsm::simple_state< Running, Active > {}; 
struct Stopped : fsm::simple_state< Stopped, Active > {}; 
 
int main() 
{ 
  StopWatch myWatch; 
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  myWatch.initiate(); 
  return 0; 
} 

This compiles but doesn't do anything observable yet. A few comments: � The simple_state class template accepts up to four parameters. � The third parameter specifies reactions (explained in due course). Because there aren't 
any yet, we pass fsm::no_reactions, which is also the default.  � The fourth parameter specifies the inner initial state, if there is one.  � A state is defined as an inner state simply by passing its outer state as its context (where 

outermost states pass the state machine).  � Because the context of a state must be a complete type (i.e. not forward declared), a machine 
must be defined from "outside to inside". That is, we always start with the state machine, 
followed by outermost states, followed by the inner states of outermost states and so on. We 
can do so in a breadth-first or depth-first way or employ a mixture of the two. 
Since the source and destination state of a transition often have the same nesting depth, the 
pure depth-first approach tends to require a lot of forward declarations for transition 
destinations while the pure breadth-first approach tends to minimize the number of necessary 
forward declarations.  

Adding reactions 

With boost::fsm a reaction is always defined as part of a state. A reaction is anything that happens 
as the result of the processing of an event. For the moment we will use only one type of reaction: 
transitions. We insert the bold part of the following code: 

#include <boost/fsm/transition.hpp> 
 
// ... 
 
struct Stopped; 
struct Active : fsm::simple_state< Active, StopWatch, 
  fsm::transition< EvReset, Active >, Stopped > {}; 
struct Running : fsm::simple_state< Running, Active, 
  fsm::transition< EvStartStop, Stopped > > {}; 
struct Stopped : fsm::simple_state< Stopped, Active, 
  fsm::transition< EvStartStop, Running > > {}; 
 
int main() 
{ 
  StopWatch myWatch; 
  myWatch.initiate(); 
  myWatch.process_event( EvStartStop() ); 
  myWatch.process_event( EvStartStop() ); 
  myWatch.process_event( EvStartStop() ); 
  myWatch.process_event( EvReset() ); 
  return 0; 
} 

A state can define an arbitrary number of reactions. That's why we have to put them into an 
mpl::list<> as soon as there is more than one of them (see Specifying multiple reactions for a 
state). 
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Now we have all the states and all the transitions in place and a number of events are also sent to 
the stop watch. The machine dutifully makes the transitions we would expect, but no actions are 
executed yet. 

State-local storage 

Next we'll make the stop watch actually measure time. Depending on the state the stop watch is in, 
we need different variables: � Stopped: One variable holding the elapsed time  � Running: One variable holding the elapsed time and one variable storing the point in time at 

which the watch was started.  

We observe that the elapsed time variable is needed no matter what state the machine is in. 
Moreover, this variable should be reset to 0 when we send an EvReset event to the machine. The 
other variable is only needed while the machine is in the Running state. It should be set to the 
current time of the system clock whenever we enter the Running state. Upon exit we simply 
subtract the start time from the current system clock time and add the result to the elapsed time. 

#include <ctime> 
 
// ... 
 
struct Stopped; 
struct Active : fsm::simple_state< Active, StopWatch, 
  fsm::transition< EvReset, Active >, Stopped > 
{ 
  public: 
    Active() : elapsedTime_( 0 ) {} 
    std::clock_t ElapsedTime() const { return elapsedTime_; } 
    std::clock_t & ElapsedTime() { return elapsedTime_; } 
  private: 
    std::clock_t elapsedTime_; 
}; 
 
struct Running : fsm::simple_state< Running, Active, 
  fsm::transition< EvStartStop, Stopped > > 
{ 
  public: 
    Running() : startTime_( std::clock() ) {} 
    ~Running() 
    { 
      context< Active >().ElapsedTime() += 
        ( std::clock() - startTime_ ); 
    } 
  private: 
    std::clock_t startTime_; 
}; 
 
// ... 

Similar to when a derived class object accesses its base class portion, context<>() is used to 
gain access to a direct or indirect outer state object. The same function could be used to access the 
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state machine (here context< StopWatch >()). The rest should be mostly self-explanatory. 
The machine now measures the time, but we cannot yet retrieve it from the main program. 

