
Contents

Introduction
Hello World!
A stop watch

Defining states and events
Adding reactions
State-local storage
Getting state information out of the machine

A digital camera
Spreading a state machine over multiple translation units
Guards, junctions and choice points
In-state reactions (aka inner transitions)
Transition actions

Advanced topics
Reaction function reference
Reaction reference
Specifying multiple reactions for a state
Posting events
Deferring events
Orthogonal states
Exception handling
Submachines
Asynchronous state machines

Introduction

The boost::fsm library is a framework that allows you to quickly transform a UML state chart into
executable C++ code. This tutorial requires some familiarity with the state machine concept and
UML state charts. A nice introduction to both can be found in
http://www.objectmentor.com/resources/articles/umlfsm.pdf. The UML specifications can be found
in http://www.omg.org/cgi-bin/doc?formal/03-03-01 (see chapters 2.12 and 3.74).

All examples have been tested with MSVC7.1 and boost distribution 1.30.0.

Hello World!

We follow the tradition and use the simplest possible program to make our first steps. We will
implement the following state chart:

The boost::fsm library

Tutorial

Page 1 of 25The boost::fsm library - Tutorial

2003/08/16

#include <boost/fsm/state_machine.hpp>
#include <boost/fsm/simple_state.hpp>
#include <iostream>

namespace fsm = boost::fsm;

struct Greeting;
struct Machine : fsm::state_machine< Machine, Greeting > {};

struct Greeting : fsm::simple_state< Greeting, Machine >
{
 Greeting() { std::cout << "Hello World!\n"; } // entry
 ~Greeting() { std::cout << "Bye Bye World!\n"; } // exit
};

int main()
{
 Machine myMachine;
 myMachine.initiate();
 return 0;
}

This program prints Hello World! and Bye Bye World! before exiting. The first line is
printed as a result of calling initiate(), which leads to the Greeting state begin entered. At
the end of main(), the myMachine object is destroyed what automatically exits the Greeting
state.

A few remarks: � boost::fsm makes heavy use of the curiously recurring template pattern. The deriving class
must always be passed as the first parameter to the base class template. � The machine is not yet running after construction. We start it by calling initiate(). � All states reside in a context. For the moment, this context is the state machine. That's why
Machine is passed as the second template parameter of Greeting's base. � The state machine must be informed which state it has to enter when the machine is initiated.
That's why Greeting is passed as the second template parameter of Machine's base. We
have to forward declare Greeting for this purpose. � We are declaring all types as structs only to avoid having to type public. If you don't
mind doing so, you can just as well use class.

A stop watch

Next we will model a simple mechanical stop watch with a state machine. Such watches typically
have two buttons: � Start/Stop

Page 2 of 25The boost::fsm library - Tutorial

2003/08/16

� Reset

And two states: � Stopped: The hands reside in the position where they were last stopped. � Pressing the reset button moves the hands back to the 0 position. The watch remains in
the Stopped state. � Pressing the start/stop button leads to a transition to the Running state. � Running: The hands of the watch are in motion and continually show the elapsed time. � Pressing the reset button moves the hands back to the 0 position and leads to a
transition to the Stopped state. � Pressing the start/stop button leads to a transition to the Stopped state.

Here is one way to specify this in UML:

Defining states and events

The two buttons are modeled by two events. Moreover, we also define the necessary states and the
initial state. The following code is our starting point, subsequent code snippets must be
inserted:

#include <boost/fsm/event.hpp>
#include <boost/fsm/state_machine.hpp>
#include <boost/fsm/simple_state.hpp>

namespace fsm = boost::fsm;

struct EvStartStop : fsm::event< EvStartStop > {};
struct EvReset : fsm::event< EvReset > {};

struct Active;
struct StopWatch : fsm::state_machine< StopWatch, Active > {};

struct Stopped;
struct Active : fsm::simple_state< Active, StopWatch,
 fsm::no_reactions, Stopped > {};
struct Running : fsm::simple_state< Running, Active > {};
struct Stopped : fsm::simple_state< Stopped, Active > {};

int main()
{
 StopWatch myWatch;

Page 3 of 25The boost::fsm library - Tutorial

2003/08/16

 myWatch.initiate();
 return 0;
}

This compiles but doesn't do anything observable yet. A few comments: � The simple_state class template accepts up to four parameters. � The third parameter specifies reactions (explained in due course). Because there aren't
any yet, we pass fsm::no_reactions, which is also the default. � The fourth parameter specifies the inner initial state, if there is one. � A state is defined as an inner state simply by passing its outer state as its context (where

outermost states pass the state machine). � Because the context of a state must be a complete type (i.e. not forward declared), a machine
must be defined from "outside to inside". That is, we always start with the state machine,
followed by outermost states, followed by the inner states of outermost states and so on. We
can do so in a breadth-first or depth-first way or employ a mixture of the two.
Since the source and destination state of a transition often have the same nesting depth, the
pure depth-first approach tends to require a lot of forward declarations for transition
destinations while the pure breadth-first approach tends to minimize the number of necessary
forward declarations.

