The boost::fsm librar- Tutorial

Tutorial

Pagel of 25

The boost::fsm library

Contents

Introduction
Hello World!
A stop watch
Defining states and events
Adding reactions
Statelocal storage
Getting state information out of the machine
A digital camera
Spreading a state machine over multiple translatitts
Guards, junctions and choice points
In-state reactions (aka inner transitions)
Transition actions
Advanced topics
Reaction function reference
Reaction reference
Specifying multiple reactions for a state
Posting events
Deferring events
Orthogonal states
Exception handling
Submachines
Asynchronous state machines

Introduction

The boost::fsm library is a framework that allovesiyto quickly transform a UML state chart into
executable C++ code. This tutorial requires somalfarity with the state machine concept and

UML state charts. A nice introduction to both canfbund in

http://www.objectmentor.com/resources/articles/wmlfpdf The UML specifications can be found

in http://www.omg.org/cgbin/doc?formal/0303-01 (see chapters 2.12 and 3.74).

All examples have been tested with MSVC7.1 and bdissribution 1.30.0.

Hello World!

We follow the tradition and use the simplest pdssiivogram to make our first steps. We will

implement the following state che

2003/08/1.

The boost::fsm librar- Tutoria Page2 of 25

é Greeting “\

H entry / std:‘cout << "Hello World!\n":

exit / std:.cout << "Bye Bye Worldl\n"
.

#i ncl ude <boost/fsm state_nachi ne. hpp>
#i ncl ude <boost/fsm sinpl e_state. hpp>
#i ncl ude <i ostreanr

nanespace fsm = boost::fsm

struct Greeting;
struct Machine : fsm:state_nmachi ne< Machine, Geeting > {};

struct Greeting : fsm:sinple_state< G eeting, Machine >
{

Geeting() { std::cout << "Hello World!\n"; } // entry
~Geeting() { std::cout << "Bye Bye World!\n"; } // exit

};

i nt main()

{
Machi ne myMachi ne;
nyMachi ne.initiate();
return O;

}

This program printsiel | o Wor | d! andBye Bye Worl d! before exiting. The first line is
printed as a result of callingni ti at e(), which leads to th&r eet i ng state begin entered. At
the end ofrai n() , thenmyMachi ne object is destroyed what automatically exits@eet i ng
state.

A few remarks:

e boost::fsm makes heavy use of the curiously reagrnemplate pattern. The deriving class
must always be passed as the first parameter toeite class template.

e The machine is not yet running after constructitie. start it by calling ni ti ate() .

o All states reside in a context. For the momeng tointext is the state machine. That's why
Machi ne is passed as the second template parametgrasft i ng's base.

e The state machine must be informed which statasttb enter when the machine is initiated.
That's whyG eet i ng is passed as the second template paramekdxadfi ne's base. We
have to forward declarf@ eet i ng for this purpose.

e We are declaring all types asr uct s only to avoid having to tygeubl i c. If you don't
mind doing so, you can just as well udeass.

A stop watch

Next we will model a simple mechanical stop watéthwa state machine. Such watches typic
have two buttons:

o Start/Stog

2003/08/1.

The boost::fsm librar- Tutoria Page3 of 25

¢ Reset
And two states:

e Stopped: The hands reside in the position wheng\leze last stopped.
o Pressing the reset button moves the hands babk @ position. The watch remains in
the Stopped state.
o Pressing the start/stop button leads to a transitidghe Running state.
e Running: The hands of the watch are in motion amdicually show the elapsed time.
o Pressing the reset button moves the hands babk 1 position and leads to a
transition to the Stopped state.
o Pressing the start/stop button leads to a transitidghe Stopped state.