Getting state information out of the machine 

To retrieve the measured time, we need a mechanism to get state information out of the machine. 
With our current machine design there are two ways to do that. For the sake of simplicity we use the 
less efficient one: state_cast<>(). As the name suggests, the semantics are very similar to the 
ones of dynamic_cast. For example, when we call myWatch.state_cast< const 
Stopped & >() and the machine is currently in the Stopped state, we get a reference to the 
Stopped state. Otherwise std::bad_cast is thrown. We can use this functionality to 
implement a StopWatch member function that returns the elapsed time. However, rather than ask 
the machine in which state it is and then switch to different calculations for the elapsed time, we put 
the calculation into the Stopped and Running states and use an interface to retrieve the elapsed time: 

#include <iostream> 
 
// ... 
 
struct IElapsedTime 
{ 
  virtual std::clock_t ElapsedTime() const = 0; 
}; 
 
struct Active; 
struct StopWatch : fsm::state_machine< StopWatch, Active > 
{ 
  std::clock_t ElapsedTime() const 
  { 
    return state_cast< const IElapsedTime & >().ElapsedTime(); 
  } 
}; 
 
// ... 
 
struct Running : IElapsedTime, fsm::simple_state< 
  Running, Active, fsm::transition< EvStartStop, Stopped > > 
{ 
  public: 
    Running() : startTime_( std::clock() ) {} 
    ~Running() 
    { 
      context< Active >().ElapsedTime() = ElapsedTime(); 
    } 
 
    virtual std::clock_t ElapsedTime() const 
    { 
      return context< Active >().ElapsedTime() + 
        std::clock() - startTime_; 
    } 
  private: 
    std::clock_t startTime_; 
}; 
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struct Stopped : IElapsedTime, fsm::simple_state< 
  Stopped, Active, fsm::transition< EvStartStop, Running > > 
{ 
  virtual std::clock_t ElapsedTime() const 
  { 
    return context< Active >().ElapsedTime(); 
  } 
}; 
 
int main() 
{ 
  StopWatch myWatch; 
  myWatch.initiate(); 
  std::cout << myWatch.ElapsedTime() << "\n"; 
  myWatch.process_event( EvStartStop() ); 
  std::cout << myWatch.ElapsedTime() << "\n"; 
  myWatch.process_event( EvStartStop() ); 
  std::cout << myWatch.ElapsedTime() << "\n"; 
  myWatch.process_event( EvStartStop() ); 
  std::cout << myWatch.ElapsedTime() << "\n"; 
  myWatch.process_event( EvReset() ); 
  std::cout << myWatch.ElapsedTime() << "\n"; 
  return 0; 
} 

To actually see time being measured, you might want to single-step through the statements in main
(). The StopWatch example extends this program to an interactive console application. 

A digital camera 

So far so good. However, the approach presented above has a few limitations: � Bad scalability: As soon as the compiler reaches the point where 
state_machine::initiate() is called, a number of template instantiations take 
place, which can only succeed if the full declaration of each and every state of the machine is 
known. That is, the whole layout of a state machine must be implemented in one single 
translation unit (actions can be compiled separately, but this is of no importance here). For 
bigger (and more real-world) state machines, this leads to the following limitations: � At some point compilers reach their internal template instantiation limits and give up. 

This can happen even for moderately-sized machines. For example, in debug mode one 
popular compiler refused to compile earlier versions of the BitMachine example for 
anything above 3 bits. This means that the compiler reached its limits somewhere 
between 8 states, 24 transitions and 16 states, 64 transitions.  � Multiple programmers can hardly work on the same state machine simultaneously 
because every layout change will inevitably lead to a recompilation of the whole state 
machine.  � Maximum one reaction per event: According to UML a state can have multiple reactions 

triggered by the same event. This makes sense when all reactions have mutually exclusive 
guards. The interface we used above only allows for at most one unguarded reaction for each 
event. Moreover, the UML concepts junction and choice point are not directly supported.  � There is no way to specify in-state reactions (aka inner transitions).  
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All these limitations can be overcome with custom reactions. Warning: It is easy to abuse custom 
reactions up to the point of invoking undefined behavior. Please study the documentation 
before employing them! 

Spreading a state machine over multiple translation units 

Let's say your company would like to develop a digital camera. The camera has the following 
controls: � Shutter button, which can be half-pressed and fully-pressed. The associated events are 

EvShutterHalf, EvShutterFull and EvShutterReleased  � Config button, represented by the EvConfig event  � A number of other buttons that are not of interest here  

One use case for the camera says that the photographer can half-press the shutter anywhere in the 
configuration mode and the camera will immediately go into shooting mode. The following state 
chart is one way to achieve this behavior: 

 

The Configuring and Shooting states will contain numerous nested states while the Idle state is 
relatively simple. It was therefore decided to build two teams. One will implement the shooting 
mode while the other will implement the configuration mode. The two teams have already agreed 
on the interface that the shooting team will use to retrieve the configuration settings. We would like 
to ensure that the two teams can work with the least possible interference. So, we put the two states 
in their own translation units so that machine layout changes within the Configuring state will never 
lead to a recompilation of the inner workings of the Shooting state and vice versa. 