Adding reactions

With boost::fsm a reaction is always defined as part of a state. A reaction is anything that happens
as the result of the processing of an event. For the moment we will use only one type of reaction:
transitions. We insert the bold part of the following code:

#include <boost/fsm/transition.hpp>

// ...

struct Stopped;
struct Active : fsm::simple_state< Active, StopWatch,
 fsm::transition< EvReset, Active >, Stopped > {};
struct Running : fsm::simple_state< Running, Active,
 fsm::transition< EvStartStop, Stopped > > {};
struct Stopped : fsm::simple_state< Stopped, Active,
 fsm::transition< EvStartStop, Running > > {};

int main()
{
 StopWatch myWatch;
 myWatch.initiate();
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvStartStop());
 myWatch.process_event(EvReset());
 return 0;
}

A state can define an arbitrary number of reactions. That's why we have to put them into an
mpl::list<> as soon as there is more than one of them (see Specifying multiple reactions for a
state).

Page 4 of 25The boost::fsm library - Tutorial

2003/08/16

Now we have all the states and all the transitions in place and a number of events are also sent to
the stop watch. The machine dutifully makes the transitions we would expect, but no actions are
executed yet.

State-local storage

Next we'll make the stop watch actually measure time. Depending on the state the stop watch is in,
we need different variables: � Stopped: One variable holding the elapsed time � Running: One variable holding the elapsed time and one variable storing the point in time at

which the watch was started.

We observe that the elapsed time variable is needed no matter what state the machine is in.
Moreover, this variable should be reset to 0 when we send an EvReset event to the machine. The
other variable is only needed while the machine is in the Running state. It should be set to the
current time of the system clock whenever we enter the Running state. Upon exit we simply
subtract the start time from the current system clock time and add the result to the elapsed time.

#include <ctime>

// ...

struct Stopped;
struct Active : fsm::simple_state< Active, StopWatch,
 fsm::transition< EvReset, Active >, Stopped >
{
 public:
 Active() : elapsedTime_(0) {}
 std::clock_t ElapsedTime() const { return elapsedTime_; }
 std::clock_t & ElapsedTime() { return elapsedTime_; }
 private:
 std::clock_t elapsedTime_;
};

struct Running : fsm::simple_state< Running, Active,
 fsm::transition< EvStartStop, Stopped > >
{
 public:
 Running() : startTime_(std::clock()) {}
 ~Running()
 {
 context< Active >().ElapsedTime() +=
 (std::clock() - startTime_);
 }
 private:
 std::clock_t startTime_;
};

// ...

Similar to when a derived class object accesses its base class portion, context<>() is used to
gain access to a direct or indirect outer state object. The same function could be used to access the

Page 5 of 25The boost::fsm library - Tutorial

2003/08/16

state machine (here context< StopWatch >()). The rest should be mostly self-explanatory.
The machine now measures the time, but we cannot yet retrieve it from the main program.

Getting state information out of the machine

To retrieve the measured time, we need a mechanism to get state information out of the machine.
With our current machine design there are two ways to do that. For the sake of simplicity we use the
less efficient one: state_cast<>(). As the name suggests, the semantics are very similar to the
ones of dynamic_cast. For example, when we call myWatch.state_cast< const
Stopped & >() and the machine is currently in the Stopped state, we get a reference to the
Stopped state. Otherwise std::bad_cast is thrown. We can use this functionality to
implement a StopWatch member function that returns the elapsed time. However, rather than ask
the machine in which state it is and then switch to different calculations for the elapsed time, we put
the calculation into the Stopped and Running states and use an interface to retrieve the elapsed time:

#include <iostream>

// ...

struct IElapsedTime
{
 virtual std::clock_t ElapsedTime() const = 0;
};

struct Active;
struct StopWatch : fsm::state_machine< StopWatch, Active >
{
 std::clock_t ElapsedTime() const
 {
 return state_cast< const IElapsedTime & >().ElapsedTime();
 }
};

// ...

struct Running : IElapsedTime, fsm::simple_state<
 Running, Active, fsm::transition< EvStartStop, Stopped > >
{
 public:
 Running() : startTime_(std::clock()) {}
 ~Running()
 {
 context< Active >().ElapsedTime() = ElapsedTime();
 }

 virtual std::clock_t ElapsedTime() const
 {
 return context< Active >().ElapsedTime() +
 std::clock() - startTime_;
 }
 private:
 std::clock_t startTime_;
};

Page 6 of 25The boost::fsm library - Tutorial

2003/08/16

struct Stopped : IElapsedTime, fsm::simple_state<
 Stopped, Active, fsm::transition< EvStartStop, Running > >
{
 virtual std::clock_t ElapsedTime() const
 {
 return context< Active >().ElapsedTime();
 }
};

int main()
{
 StopWatch myWatch;
 myWatch.initiate();
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvStartStop());
 std::cout << myWatch.ElapsedTime() << "\n";
 myWatch.process_event(EvReset());
 std::cout << myWatch.ElapsedTime() << "\n";
 return 0;
}

To actually see time being measured, you might want to single-step through the statements in main
(). The StopWatch example extends this program to an interactive console application.