Here is one way to specify this in UML:

é Active h
@ (_Stopped) Evstartstop . [Running
-
EvReset .%
EvStartStop
~
-~ . / - /
. /

Defining states and events

The two buttons are modeled by two events. Moreawveralso define the necessary states and the
initial state.The following code is our starting point, subsequercode snippets must be
inserted:

#i ncl ude <boost/fsm event. hpp>
#i ncl ude <boost/fsm state_nachi ne. hpp>
#i ncl ude <boost/fsm sinple_state. hpp>

nanespace fsm = boost::fsm

struct EvStartStop : fsm:event< EvStartStop > {};
struct EvReset : fsm:event< EvReset > {};

struct Active;
struct StopWatch : fsm:state_machi ne< StopWatch, Active > {};

struct Stopped;

struct Active : fsm:sinple_state< Active, StopWitch,
fsm:no_reactions, Stopped > {};

struct Running : fsm:sinple_state< Running, Active > {};

struct Stopped : fsm:sinple_ state< Stopped, Active > {};

int main()

{
St opWat ch nyWat ch;

2003/08/1.

The boost::fsm librar- Tutoria Page4 of 25

nyWatch.initiate();
return O;

}

This compiles but doesn't do anything observableA/éew comments:

e Thesi npl e_st at e class template accepts up to four parameters.

o The third parameter specifies reactions (explainetlie course). Because there aren't
any yet, we pasksm : no_r eact i ons, which is also the default.
o The fourth parameter specifies the inner initiatest if there is one.

o A state is defined as an inner state simply byipgdgts outer state as its context (where
outermost states pass the state machine).

o Because the context of a state must be a complate(ite. not forward declared), a machine
must be defined from "outside to inside". Thatns,always start with the state machine,
followed by outermost states, followed by the insiates of outermost states and so on. We
can do so in a breadth-first or depth-first wagomploy a mixture of the two.

Since the source and destination state of a transiften have the same nesting depth, the
pure depth-first approach tends to require a Idbntard declarations for transition
destinations while the pure breadth-first apprdacials to minimize the number of necessary
forward declarations.

Adding reactions

With boost::fsm a reaction is always defined as pha state. A reaction is anything that happens
as the result of the processing of an event. Fontbment we will use only one type of reaction:
transitions. Wensert the bold part of the following code:

#i ncl ude <boost/fsnmtransition. hpp>
/11

struct Stopped;

struct Active : fsm:sinple_state< Active, StopWitch,
fsm:transition< EvReset, Active >, Stopped > {};

struct Running : fsm:sinple_state< Running, Active,
fsm:transition< EvStart Stop, Stopped > > {};

struct Stopped : fsm:sinple_state< Stopped, Active,
fsm:transition< EvStartStop, Running > > {};

i nt main()

{
St opWat ch nyWat ch;
nyWatch.initiate();
nyWat ch. process_event (EvStart Stop());
nyWat ch. process_event (EvStartStop());
nyWat ch. process_event (EvStart Stop())
nyWat ch. process_event (EvReset ());
return O;

}

A state can define an arbitrary number of reactidhst's why we have to put them into an
mpl : : 11 st <>as soon as there is more than one of them3geeifying multiple reactions for a
stat).

2003/08/1.

The boost::fsm librar- Tutoria Page5 of 25

Now we have all the states and all the transitiondace and a number of events are also se
the stop watch. The machine dutifully makes thediteons we would expect, but no actions are
executed yet.

State-local storage

Next we'll make the stop watch actually measuretibepending on the state the stop watch i
we need different variables:

e Stopped: One variable holding the elapsed time
e Running: One variable holding the elapsed tand one variable storing the point in time at
which the watch was started.

We observe that the elapsed time variable is neededatter what state the machine is in.
Moreover, this variable should be reset to O whersend alvReset event to the machine. The
other variable is only needed while the machina the Running state. It should be set to the
current time of the system clock whenever we ehieiRunning state. Upon exit we simply
subtract the start time from the current systerakctone and add the result to the elapsed time.