Unlike in the previous example, the excerpts presented here often outline different options to 
achieve the same effect. That's why the code is often not equal to the Camera example code. 
Comments mark the parts where this is the case. 

Camera.hpp: 

#ifndef CAMERA_HPP 
#define CAMERA_HPP 
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#include <boost/fsm/event.hpp> 
#include <boost/fsm/state_machine.hpp> 
#include <boost/fsm/simple_state.hpp> 
#include <boost/fsm/custom_reaction.hpp> 
 
namespace fsm = boost::fsm; 
 
struct EvShutterHalf : fsm::event< EvShutterHalf > {}; 
struct EvShutterFull : fsm::event< EvShutterFull > {}; 
struct EvShutterRelease : fsm::event< EvShutterRelease > {}; 
struct EvConfig : fsm::event< EvConfig > {}; 
 
struct NotShooting; 
struct Camera : fsm::state_machine< Camera, NotShooting > 
{ 
    bool IsMemoryAvailable() const { return true; } 
    bool IsBatteryLow() const { return false; } 
}; 
 
struct Idle; 
struct NotShooting : fsm::simple_state< NotShooting, Camera, 
  fsm::custom_reaction< EvShutterHalf >, Idle > 
{ 
  // ... 
  fsm::result react( const EvShutterHalf & ); 
}; 
 
struct Idle : fsm::simple_state< Idle, NotShooting, 
  fsm::custom_reaction< EvConfig > > 
{ 
  // ... 
  fsm::result react( const EvConfig & ); 
}; 
 
#endif 

Please note the bold parts in the code. With a custom reaction we only specify that we might do 
something with a particular event, but the actual reaction is defined in the react member function, 
which can be implemented in the .cpp file. 

Camera.cpp: 

#include "Camera.hpp" 
#include "Configuring.hpp" 
#include "Shooting.hpp" 
 
// ... 
 
// not part of the Camera example 
fsm::result NotShooting::react( const EvShutterHalf & ) 
{ 
  return transit< Shooting >(); 
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} 
 
fsm::result Idle::react( const EvConfig & ) 
{ 
  return transit< Configuring >(); 
} 

Caution: Any call to the simple_state::transit<>() or 
simple_state::terminate() (see Reaction function reference) member functions will 
inevitably destruct the current state object (similar to delete this;)! That is, code 
executed after any of these calls may invoke undefined behavior! That's why these functions 
should only be called as part of a return statement. 

Guards, junctions and choice points 

The inner workings of the Shooting state could look as follows: 

 

Both transitions originating at the Focused state are triggered by the same event but they have 
mutually exclusive guards. Here is an appropriate custom reaction: 

// not part of the Camera example 
fsm::result Focused::react( const EvShutterFull & ) 
{ 
  if ( context< Camera >().IsMemoryAvailable() ) 
  { 
    return transit< Storing >(); 
  } 
  else 
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  { 
    // The following is actually a mixture between an in-state 
    // reaction and a transition. See later on how to implement 
    // proper transition actions. 
    std::cout << "Cache memory full. Please wait...\n"; 
    return transit< Focused >(); 
  } 
} 

Custom reactions can of course also be implemented directly in the state declaration, which is often 
preferable for easier browsing. 

Next we will use a guard to prevent a transition and let outer states react to the event if the battery is 
low: 

Camera.cpp: 

// ... 
fsm::result NotShooting::react( const EvShutterHalf & ) 
{ 
  if ( context< Camera >().IsBatteryLow() ) 
  { 
    // We cannot react to the event ourselves, so we forward it 
    // to our outer state (this is also the default if a state 
    // defines no reaction for a given event). 
    return forward_event(); 
  } 
  else 
  { 
    return transit< Shooting >(); 
  } 
} 
// ... 

In-state reactions (aka inner transitions) 

The self-transition of the Focused state could also be implemented as an in-state reaction, which has 
the same effect as long as Focused does not have any entry or exit actions: 

Shooting.cpp: 

// ... 
fsm::result Focused::react( const EvShutterFull & ) 
{ 
  if ( context< Camera >().IsMemoryAvailable() ) 
  { 
    return transit< Storing >(); 
  } 
  else 
  { 
    std::cout << "Cache memory full. Please wait...\n"; 
    // Indicate that the event can be discarded. So, the  
    // dispatch algorithm will stop looking for a reaction. 
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    return discard_event(); 
  } 
} 
// ... 