A digital camera

So far so good. However, the approach presented above has a few limitations: � Bad scalability: As soon as the compiler reaches the point where
state_machine::initiate() is called, a number of template instantiations take
place, which can only succeed if the full declaration of each and every state of the machine is
known. That is, the whole layout of a state machine must be implemented in one single
translation unit (actions can be compiled separately, but this is of no importance here). For
bigger (and more real-world) state machines, this leads to the following limitations: � At some point compilers reach their internal template instantiation limits and give up.

This can happen even for moderately-sized machines. For example, in debug mode one
popular compiler refused to compile earlier versions of the BitMachine example for
anything above 3 bits. This means that the compiler reached its limits somewhere
between 8 states, 24 transitions and 16 states, 64 transitions. � Multiple programmers can hardly work on the same state machine simultaneously
because every layout change will inevitably lead to a recompilation of the whole state
machine. � Maximum one reaction per event: According to UML a state can have multiple reactions

triggered by the same event. This makes sense when all reactions have mutually exclusive
guards. The interface we used above only allows for at most one unguarded reaction for each
event. Moreover, the UML concepts junction and choice point are not directly supported. � There is no way to specify in-state reactions (aka inner transitions).

Page 7 of 25The boost::fsm library - Tutorial

2003/08/16

All these limitations can be overcome with custom reactions. Warning: It is easy to abuse custom
reactions up to the point of invoking undefined behavior. Please study the documentation
before employing them!

Spreading a state machine over multiple translation units

Let's say your company would like to develop a digital camera. The camera has the following
controls: � Shutter button, which can be half-pressed and fully-pressed. The associated events are

EvShutterHalf, EvShutterFull and EvShutterReleased � Config button, represented by the EvConfig event � A number of other buttons that are not of interest here

One use case for the camera says that the photographer can half-press the shutter anywhere in the
configuration mode and the camera will immediately go into shooting mode. The following state
chart is one way to achieve this behavior:

The Configuring and Shooting states will contain numerous nested states while the Idle state is
relatively simple. It was therefore decided to build two teams. One will implement the shooting
mode while the other will implement the configuration mode. The two teams have already agreed
on the interface that the shooting team will use to retrieve the configuration settings. We would like
to ensure that the two teams can work with the least possible interference. So, we put the two states
in their own translation units so that machine layout changes within the Configuring state will never
lead to a recompilation of the inner workings of the Shooting state and vice versa.

Unlike in the previous example, the excerpts presented here often outline different options to
achieve the same effect. That's why the code is often not equal to the Camera example code.
Comments mark the parts where this is the case.

Camera.hpp:

#ifndef CAMERA_HPP
#define CAMERA_HPP

Page 8 of 25The boost::fsm library - Tutorial

2003/08/16

#include <boost/fsm/event.hpp>
#include <boost/fsm/state_machine.hpp>
#include <boost/fsm/simple_state.hpp>
#include <boost/fsm/custom_reaction.hpp>

namespace fsm = boost::fsm;

struct EvShutterHalf : fsm::event< EvShutterHalf > {};
struct EvShutterFull : fsm::event< EvShutterFull > {};
struct EvShutterRelease : fsm::event< EvShutterRelease > {};
struct EvConfig : fsm::event< EvConfig > {};

struct NotShooting;
struct Camera : fsm::state_machine< Camera, NotShooting >
{
 bool IsMemoryAvailable() const { return true; }
 bool IsBatteryLow() const { return false; }
};

struct Idle;
struct NotShooting : fsm::simple_state< NotShooting, Camera,
 fsm::custom_reaction< EvShutterHalf >, Idle >
{
 // ...
 fsm::result react(const EvShutterHalf &);
};

struct Idle : fsm::simple_state< Idle, NotShooting,
 fsm::custom_reaction< EvConfig > >
{
 // ...
 fsm::result react(const EvConfig &);
};

#endif

Please note the bold parts in the code. With a custom reaction we only specify that we might do
something with a particular event, but the actual reaction is defined in the react member function,
which can be implemented in the .cpp file.

Camera.cpp:

#include "Camera.hpp"
#include "Configuring.hpp"
#include "Shooting.hpp"

// ...