#i ncl ude <cti ne>
/1
struct Stopped;

struct Active : fsm:sinple_state< Active, StopWitch,
fsm:transition< EvReset, Active >, Stopped >

{
publi c:
Active() : elapsedTine_(0) {}
std::clock_t El apsedTine() const { return el apsedTine_; }
std::clock_t & ElapsedTine() { return el apsedTine_; }
private:
std::clock_t el apsedTi ne_;
3

struct Running : fsm:sinple_state< Running, Active,
fsm:transition< EvStart Stop, Stopped > >
{

publi c:
Running() : startTime_(std::clock()) {}
~Runni ng()

{

context< Active >().El apsedTinme() +=
(std::clock() - startTine_);

}

private:
std::clock t startTine_;

1
/1
Similar to when a derived class object accessédmits class portioeont ext <>() is used to

gain access to a direct or indirect outer stateaibjrhe same function could be used to acces

2003/08/1.

The boost::fsm librar- Tutoria Page6 of 25

state machine (heont ext < St opWat ch >()). The rest should be mostly self-explanatory.
The machine now measures the time, but we canhoéyeve it from the main program.

Getting state information out of the machine

To retrieve the measured time, we need a mechaoigiet state information out of the machine.
With our current machine design there are two waydo that. For the sake of simplicity we use

less efficient onest at e_cast <>() . As the name suggests, the semantics are veriastmithe
ones ofdynam c_cast . For example, when we caly\Wat ch. st at e_cast < const

St opped & >() and the machine is currently in the Stopped stategete reference to the

St opped state. Otherwiset d: : bad_cast is thrown. We can use this functionality to
implement &S5t opWat ch member function that returns the elapsed time. él@w, rather than ask
the machine in which state it is and then switcHitferent calculations for the elapsed time, wé

the calculation into the Stopped and Running statelsuse an interface to retrieve the elapsed time:

#i ncl ude <i ostreanr

/1
struct | El apsedTi ne
{
virtual std::clock_ t ElapsedTi ne() const = 0;
3

struct Active;
struct StopWatch : fsm:state_machi ne< StopWatch, Active >

{

std::clock_t ElapsedTi ne() const

{
return state_cast< const | El apsedTine & >().El apsedTi ne();
}
3
11
struct Running : |El apsedTine, fsm:sinple_state<
Runni ng, Active, fsm:transition< EvStartStop, Stopped > >
{
publi c:
Running() : startTime_(std::clock()) {}
~Runni ng()
{
context< Active >().El apsedTinme() = El apsedTi ne();
}
virtual std::clock_ t ElapsedTi ne() const
{
return context< Active >().El apsedTine() +
std::clock() - startTine_;
}
private:
std::clock t startTine_;
1

2003/08/1.

The boost::fsm librar- Tutoria Page7 of 25

struct Stopped : |El apsedTine, fsm:sinple_state<
St opped, Active, fsm:transition< EvStartStop, Running > >

{
virtual std::clock_ t ElapsedTi ne() const
{

return context< Active >().El apsedTine();

}

s

int main()

{
St opWat ch nyWat ch;
nyWatch.initiate();
std::cout << nyWatch. El apsedTine() << "\n";
nyWat ch. process_event (EvStartStop());
std::cout << nyWatch. El apsedTine() << "\n";
nyWat ch. process_event (EvStartStop());
std::cout << nyWatch. El apsedTine() << "\n";
nyWat ch. process_event (EvStartStop());
std::cout << nyWatch. El apsedTine() << "\n";
nyWat ch. process_event (EvReset ());
std::cout << nyWatch. El apsedTine() << "\n";
return O;

}

To actually see time being measured, you might wasingle-step through the statementsdn n
() . The StopWatch example extends this program fataractive console application.