Transition actions 

As an effect of every transition, actions are executed in the following order: 

1. Starting from the innermost current state, all exit actions up to but excluding the innermost 
common outer state (aka LCA, least common ancestor).  

2. The transition action (if present).  
3. Starting from the innermost common outer state, all entry actions down to the target state 

followed by the entry actions of the initial states.  

Example: 

 

Here the order is as follows: ~D(), ~C(), ~B(), ~A(), t(), X(), Y(), Z(). The transition action t() is 
therefore executed in the context of the InnermostCommonOuter state because the source state has 
already been left (destructed) and the target state has not yet been entered (constructed). 

With boost::fsm, a transition action can be a member of any common outer context. That is, the 
transition between Focusing and Focused could be implemented as follows: 

Shooting.hpp: 

// ... 
struct Focusing; 
struct Shooting : fsm::simple_state< Shooting, Camera, 
  fsm::transition< EvShutterRelease, NotShooting >, Focusing > 
{ 
  // ... 
  void DisplayFocused( const EvInFocus & ); 
}; 
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// ... 
 
// not part of the Camera example 
struct Focusing : fsm::simple_state< Focusing, Shooting, 
  fsm::transition< EvInFocus, Focused, 
    Shooting, &Shooting::DisplayFocused > > {}; 

Or , the following is also possible (here the state machine itself serves as the outermost context) 

// not part of the Camera example 
struct Camera : fsm::state_machine< Camera, NotShooting > 
{ 
  void DisplayFocused( const EvInFocus & ); 
}; 

// not part of the Camera example 
struct Focusing : fsm::simple_state< Focusing, Shooting, 
  fsm::transition< EvInFocus, Focused, 
    Camera, &Camera::DisplayFocused > > {}; 

Naturally, transition actions can also be invoked from custom reactions: 

Shooting.cpp: 

// ... 
fsm::result Focusing::react( const EvInFocus & evt ) 
{ 
  return transit< Focused >( &Shooting::DisplayFocused, evt ); 
} 

Please note that we have to manually forward the event. 

Advanced topics 

Reaction function reference 

The following functions can only be called from within react member functions, which must 
return by calling exactly one function (e.g. return terminate();): � simple_state::forward_event(): The dispatch algorithm keeps searching for a 

reaction for the current event. The search always continues with the immediate outer state. If 
there is none it continues with the next orthogonal leaf state. This process is repeated until 
one of the visited states returns by calling any of the other 5 reaction functions. The event is 
silently discarded if no reaction can be found. Useful to implement guards. 
forward_event() is also the default for all states that do not define a reaction for the 
event.  � simple_state::discard_event(): The dispatch algorithm stops searching for a 
reaction and the current event is discarded. Useful to implement in-state reactions.  � simple_state::defer_event(): The current event is pushed into a separate queue 
and the dispatch algorithm stops searching for a reaction. When the state is exited later, the 
separate queue is emptied into the main queue, which is afterwards processed as usual. Please 
see Deferring events!  
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� simple_state::transit< DestinationState >(): Makes a transition to the 
specified destination state and discards the current event.  � simple_state::transit< DestinationState >( void 
( TransitionContext::* )( const Event & ), const Event & ): 
Makes a transition to the specified destination state during which the passed transition action 
is called and discards the current event.  � simple_state::terminate(): Terminates the state and discards the current event.  

Reaction reference 

Reactions other than custom_reaction are nothing but syntactic sugar so that users don't have 
to write react member functions for common cases. Here's a list of the currently supplied 
reactions: � transition< Event, DestinationState >: returns 

simple_state::transit< DestinationState >();  � transition< Event, DestinationState, TransitionContext, void 
( TransitionContext::*pTransitionAction )( const Event & ) >: 
returns simple_state::transit< DestinationState >
( pTransitionAction, evt );  � termination< Event >: returns simple_state::terminate();  � deferral< Event >: returns simple_state::defer_event();. Please see 
Deferring events!  � custom_reaction< Event >: returns react( evt ); (the user-supplied member 
function). The react member function must return by calling one of the reaction functions.  

Should a user find herself implementing similar react member functions very often, she can 
easily define her own reaction and use it just like the ones that come with boost::fsm. 