// not part of the Camera example
fsm::result NotShooting::react(const EvShutterHalf &)
{
 return transit< Shooting >();

Page 9 of 25The boost::fsm library - Tutorial

2003/08/16

}

fsm::result Idle::react(const EvConfig &)
{
 return transit< Configuring >();
}

Caution: Any call to the simple_state::transit<>() or
simple_state::terminate() (see Reaction function reference) member functions will
inevitably destruct the current state object (similar to delete this;)! That is, code
executed after any of these calls may invoke undefined behavior! That's why these functions
should only be called as part of a return statement.

Guards, junctions and choice points

The inner workings of the Shooting state could look as follows:

Both transitions originating at the Focused state are triggered by the same event but they have
mutually exclusive guards. Here is an appropriate custom reaction:

// not part of the Camera example
fsm::result Focused::react(const EvShutterFull &)
{
 if (context< Camera >().IsMemoryAvailable())
 {
 return transit< Storing >();
 }
 else

Page 10 of 25The boost::fsm library - Tutorial

2003/08/16

 {
 // The following is actually a mixture between an in-state
 // reaction and a transition. See later on how to implement
 // proper transition actions.
 std::cout << "Cache memory full. Please wait...\n";
 return transit< Focused >();
 }
}

Custom reactions can of course also be implemented directly in the state declaration, which is often
preferable for easier browsing.

Next we will use a guard to prevent a transition and let outer states react to the event if the battery is
low:

Camera.cpp:

// ...
fsm::result NotShooting::react(const EvShutterHalf &)
{
 if (context< Camera >().IsBatteryLow())
 {
 // We cannot react to the event ourselves, so we forward it
 // to our outer state (this is also the default if a state
 // defines no reaction for a given event).
 return forward_event();
 }
 else
 {
 return transit< Shooting >();
 }
}
// ...

In-state reactions (aka inner transitions)

The self-transition of the Focused state could also be implemented as an in-state reaction, which has
the same effect as long as Focused does not have any entry or exit actions:

Shooting.cpp:

// ...
fsm::result Focused::react(const EvShutterFull &)
{
 if (context< Camera >().IsMemoryAvailable())
 {
 return transit< Storing >();
 }
 else
 {
 std::cout << "Cache memory full. Please wait...\n";
 // Indicate that the event can be discarded. So, the
 // dispatch algorithm will stop looking for a reaction.

Page 11 of 25The boost::fsm library - Tutorial

2003/08/16

 return discard_event();
 }
}
// ...

Transition actions

As an effect of every transition, actions are executed in the following order:

1. Starting from the innermost current state, all exit actions up to but excluding the innermost
common outer state (aka LCA, least common ancestor).

2. The transition action (if present).
3. Starting from the innermost common outer state, all entry actions down to the target state

followed by the entry actions of the initial states.

Example:

Here the order is as follows: ~D(), ~C(), ~B(), ~A(), t(), X(), Y(), Z(). The transition action t() is
therefore executed in the context of the InnermostCommonOuter state because the source state has
already been left (destructed) and the target state has not yet been entered (constructed).

With boost::fsm, a transition action can be a member of any common outer context. That is, the
transition between Focusing and Focused could be implemented as follows:

Shooting.hpp:

// ...
struct Focusing;
struct Shooting : fsm::simple_state< Shooting, Camera,
 fsm::transition< EvShutterRelease, NotShooting >, Focusing >
{
 // ...
 void DisplayFocused(const EvInFocus &);
};

Page 12 of 25The boost::fsm library - Tutorial

2003/08/16

// ...

// not part of the Camera example
struct Focusing : fsm::simple_state< Focusing, Shooting,
 fsm::transition< EvInFocus, Focused,
 Shooting, &Shooting::DisplayFocused > > {};

Or , the following is also possible (here the state machine itself serves as the outermost context)

// not part of the Camera example
struct Camera : fsm::state_machine< Camera, NotShooting >
{
 void DisplayFocused(const EvInFocus &);
};

// not part of the Camera example
struct Focusing : fsm::simple_state< Focusing, Shooting,
 fsm::transition< EvInFocus, Focused,
 Camera, &Camera::DisplayFocused > > {};

Naturally, transition actions can also be invoked from custom reactions:

Shooting.cpp:

// ...
fsm::result Focusing::react(const EvInFocus & evt)
{
 return transit< Focused >(&Shooting::DisplayFocused, evt);
}

Please note that we have to manually forward the event.