A digital camera
So far so good. However, the approach presentededims a few limitations:

e Bad scalability: As soon as the compiler reachethint where
state_machine::initiate() is called, a number of template instantiation® tak
place, which can only succeed if the full declamaif each and every state of the machine is
known. That is, the whole layout of a state machmest be implemented in one single
translation unit (actions can be compiled separabelt this is of no importance here). For
bigger (and more real-world) state machines, #asl$ to the following limitations:

o At some point compilers reach their internal tertelastantiation limits and give up.
This can happen even for moderately-sized machik@sexample, in debug mode one
popular compiler refused to compile earlier versiohthe BitMachine example for
anything above 3 bits. This means that the compglached its limits somewhere
between 8 states, 24 transitions and 16 statesaggitions.

o Multiple programmers can hardly work on the samagestnachine simultaneously
because every layout change will inevitably lead tecompilation of the whole state
machine.

e Maximum one reaction per event: According to UMs&tate can have multiple reactions
triggered by the same event. This makes sense alhexactions have mutually exclusive
guards. The interface we used above only allowsatfonost one unguarded reaction for each
event. Moreover, the UML concepts junction and cagoint are not directly supported.

e There is no way to specify-state reactions (aka inner transitior

2003/08/1.

The boost::fsm librar- Tutoria Page8 of 25

All these limitations can be overcome with cust@aationsWarning: It is easy to abuse custom
reactions up to the point of invoking undefined behvior. Please study the documentation
before employing them!

Spreading a state machine over multiple translatiorunits

Let's say your company would like to develop atdigiamera. The camera has the following
controls:

e Shutter button, which can be half-pressed and-ulssed. The associated events are
EvShutt er Hal f , EvShut t er Ful | andEvShutt er Rel eased

« Config button, represented by tBegConf i g event

e A number of other buttons that are not of intehest

One use case for the camera says that the photegrepan half-press the shuttetywherein the
configuration mode and the camera will immediaggyinto shooting mode. The following state
chart is one way to achieve this behavior:

4 NotShooting)

é Idle) EvConfig x"r Cr;mfiguriﬂgﬂ‘HI
. f

EvConfig

- ./ - ./
- /

EvShutterReleased EvShutterHalf

V
f Shooting \

R)

The Configuring and Shooting states will contaimewuous nested states while the Idle state is
relatively simple. It was therefore decided to 8o teams. One will implement the shooting
mode while the other will implement the configuoatimode. The two teams have already agreed
on the interface that the shooting team will usestaeve the configuration settings. We would like
to ensure that the two teams can work with thet lgassible interference. So, we put the two states
in their own translation units so that machine laychanges within the Configuring state will ne
lead to a recompilation of the inner workings o hooting state and vice versa.

Unlike in the previous example, the excerpts presézd here often outline different options to
achieve the same effect. That's why the code is @ft not equal to the Camera example code.
Comments mark the parts where this is the case.

Camera.hpp:

#i f ndef CAMERA HPP
#defi ne CAMERA HPP

2003/08/1.

The boost::fsm librar- Tutoria Page9 of 25

#i ncl ude <boost/fsm event. hpp>

#i ncl ude <boost/fsm state_nachi ne. hpp>
#i ncl ude <boost/fsm sinpl e_state. hpp>

#i ncl ude <boost/fsnf customreaction. hpp>

nanespace fsm = boost::fsm

struct EvShutterHalf : fsm:event< EvShutterHalf > {};
struct EvShutterFull : fsm:event< EvShutterFull > {};
struct EvShutterRel ease : fsm:event< EvShutterRel ease > {};
struct EvConfig : fsm:event< EvConfig > {};

struct Not Shoot i ng;
struct Canmera : fsm:state_nachi ne< Canera, Not Shooting >

{

bool |sMenoryAvail able() const { return true; }
bool IsBatteryLow() const { return false; }

s

struct 1dle;
struct Not Shooting : fsm:sinple_state< Not Shooting, Canera,
fsm:customreaction< EvShutterHalf >, Idle >

{
/1

fsm:result react(const EvShutterHalf &);

};

struct ldle : fsm:sinple_state< Idle, NotShooting,
fsm:customreaction< EvConfig > >

{
/1

fsm:result react(const EvConfig &);

};

#endi f

Please note the bold parts in the code. With aousgaction we only specify that waght do
something with a particular event, but the actaattion is defined in theeact member functior
which can be implemented in the .cpp file.