Specifying multiple reactions for a state 

Often a state must define reactions for more than one event. In this case, an mpl::list must be 
used as outlined below: 

// ... 
 
#include <boost/mpl/list.hpp> 
 
namespace mpl = boost::mpl; 
 
// ... 
 
struct Playing : fsm::simple_state< Playing, Mp3Player, 
  mpl::list< 
    fsm::custom_reaction< EvFastForward >, 
    fsm::transition< EvStop, Stopped > > > { /* ... */ }; 

Posting events 

Non-trivial state machines often need to post internal events. Here's an example of how to do this 
with boost::fsm:  
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Pumping::~Pumping() 
{ 
  post_event( boost::intrusive_ptr< EvPumpingFinished >( 
    new EvPumpingFinished() ) ); 
} 

The event is pushed into the main queue, which is why it must be allocated with new. The events in 
the queue are processed as soon as the current reaction is completed. Events can be posted from 
inside react functions, entry-, exit- and transition actions. However, posting from inside entry 
actions is a bit more complicated (see e.g. Focusing::Focusing in Shooting.cpp in the 
Camera example):  

struct Pumping : fsm::state< Pumping, Purifier > 
{ 
  Pumping( my_context ctx ) : my_base( ctx ) 
  { 
    post_event( boost::intrusive_ptr< EvPumpingStarted >( 
      new EvPumpingStarted() ) ); 
  } 
  // ... 
}; 

Please note the bold parts. As soon as an entry action of a state needs to contact the "outside 
world" (here: the event queue in the state machine), the state must derive from fsm::state rather 
than from fsm::simple_state and must implement a forwarding constructor as outlined above 
(apart from the constructor, fsm::state offers the same interface as fsm::simple_state). 
Hence, this must be done whenever an entry action makes one or more calls to the following 
functions: � simple_state::context<>()  � simple_state::post_event()  � simple_state::state_cast<>()  � simple_state::state_downcast<>()  

In my experience, these functions are needed only rarely in entry actions so this workaround should 
not uglify user code too much. 

Deferring events 

To avoid a number of overheads, event deferral with boost::fsm has one limitation: Only events 
allocated with new and pointed to by a boost::intrusive_ptr<> can be deferred. Any 
attempt to defer a differently allocated event will result in a failing runtime assert. Example: 

struct Event : fsm::event< Event > {}; 
struct Initial; 
struct Machine : fsm::state_machine< 
  Machine, Initial > {}; 
struct Initial : fsm::simple_state< Initial, Machine, 
  fsm::deferral< Event > > {}; 
 
int main() 
{ 
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  Machine myMachine; 
  myMachine.initiate(); 
  myMachine.process_event( Event() ); // error 
  myMachine.process_event( 
    *boost::shared_ptr< Event >( new Event() ) ); // error 
  myMachine.process_event( 
    *boost::intrusive_ptr< Event >( new Event() ) ); // fine 
  return 0; 
} 

Orthogonal states 

 

To implement this state chart with boost::fsm, you simply specify more than one inner initial state 
(see the Keyboard example): 

struct Active; 
struct Keyboard : fsm::state_machine< Keyboard, Active > {}; 
 
struct NumLockOff; 
struct CapsLockOff; 
struct ScrollLockOff; 
struct Active: fsm::simple_state< 
  Active, Keyboard, fsm::no_reactions, 
  mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > > {}; 

Active's inner states must declare which orthogonal region they belong to: 

struct EvNumLockPressed : fsm::event< EvNumLockPressed > {}; 
struct EvCapsLockPressed : fsm::event< EvCapsLockPressed > {}; 
struct EvScrollLockPressed : 
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  fsm::event< EvScrollLockPressed > {}; 
 
struct NumLockOn : fsm::simple_state< 
  NumLockOn, Active::orthogonal< 0 >, 
  fsm::transition< EvNumLockPressed, NumLockOff > > {}; 
struct NumLockOff : fsm::simple_state< 
  NumLockOff, Active::orthogonal< 0 >, 
  fsm::transition< EvNumLockPressed, NumLockOn > > {}; 
 
struct CapsLockOn : fsm::simple_state< 
  CapsLockOn, Active::orthogonal< 1 >, 
  fsm::transition< EvCapsLockPressed, CapsLockOff > > {}; 
struct CapsLockOff : fsm::simple_state< 
  CapsLockOff, Active::orthogonal< 1 >, 
  fsm::transition< EvCapsLockPressed, CapsLockOn > > {}; 
 