Advanced topics

Reaction function reference

The following functions can only be called from within react member functions, which must
return by calling exactly one function (e.g. return terminate();): � simple_state::forward_event(): The dispatch algorithm keeps searching for a

reaction for the current event. The search always continues with the immediate outer state. If
there is none it continues with the next orthogonal leaf state. This process is repeated until
one of the visited states returns by calling any of the other 5 reaction functions. The event is
silently discarded if no reaction can be found. Useful to implement guards.
forward_event() is also the default for all states that do not define a reaction for the
event. � simple_state::discard_event(): The dispatch algorithm stops searching for a
reaction and the current event is discarded. Useful to implement in-state reactions. � simple_state::defer_event(): The current event is pushed into a separate queue
and the dispatch algorithm stops searching for a reaction. When the state is exited later, the
separate queue is emptied into the main queue, which is afterwards processed as usual. Please
see Deferring events!

Page 13 of 25The boost::fsm library - Tutorial

2003/08/16

� simple_state::transit< DestinationState >(): Makes a transition to the
specified destination state and discards the current event. � simple_state::transit< DestinationState >(void
(TransitionContext::*)(const Event &), const Event &):
Makes a transition to the specified destination state during which the passed transition action
is called and discards the current event. � simple_state::terminate(): Terminates the state and discards the current event.

Reaction reference

Reactions other than custom_reaction are nothing but syntactic sugar so that users don't have
to write react member functions for common cases. Here's a list of the currently supplied
reactions: � transition< Event, DestinationState >: returns

simple_state::transit< DestinationState >(); � transition< Event, DestinationState, TransitionContext, void
(TransitionContext::*pTransitionAction)(const Event &) >:
returns simple_state::transit< DestinationState >
(pTransitionAction, evt); � termination< Event >: returns simple_state::terminate(); � deferral< Event >: returns simple_state::defer_event();. Please see
Deferring events! � custom_reaction< Event >: returns react(evt); (the user-supplied member
function). The react member function must return by calling one of the reaction functions.

Should a user find herself implementing similar react member functions very often, she can
easily define her own reaction and use it just like the ones that come with boost::fsm.

Specifying multiple reactions for a state

Often a state must define reactions for more than one event. In this case, an mpl::list must be
used as outlined below:

// ...

#include <boost/mpl/list.hpp>

namespace mpl = boost::mpl;

// ...

struct Playing : fsm::simple_state< Playing, Mp3Player,
 mpl::list<
 fsm::custom_reaction< EvFastForward >,
 fsm::transition< EvStop, Stopped > > > { /* ... */ };

Posting events

Non-trivial state machines often need to post internal events. Here's an example of how to do this
with boost::fsm:

Page 14 of 25The boost::fsm library - Tutorial

2003/08/16

Pumping::~Pumping()
{
 post_event(boost::intrusive_ptr< EvPumpingFinished >(
 new EvPumpingFinished()));
}

The event is pushed into the main queue, which is why it must be allocated with new. The events in
the queue are processed as soon as the current reaction is completed. Events can be posted from
inside react functions, entry-, exit- and transition actions. However, posting from inside entry
actions is a bit more complicated (see e.g. Focusing::Focusing in Shooting.cpp in the
Camera example):

struct Pumping : fsm::state< Pumping, Purifier >
{
 Pumping(my_context ctx) : my_base(ctx)
 {
 post_event(boost::intrusive_ptr< EvPumpingStarted >(
 new EvPumpingStarted()));
 }
 // ...
};

Please note the bold parts. As soon as an entry action of a state needs to contact the "outside
world" (here: the event queue in the state machine), the state must derive from fsm::state rather
than from fsm::simple_state and must implement a forwarding constructor as outlined above
(apart from the constructor, fsm::state offers the same interface as fsm::simple_state).
Hence, this must be done whenever an entry action makes one or more calls to the following
functions: � simple_state::context<>() � simple_state::post_event() � simple_state::state_cast<>() � simple_state::state_downcast<>()

In my experience, these functions are needed only rarely in entry actions so this workaround should
not uglify user code too much.

Deferring events

To avoid a number of overheads, event deferral with boost::fsm has one limitation: Only events
allocated with new and pointed to by a boost::intrusive_ptr<> can be deferred. Any
attempt to defer a differently allocated event will result in a failing runtime assert. Example:

struct Event : fsm::event< Event > {};
struct Initial;
struct Machine : fsm::state_machine<
 Machine, Initial > {};
struct Initial : fsm::simple_state< Initial, Machine,
 fsm::deferral< Event > > {};

int main()
{

Page 15 of 25The boost::fsm library - Tutorial

2003/08/16

 Machine myMachine;
 myMachine.initiate();
 myMachine.process_event(Event()); // error
 myMachine.process_event(
 *boost::shared_ptr< Event >(new Event())); // error
 myMachine.process_event(
 *boost::intrusive_ptr< Event >(new Event())); // fine
 return 0;
}

Orthogonal states

To implement this state chart with boost::fsm, you simply specify more than one inner initial state
(see the Keyboard example):

struct Active;
struct Keyboard : fsm::state_machine< Keyboard, Active > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: fsm::simple_state<
 Active, Keyboard, fsm::no_reactions,
 mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > > {};