Camera.cpp:

#i ncl ude " Camer a. hpp"
#i ncl ude " Confi guri ng. hpp"
#i ncl ude " Shooti ng. hpp"

11

/1l not part of the Canera exanple
fsm:result NotShooting::react(const EvShutterHalf &)

{

return transit< Shooting >();

2003/08/1.

The boost::fsm librar- Tutoria Pagel(C of 25

}
fsm:result Idle::react(const EvConfig &)
{
return transit< Configuring >();
}

Caution: Any call to thesi npl e_state::transit<>() or

sinple_state::term nate() (seeReaction function referenceé member functions will
inevitably destruct the current state object (simiar to del et e t hi s;)! That is, code
executed after any of these calls may invoke undeé&d behavior! That's why these functions
should only be called as part of a return statement

Guards, junctions and choice points

The inner workings of the Shooting state could lasKollows:

EvShutterReleased J/EvShutterHalf
4 Shooting h
(Focusing Y (Storing)
@ > Cyshutterfuil ()/ defer
\
EvinFocus / DisplayFocused()
\
(Focused)
EvShutterFull [IsMemoryAvailable()]
A
EvShutterFull [lsMemoryAvailable()]
\ y,

Both transitions originating at the Focused stagetigggered by the same event but they have
mutually exclusive guards. Here is an appropriattam reaction:

/1l not part of the Canera exanple
fsm:result Focused::react(const EvShutterFull &)

{

if (context< Canera >().lsMenoryAvail able())

{
}

el se

return transit< Storing >();

2003/08/1.

The boost::fsm librar- Tutoria Pagell of 25

/1 The followng is actually a m xture between an in-state
/1l reaction and a transition. See |later on how to inplenment
/1l proper transition actions.

std::cout << "Cache nmenory full. Please wait...\n";

return transit< Focused >();

}
}

Custom reactions can of course also be implemettedtly in the state declaration, which is often
preferable for easier browsing.

Next we will use a guard to prevent a transitiod B outer states react to the event if the bati
low:

Camera.cpp:

...
fsm:result NotShooting::react(const EvShutterHalf &)

{
if (context< Canera >().lsBatteryLow())

/1 We cannot react to the event ourselves, so we forward it
/1l to our outer state (this is also the default if a state
/1 defines no reaction for a given event).

return forward_event();

}

el se

{

return transit< Shooting >();

}

}
11

In-state reactions (aka inner transitions)

The self-transition of the Focused state could bésanplemented as an gtate reaction, which h
the same effect as long as Focused does not hgvenamy or exit actions:

Shooting.cpp:

...
fsm:result Focused::react(const EvShutterFull &)

{

if (context< Canera >().lsMenoryAvail able())

{
return transit< Storing >();

}

el se

{ .
std::cout << "Cache nenory full. Please wait...\n";

/! Indicate that the event can be discarded. So, the
/1 dispatch algorithmw | stop |ooking for a reaction.

2003/08/1.

The boost::fsm librar- Tutoria Pagel? of 25

return discard_event();

}

}
11

Transition actions
As an effect of every transition, actions are exedun the following order:

1. Starting from the innermost current state, all @stions up to but excluding the innermost
common outer state (aka LCA, least common ancestor)

2. The transition action (if present).

3. Starting from the innermost common outer stdterdry actions down to the target state
followed by the entry actions of the initial states

Example:
(" InnermostCommonOuter N
4 A ™
4 ™
B - " N
4 N
< - v ~
(b) Evit) | 7
{) 7 @—
. _/ . J
. _/ . _/
\ _/ o _/
. _/

Here the order is as follows: ~D(), ~C(), ~B(), ¥A(), X(), Y(), Z(). The transition action t() is

therefore executed in the context of the Innermost@onOuter state because the source state has

already been left (destructed) and the target bdenot yet been entered (constructed).

With boost::fsm, a transition action can be a menab@any common outer context. That is, the
transition between Focusing and Focused could bé&imented as follows:

Shooting.hpp:

1.

struct Focusi ng;

struct Shooting : fsm:sinple_state< Shooting, Canera,
fsm:transition< EvShutterRel ease, Not Shooting >, Focusing >

{

1.

voi d Di spl ayFocused(const EvlnFocus &);

};

2003/08/1.