struct ScrollLockOn : fsm::simple_state< 
  ScrollLockOn, Active::orthogonal< 2 >, 
  fsm::transition< EvScrollLockPressed, ScrollLockOff > > {}; 
struct ScrollLockOff : fsm::simple_state< 
  ScrollLockOff, Active::orthogonal< 2 >, 
  fsm::transition< EvScrollLockPressed, ScrollLockOn > > {}; 

orthogonal< 0 > is the default, so NumLockOn and NumLockOff could just as well pass 
Active instead of Active::orthogonal< 0 > to specify their context. The numbers passed 
to the orthogonal member template must correspond to the list position in the outer state. 
Moreover, the orthogonal position of the source state of a transition must correspond to the 
orthogonal position of the target state. Any violations of these rules lead to compile time errors. 
Examples: 

// Example 1: does not compile because Active specifies 
// only 3 orthogonal regions 
struct WhateverLockOn: fsm::simple_state< 
  WhateverLockOn, Active::orthogonal< 3 > > {}; 
 
// Example 2: does not compile because Active specifies 
// that NumLockOff is part of the "0th" orthogonal region 
struct NumLockOff : fsm::simple_state< 
  NumLockOff, Active::orthogonal< 1 > > {}; 
 
// Example 3: does not compile because a transition between 
// different orthogonal regions is not permitted 
struct CapsLockOn : fsm::simple_state< 
  CapsLockOn, Active::orthogonal< 1 >, 
  fsm::transition< EvCapsLockPressed, CapsLockOff > > {}; 
struct CapsLockOff : fsm::simple_state< 
  CapsLockOff, Active::orthogonal< 2 >, 
  fsm::transition< EvCapsLockPressed, CapsLockOn > > {}; 

State queries 

Often reactions in a state machine depend on the current state in one or more orthogonal regions. 
This is because orthogonal regions are not completely orthogonal or a certain reaction in an outer 
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state can only take place if the inner orthogonal regions are in particular states. For this purpose, the 
previously introduced state_cast<>() function is also available within states. 

As a somewhat far-fetched example, let's assume that our keyboard above also accepts 
EvRequestShutdown events, the reception of which makes the keyboard terminate only if all 
lock keys are in the off state. We would then modify the Active state as follows:  

struct EvRequestShutdown : fsm::event< EvRequestShutdown > {}; 
 
struct NumLockOff; 
struct CapsLockOff; 
struct ScrollLockOff; 
struct Active: fsm::simple_state< 
  Active, Keyboard, fsm::custom_reaction< EvRequestShutdown >, 
  mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > > 
{ 
  fsm::result react( const EvRequestShutdown & ) 
  { 
    if ( ( state_downcast< const NumLockOff * >() != 0 ) && 
         ( state_downcast< const CapsLockOff * >() != 0 ) && 
         ( state_downcast< const ScrollLockOff * >() != 0 ) ) 
    { 
      return terminate(); 
    } 
    else 
    { 
      return discard_event(); 
    } 
  } 
}; 

Just like dynamic_cast, passing a pointer type instead of reference type results in 0 pointers 
being returned when the cast fails. Note also the use of state_downcast instead of 
state_cast. Similar to the differences between boost::polymorphic_downcast and 
dynamic_cast, state_downcast is a much faster variant of state_cast and can only be 
used when the passed type is a most-derived type. state_cast should only be used if you want 
to query an additional base, as under Getting state information out of the machine. 

Exception handling 

Exceptions can be propagated from all user code except from state exit actions (mapped to 
destructors and destructors should virtually never throw in C++). Out of the box, 
state_machine does the following: 

1. The exception is caught.  
2. In the catch block, an fsm::exception_thrown event is allocated on the stack.  
3. Also in the catch block, an immediate dispatch of the fsm::exception_thrown event 

is attempted. That is, possibly remaining events in the queue are dispatched only after the 
exception has been handled successfully.  

4. If the exception was handled successfully, the state machine returns to the client normally. If 
the exception could not be handled successfully, the original exception is rethrown so that the 
client of the state machine can handle the exception.  
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This behavior is implemented in the exception_translator class, which is the default for the 
ExceptionTranslator parameter of the state_machine class template. It was introduced 
because users would want to change this on some platforms to work around buggy exception 
handling implementations (see Discriminating exceptions). Moreover, applications running on 
heavily resource-starved platforms are often compiled with C++ exception handling turned off. 
Such applications can still use boost::fsm if they pass the following exception translator instead of 
the default one: 

struct NoExceptionHandlingTranslator 
{ 
  template< class Action, class ExceptionEventHandler > 
  result operator()( 
    Action action, ExceptionEventHandler, fsm::result ) 
  { 
    return action(); 
  } 
}; 

However, doing so also means losing all boost::fsm error handling support, making proper error 
handling much more cumbersome (see Error handling in the Rationale). 