Active's inner states must declare which orthogonal region they belong to:

struct EvNumLockPressed : fsm::event< EvNumLockPressed > {};
struct EvCapsLockPressed : fsm::event< EvCapsLockPressed > {};
struct EvScrollLockPressed :

Page 16 of 25The boost::fsm library - Tutorial

2003/08/16

 fsm::event< EvScrollLockPressed > {};

struct NumLockOn : fsm::simple_state<
 NumLockOn, Active::orthogonal< 0 >,
 fsm::transition< EvNumLockPressed, NumLockOff > > {};
struct NumLockOff : fsm::simple_state<
 NumLockOff, Active::orthogonal< 0 >,
 fsm::transition< EvNumLockPressed, NumLockOn > > {};

struct CapsLockOn : fsm::simple_state<
 CapsLockOn, Active::orthogonal< 1 >,
 fsm::transition< EvCapsLockPressed, CapsLockOff > > {};
struct CapsLockOff : fsm::simple_state<
 CapsLockOff, Active::orthogonal< 1 >,
 fsm::transition< EvCapsLockPressed, CapsLockOn > > {};

struct ScrollLockOn : fsm::simple_state<
 ScrollLockOn, Active::orthogonal< 2 >,
 fsm::transition< EvScrollLockPressed, ScrollLockOff > > {};
struct ScrollLockOff : fsm::simple_state<
 ScrollLockOff, Active::orthogonal< 2 >,
 fsm::transition< EvScrollLockPressed, ScrollLockOn > > {};

orthogonal< 0 > is the default, so NumLockOn and NumLockOff could just as well pass
Active instead of Active::orthogonal< 0 > to specify their context. The numbers passed
to the orthogonal member template must correspond to the list position in the outer state.
Moreover, the orthogonal position of the source state of a transition must correspond to the
orthogonal position of the target state. Any violations of these rules lead to compile time errors.
Examples:

// Example 1: does not compile because Active specifies
// only 3 orthogonal regions
struct WhateverLockOn: fsm::simple_state<
 WhateverLockOn, Active::orthogonal< 3 > > {};

// Example 2: does not compile because Active specifies
// that NumLockOff is part of the "0th" orthogonal region
struct NumLockOff : fsm::simple_state<
 NumLockOff, Active::orthogonal< 1 > > {};

// Example 3: does not compile because a transition between
// different orthogonal regions is not permitted
struct CapsLockOn : fsm::simple_state<
 CapsLockOn, Active::orthogonal< 1 >,
 fsm::transition< EvCapsLockPressed, CapsLockOff > > {};
struct CapsLockOff : fsm::simple_state<
 CapsLockOff, Active::orthogonal< 2 >,
 fsm::transition< EvCapsLockPressed, CapsLockOn > > {};

State queries

Often reactions in a state machine depend on the current state in one or more orthogonal regions.
This is because orthogonal regions are not completely orthogonal or a certain reaction in an outer

Page 17 of 25The boost::fsm library - Tutorial

2003/08/16

state can only take place if the inner orthogonal regions are in particular states. For this purpose, the
previously introduced state_cast<>() function is also available within states.

As a somewhat far-fetched example, let's assume that our keyboard above also accepts
EvRequestShutdown events, the reception of which makes the keyboard terminate only if all
lock keys are in the off state. We would then modify the Active state as follows:

struct EvRequestShutdown : fsm::event< EvRequestShutdown > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: fsm::simple_state<
 Active, Keyboard, fsm::custom_reaction< EvRequestShutdown >,
 mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > >
{
 fsm::result react(const EvRequestShutdown &)
 {
 if ((state_downcast< const NumLockOff * >() != 0) &&
 (state_downcast< const CapsLockOff * >() != 0) &&
 (state_downcast< const ScrollLockOff * >() != 0))
 {
 return terminate();
 }
 else
 {
 return discard_event();
 }
 }
};

Just like dynamic_cast, passing a pointer type instead of reference type results in 0 pointers
being returned when the cast fails. Note also the use of state_downcast instead of
state_cast. Similar to the differences between boost::polymorphic_downcast and
dynamic_cast, state_downcast is a much faster variant of state_cast and can only be
used when the passed type is a most-derived type. state_cast should only be used if you want
to query an additional base, as under Getting state information out of the machine.

Exception handling

Exceptions can be propagated from all user code except from state exit actions (mapped to
destructors and destructors should virtually never throw in C++). Out of the box,
state_machine does the following:

1. The exception is caught.
2. In the catch block, an fsm::exception_thrown event is allocated on the stack.
3. Also in the catch block, an immediate dispatch of the fsm::exception_thrown event

is attempted. That is, possibly remaining events in the queue are dispatched only after the
exception has been handled successfully.