The boost::fsm librar- Tutoria Pagel3 of 25

11

/1l not part of the Canera exanple
struct Focusing : fsm:sinple_state< Focusing, Shooting,
fsm:transition< EvlnFocus, Focused,
Shoot i ng, &Shooting:: D spl ayFocused > > {};

Or, the following is also possible (here the statemize itself serves as the outermost context)

/1l not part of the Canera exanple
struct Canmera : fsm:state_nachi ne< Canera, Not Shooting >

{
voi d Di spl ayFocused(const EvlnFocus &);

};

/1l not part of the Canera exanple
struct Focusing : fsm:sinple_state< Focusing, Shooting,
fsm:transition< EvlnFocus, Focused,
Canera, &Canera:: D splayFocused > > {};

Naturally, transition actions can also be invokeif custom reactior
Shooting.cpp:

Il ...
fsm:result Focusing::react(const EvinFocus & evt)
{
return transit< Focused >(&Shooting::Di spl ayFocused, evt);

}

Please note that we have to manually forward tleatev

Advanced topics

Reaction function reference

The following functions can only be called from it r eact member functions, which must
return by callingexactly onefunction (e.greturn term nate();):

e sinple_state::forward_event () : The dispatch algorithm keeps searching for a
reaction for the current event. The search alwaysicues with the immediate outer state. If
there is none it continues with the next orthogdeat state. This process is repeated until
one of the visited states returns by calling anthefother 5 reaction functions. The event is
silently discarded if no reaction can be found.fulse® implement guards.
forward_event () is also the default for all states that do notrdeé reaction for the
event.

e sinple_state::discard_event () : The dispatch algorithm stops searching for a
reaction and the current event is discarded. Usefmhplement in-state reactions.

e sinple_state::defer_event(): The current event is pushed into a separate queue
and the dispatch algorithm stops searching foaati@n. When the state is exited later, the
separate queue is emptied into the main queuehvidigfterwards processed as usual. Pl
seeDeferring evenl

2003/08/1.

The boost::fsm librar- Tutoria Pagel4 of 25

e Sinple_state::transit< DestinationState >():Makes a transition to the

specified destination state and discards the cuenent.
e Sinple_state::transit< DestinationState >(void

(TransitionContext::*)(const Event &), const Event &):
Makes a transition to the specified destinatiotestiaring which the passed transition action
is called and discards the current event.

e Sinple_state::term nate(): Terminates the state and discards the curremt.eve

Reaction reference

Reactions other thatust om r eact i on are nothing but syntactic sugar so that userg tHame
to writer eact member functions for common cases. Here's aflisteocurrently supplied
reactions:

e transition< Event, DestinationState >:returns
sinple_state::transit< DestinationState >();

e transition< Event, DestinationState, TransitionContext, void
(TransitionContext::*pTransitionAction)(const Event &) >:
returnssi npl e_state: :transit< DestinationState >
(pTransitionAction, evt);

e termnation< Event >:returnssinple_state::term nate();

e deferral < Event >:returnssi npl e_state: :defer_event();.Please see
Deferring eventss

e Custom reaction< Event >:returnsreact(evt); (the user-supplied member
function). Ther eact member function must return by calling one of iaction functions.

Should a user find herself implementing simil@&act member functions very often, she can
easily define her own reaction and use it just lileones that come with boost::fsm.

Specifying multiple reactions for a state

Often a state must define reactions for more thneavent. In this case, apl : : | i st must be
used as outlined below:

11

#i ncl ude <boost/npl/1ist. hpp>

nanespace npl = boost:: npl;
/1
struct Playing : fsm:sinple_state< Playing, M3Pl ayer
mpl::list<
fsm:customreaction< EvFast Forward >,
fsm:transition< EvStop, Stopped > > > { /* ... *| },;

Posting events

Nonr-trivial state machines often need to post inteavants. Here's an example of how to do this
with boost::fsm:

2003/08/1.