Which states can react to an fsm::exception_thrown event? 

This depends on where the exception occurred. There are three scenarios: 

1. A react member function propagates an exception before calling any of the reaction 
functions. The state that caused the exception is first tried for a reaction, so the following 
machine will transit to Defective after receiving an EvStart event: 
 

 
 

2. A state entry action (constructor) propagates an exception. The outer state of the state that 
caused the exception is first tried for a reaction, so the following machine will transit to 
Defective after trying to enter Stopped: 
 

Page 19 of 25The boost::fsm library - Tutorial

2003/08/16



 
   

3. A transition action propagates an exception. The innermost common outer state of the source 
and the target state is first tried for a reaction, so the following machine will transit to 
Defective after receiving an EvStartStop event: 
 

  

As with a normal event, the dispatch algorithm will move outward to find a reaction if the first tried 
state does not provide one (or if the reaction explicitly returned forward_event();). However, 
in contrast to normal events, it will give up once it has unsuccessfully tried an outermost state, 
so the following machine will not transit to Defective after receiving an EvNumLockPressed event: 
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Instead, the machine is terminated and the original exception rethrown. 

Successful exception handling 

An exception is considered handled successfully, if: � an appropriate reaction to the fsm::exception_thrown event not returning by calling 
forward_event() has been found.  � the state machine is in a stable state, after the reaction has completed.  

The second condition is important for scenarios 2 and 3 in the last section. In these scenarios, the 
state machine is in the middle of a transition when the exception is handled. The machine would be 
left in an invalid state, should the reaction simply discard the event without doing anything else. 

The out of the box behavior for unsuccessful exception handling is to rethrow the original 
exception. The state machine is terminated before the exception is propagated to the machine client. 

Discriminating exceptions 

Because the fsm::exception_thrown object is dispatched from within the catch block, we 
can rethrow and catch the exception in a custom reaction: 

struct Defective : fsm::simple_state< 
  Defective, Purifier > {}; 
 
struct Idle : fsm::simple_state< Idle, Purifier, 
  mpl::list< 
    fsm::custom_reaction< EvStart >, 
    fsm::custom_reaction< fsm::exception_thrown > > > 
{ 
  fsm::result react( const EvStart & ) 
  { 
    throw std::runtime_error( "" ); 
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  } 
 
  fsm::result react( const fsm::exception_thrown & ) 
  { 
    try 
    { 
      throw; 
    } 
    catch ( const std::runtime_error & ) 
    { 
      // only std::runtime_errors will lead to a transition 
      // to Defective, all other exceptions are propagated 
      // to the state machine client  
      return transit< Defective >(); 
    } 
  } 
}; 

Unfortunately, this idiom does not work on at least one very popular compiler. If you have to 
use one of these platforms, you can pass a customized exception translator class to the 
state_machine class template. This will allow you to generate different events depending on 
the type of the exception. 

Submachines 

Submachines are to event-driven programming what functions are to procedural programming, 
reusable building blocks implementing often needed functionality. The associated UML notation is 
not entirely clear to me. It seems to be severely limited (e.g. the same submachine cannot appear in 
different orthogonal regions) and does not seem to account for obvious stuff like e.g. parameters. 

boost::fsm is completely unaware of submachines but they can be implemented quite nicely with 
templates. Here, a submachine is used to improve the copy-paste implementation of the keyboard 
machine discussed under Orthogonal states: 

enum LockType 
{ 
  NUM_LOCK, 
  CAPS_LOCK, 
  SCROLL_LOCK 
}; 
 
template< LockType lockType > 
struct Off; 
struct Active : fsm::simple_state< 
  Active, Keyboard, fsm::no_reactions, mpl::list< 
  Off< NUM_LOCK >, Off< CAPS_LOCK >, Off< SCROLL_LOCK > > > {}; 
 
template< LockType lockType > 
struct EvPressed : fsm::event< EvPressed< lockType > > {}; 
 
template< LockType lockType > 
struct On : fsm::simple_state< 
  On< lockType >, Active::orthogonal< lockType >, 
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  fsm::transition< EvPressed< lockType >, Off< lockType > > > {};
 
template< LockType lockType > 
struct Off : fsm::simple_state< 
  Off< lockType >, Active::orthogonal< lockType >, 
  fsm::transition< EvPressed< lockType >, On< lockType > > > {};

The On and Off templates could be given additional parameters to make them truly reusable. 