4. If the exception was handled successfully, the state machine returns to the client normally. If
the exception could not be handled successfully, the original exception is rethrown so that the
client of the state machine can handle the exception.

Page 18 of 25The boost::fsm library - Tutorial

2003/08/16

This behavior is implemented in the exception_translator class, which is the default for the
ExceptionTranslator parameter of the state_machine class template. It was introduced
because users would want to change this on some platforms to work around buggy exception
handling implementations (see Discriminating exceptions). Moreover, applications running on
heavily resource-starved platforms are often compiled with C++ exception handling turned off.
Such applications can still use boost::fsm if they pass the following exception translator instead of
the default one:

struct NoExceptionHandlingTranslator
{
 template< class Action, class ExceptionEventHandler >
 result operator()(
 Action action, ExceptionEventHandler, fsm::result)
 {
 return action();
 }
};

However, doing so also means losing all boost::fsm error handling support, making proper error
handling much more cumbersome (see Error handling in the Rationale).

Which states can react to an fsm::exception_thrown event?

This depends on where the exception occurred. There are three scenarios:

1. A react member function propagates an exception before calling any of the reaction
functions. The state that caused the exception is first tried for a reaction, so the following
machine will transit to Defective after receiving an EvStart event:

2. A state entry action (constructor) propagates an exception. The outer state of the state that
caused the exception is first tried for a reaction, so the following machine will transit to
Defective after trying to enter Stopped:

Page 19 of 25The boost::fsm library - Tutorial

2003/08/16

3. A transition action propagates an exception. The innermost common outer state of the source
and the target state is first tried for a reaction, so the following machine will transit to
Defective after receiving an EvStartStop event:

As with a normal event, the dispatch algorithm will move outward to find a reaction if the first tried
state does not provide one (or if the reaction explicitly returned forward_event();). However,
in contrast to normal events, it will give up once it has unsuccessfully tried an outermost state,
so the following machine will not transit to Defective after receiving an EvNumLockPressed event:

Page 20 of 25The boost::fsm library - Tutorial

2003/08/16

Instead, the machine is terminated and the original exception rethrown.

Successful exception handling

An exception is considered handled successfully, if: � an appropriate reaction to the fsm::exception_thrown event not returning by calling
forward_event() has been found. � the state machine is in a stable state, after the reaction has completed.

The second condition is important for scenarios 2 and 3 in the last section. In these scenarios, the
state machine is in the middle of a transition when the exception is handled. The machine would be
left in an invalid state, should the reaction simply discard the event without doing anything else.

The out of the box behavior for unsuccessful exception handling is to rethrow the original
exception. The state machine is terminated before the exception is propagated to the machine client.

Discriminating exceptions

Because the fsm::exception_thrown object is dispatched from within the catch block, we
can rethrow and catch the exception in a custom reaction:

struct Defective : fsm::simple_state<
 Defective, Purifier > {};

struct Idle : fsm::simple_state< Idle, Purifier,
 mpl::list<
 fsm::custom_reaction< EvStart >,
 fsm::custom_reaction< fsm::exception_thrown > > >
{
 fsm::result react(const EvStart &)
 {
 throw std::runtime_error("");

Page 21 of 25The boost::fsm library - Tutorial

2003/08/16

 }

 fsm::result react(const fsm::exception_thrown &)
 {
 try
 {
 throw;
 }
 catch (const std::runtime_error &)
 {
 // only std::runtime_errors will lead to a transition
 // to Defective, all other exceptions are propagated
 // to the state machine client
 return transit< Defective >();
 }
 }
};

Unfortunately, this idiom does not work on at least one very popular compiler. If you have to
use one of these platforms, you can pass a customized exception translator class to the
state_machine class template. This will allow you to generate different events depending on
the type of the exception.

Submachines

Submachines are to event-driven programming what functions are to procedural programming,
reusable building blocks implementing often needed functionality. The associated UML notation is
not entirely clear to me. It seems to be severely limited (e.g. the same submachine cannot appear in
different orthogonal regions) and does not seem to account for obvious stuff like e.g. parameters.

boost::fsm is completely unaware of submachines but they can be implemented quite nicely with
templates. Here, a submachine is used to improve the copy-paste implementation of the keyboard
machine discussed under Orthogonal states:

enum LockType
{
 NUM_LOCK,
 CAPS_LOCK,
 SCROLL_LOCK
};

template< LockType lockType >
struct Off;
struct Active : fsm::simple_state<
 Active, Keyboard, fsm::no_reactions, mpl::list<
 Off< NUM_LOCK >, Off< CAPS_LOCK >, Off< SCROLL_LOCK > > > {};

template< LockType lockType >
struct EvPressed : fsm::event< EvPressed< lockType > > {};

template< LockType lockType >
struct On : fsm::simple_state<
 On< lockType >, Active::orthogonal< lockType >,

Page 22 of 25The boost::fsm library - Tutorial

2003/08/16

 fsm::transition< EvPressed< lockType >, Off< lockType > > > {};

template< LockType lockType >
struct Off : fsm::simple_state<
 Off< lockType >, Active::orthogonal< lockType >,
 fsm::transition< EvPressed< lockType >, On< lockType > > > {};

The On and Off templates could be given additional parameters to make them truly reusable.

Asynchronous state machines

Why asynchronous state machines are necessary

As the name suggests, a synchronous state machine processes each event synchronously. In
boost::fsm this behavior is implemented by the state_machine<> class template, whose
process_event() only returns after having executed all reactions (including the ones provoked
by internal events that actions might have posted). Moreover, this function is also strictly non-
reentrant (just like all other member functions, so state_machine<> is not thread-safe). This
makes it difficult for two state_machine<> subclasses to communicate via events in a bi-
directional fashion correctly, even in a single-threaded program. For example, state machine A is
in the middle of processing an external event. Inside an action, it decides to send a new event to
state machine B (by calling B::process_event with an appropriate event). It then "waits" for B
to send back an answer via a boost::function-like call-back, which references
A::process_event and was passed as a data member of the event. However, while A is
"waiting" for B to send back an event, A::process_event has not yet returned from processing
the external event and as soon as B answers via the call-back, A::process_event is
unavoidably reentered. This all really happens in a single thread, that's why "wait" is in quotes.

How it works

In contrast to state_machine<>, asynchronous_state_machine<> does not have a
member function process_event(). Instead, there is only queue_event(), which returns
immediately after pushing the event into a queue. A worker thread will later pop the event out of the
queue to have it processed. For applications using the boost::thread library, the necessary locking,
unlocking and waiting logic is readily available in class worker<>.

Applications will usually first create a worker<> object and then create one or more
asynchronous_state_machine<> subclass objects, passing the worker object to the
constructor(s). Finally, worker<>::operator()() is either called directly to let the machine
(s) run in the current thread, or, a boost::function object referencing operator() is passed
to a new boost::thread. I the following code, we are running one state machine in a new
boost::thread and the other in the main thread (see the PingPong example for the full source code):

// ...

struct Waiting;
struct Player :
 public fsm::asynchronous_state_machine< Player, Waiting >
{
 typedef fsm::asynchronous_state_machine< Player, Waiting >
 BaseType;
 public:

Page 23 of 25The boost::fsm library - Tutorial

2003/08/16

 Player(fsm::worker<> & myWorker) :
 BaseType(myWorker) // ...
 {
 // ...
 }

 // ...
};

// ...

int main()
{
 fsm::worker<> worker1;
 fsm::worker<> worker2;

 // each player runs in its own worker thread
 Player player1(worker1);
 Player player2(worker2);

 // ...

 // run first worker in a new thread
 boost::thread otherThread(
 boost::bind(&fsm::worker<>::operator(), &worker1));

 worker2(); // run second worker in this thread
 otherThread.join();

 return 0;
}

We could just as well use two boost::threads:

int main()
{
 // ...

 boost::thread thread1(
 boost::bind(&fsm::worker<>::operator(), &worker1));
 boost::thread thread2(
 boost::bind(&fsm::worker<>::operator(), &worker2));

 // do something else ...

 thread1.join();
 thread2.join();

 return 0;
}

Or, run both machines in the same worker thread:

Page 24 of 25The boost::fsm library - Tutorial

2003/08/16

int main()
{
 fsm::worker<> worker1;

 Player player1(worker1);
 Player player2(worker1);

 // ...

 worker1();

 return 0;
}

worker<>::operator()() first initiates all machines and then waits for events. Whenever
queue_event is called on one of the previously registered machines, the passed event is pushed
into the worker's queue and the worker thread is waked up to dispatch all queued events before
waiting again. worker<>::operator()() returns as soon as all machines have terminated.
worker<>::operator()() also throws any exceptions that machines fail to handle. In this
case all machines are terminated before the exception is propagated.

Caution: � State machine objects must not be destructed before worker::operator()()
returns. Moreover, the worker<> object may be destructed only after all of the
registered state machines have been destructed. Violations of these rules will result in
failing runtime asserts. � The interface of asynchronous_state_machine consists of only the constructor
and queue_event(). For technical reasons, other functions like initiate(),
process_event(), etc. are nevertheless also publicly available, but it is not safe to
call these functions from any other thread than the worker (over which most users have
no control). asynchronous_state_machine<>::queue_event() is the only
function than can safely be called simultaneously from multiple threads.

Revised 16 August, 2003

Copyright © 2003 Andreas Huber Dönni. All Rights Reserved.

Page 25 of 25The boost::fsm library - Tutorial

2003/08/16