Asynchronous state machines 

Why asynchronous state machines are necessary 

As the name suggests, a synchronous state machine processes each event synchronously. In 
boost::fsm this behavior is implemented by the state_machine<> class template, whose 
process_event() only returns after having executed all reactions (including the ones provoked 
by internal events that actions might have posted). Moreover, this function is also strictly non-
reentrant (just like all other member functions, so state_machine<> is not thread-safe). This 
makes it difficult for two state_machine<> subclasses to communicate via events in a bi-
directional fashion correctly, even in a single-threaded program. For example, state machine A is 
in the middle of processing an external event. Inside an action, it decides to send a new event to 
state machine B (by calling B::process_event with an appropriate event). It then "waits" for B 
to send back an answer via a boost::function-like call-back, which references 
A::process_event and was passed as a data member of the event. However, while A is 
"waiting" for B to send back an event, A::process_event has not yet returned from processing 
the external event and as soon as B answers via the call-back, A::process_event is 
unavoidably reentered. This all really happens in a single thread, that's why "wait" is in quotes. 

How it works 

In contrast to state_machine<>, asynchronous_state_machine<> does not have a 
member function process_event(). Instead, there is only queue_event(), which returns 
immediately after pushing the event into a queue. A worker thread will later pop the event out of the 
queue to have it processed. For applications using the boost::thread library, the necessary locking, 
unlocking and waiting logic is readily available in class worker<>. 

Applications will usually first create a worker<> object and then create one or more 
asynchronous_state_machine<> subclass objects, passing the worker object to the 
constructor(s). Finally, worker<>::operator()() is either called directly to let the machine
(s) run in the current thread, or, a boost::function object referencing operator() is passed 
to a new boost::thread. I the following code, we are running one state machine in a new 
boost::thread and the other in the main thread (see the PingPong example for the full source code): 

// ... 
 
struct Waiting; 
struct Player :  
  public fsm::asynchronous_state_machine< Player, Waiting > 
{ 
  typedef fsm::asynchronous_state_machine< Player, Waiting > 
    BaseType; 
  public: 
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    Player( fsm::worker<> & myWorker ) : 
      BaseType( myWorker ) // ... 
    { 
      // ... 
    } 
 
    // ... 
}; 
 
// ... 
 
int main() 
{ 
  fsm::worker<> worker1; 
  fsm::worker<> worker2; 
 
  // each player runs in its own worker thread 
  Player player1( worker1 ); 
  Player player2( worker2 ); 
 
  // ... 
 
  // run first worker in a new thread 
  boost::thread otherThread( 
    boost::bind( &fsm::worker<>::operator(), &worker1 ) ); 
 
  worker2(); // run second worker in this thread  
  otherThread.join(); 
 
  return 0; 
} 

We could just as well use two boost::threads: 

int main() 
{ 
  // ... 
 
  boost::thread thread1( 
    boost::bind( &fsm::worker<>::operator(), &worker1 ) ); 
  boost::thread thread2( 
    boost::bind( &fsm::worker<>::operator(), &worker2 ) ); 
 
  // do something else ... 
 
  thread1.join(); 
  thread2.join(); 
 
  return 0; 
} 

Or, run both machines in the same worker thread: 
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int main() 
{ 
  fsm::worker<> worker1; 
 
  Player player1( worker1 ); 
  Player player2( worker1 ); 
 
  // ... 
 
  worker1(); 
 
  return 0; 
} 

worker<>::operator()() first initiates all machines and then waits for events. Whenever 
queue_event is called on one of the previously registered machines, the passed event is pushed 
into the worker's queue and the worker thread is waked up to dispatch all queued events before 
waiting again. worker<>::operator()() returns as soon as all machines have terminated. 
worker<>::operator()() also throws any exceptions that machines fail to handle. In this 
case all machines are terminated before the exception is propagated. 

Caution: � State machine objects must not be destructed before worker::operator()() 
returns. Moreover, the worker<> object may be destructed only after all of the 
registered state machines have been destructed. Violations of these rules will result in 
failing runtime asserts.  � The interface of asynchronous_state_machine consists of only the constructor 
and queue_event(). For technical reasons, other functions like initiate(), 
process_event(), etc. are nevertheless also publicly available, but it is not safe to 
call these functions from any other thread than the worker (over which most users have 
no control). asynchronous_state_machine<>::queue_event() is the only 
function than can safely be called simultaneously from multiple threads.  
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