The boost::fsm librar- Tutoria Pagels of 25

Punpi ng: : ~Punpi ng()
{
post _event (boost::intrusive_ptr< EvPunpi ngFi ni shed >(
new EvPunpi ngFi ni shed()));

}

The event is pushed into the main queue, whichig itvmust be allocated withew. The events i
the queue are processed as soon as the curretibmaacompleted. Events can be posted from
insider eact functions, entry-, exit- and transition action®wéver, posting from inside entry
actions is a bit more complicated (see B@gusi ng: : Focusi ng in Shoot i ng. cpp in the
Camera example):

struct Punping : fsm:state< Punping, Purifier >

{
Punpi ng(ny_context ctx) : my_base(ctx)
post _event (boost::intrusive_ptr< EvPunpingStarted >(
new EvPunpi ngStarted()));
}
/1
3

Please note the bold parts. As soon as an entpnatita state needs to contact the "outside
world" (here: the event queue in the state machthe)state must derive frohsm : st at e rathe
than fromf sm : si npl e_st at e and must implement a forwarding constructor aired abov:
(apart from the constructdrsm : st at e offers the same interface bsm : si npl e_st at e).
Hence, this must be done whenever an entry actakesone or more calls to the following
functions:

si npl e_state::context<>()

si npl e_state:: post_event ()

e Sinple_state::state_cast<>()

e Sinple_state::state_downcast <>()

In my experience, these functions are needed anghyrin entry actions so this workaround should
not uglify user code too much.

Deferring events

To avoid a number of overheads, event deferral wibst::fsm has one limitation: Only events
allocated withhew and pointed to by doost : : i ntrusi ve_pt r <> can be deferred. Any
attempt to defer a differently allocated event walult in a failing runtime assert. Example:

struct Event : fsm:event< Event > {};

struct Initial;

struct Machine : fsm:state_machine<
Machine, Initial > {};

struct Initial : fsm:sinple_state< Initial, Machine,
fsm:deferral < BEvent > > {},;

int main()

{

2003/08/1.

The boost::fsm librar- Tutoria Pagel6 of 25

Machi ne myMachi ne;
nyMachine.initiate();
nyMachi ne. process_event (Event()); // error
nmyMachi ne. process_event (

*poost::shared _ptr< Event >(new Event())); // error
nmyMachi ne. process_event (

*boost::intrusive_ptr< Event >(new Event())), // fine
return O;

}

Orthogonal states

7

Active

.

H EvNumLockPressed

H EvCapsLockPressed

H EvScrollLockPressed

(" NumlLockOff) (" NumLockOn)

EviMumLockPressed

EvCapsLockPressed

" ScrollLockOff) " ScrollLockOn Y

EvScrollLockPressed

A

To implement this state chart with boost::fsm, gouply specify more than one inner initial state
(see the Keyboard example):

struct
struct

struct
struct
struct
struct

Active;
Keyboard : fsm:state_nachi ne< Keyboard, Active > {};

NunLockCOr f;

CapsLockOr f;

Scrol | LockOr f;

Active: fsm:sinple_state<

Active, Keyboard, fsm:no_reactions,

npl : :

| i st< NumLockOfFf, CapsLockOff, ScrollLockOFf > > {};

Active's inner states must declare which orthogoegilon they belong to:

struct
struct
struct

EvNunLockPressed : fsm:event< EvNuniLockPressed > {};
EvCapsLockPressed : fsm:event< EvCapsLockPressed > {};
EvScrol | LockPressed :

2003/08/1.

The boost::fsm librar- Tutoria Pagel7 of 25

fsm:event< EvScrol | LockPressed > {};

struct NumLockOn : fsm:sinple_state<

NunLockOn, Active::orthogonal< 0 >,

fsm:transition< EvNuniLockPressed, NunmiockOFf > > {};
struct NumLockOrf : fsm:sinple_state<

NunLockOr f, Active::orthogonal < 0 >,

fsm:transition< EvNunLockPressed, NuniockOn > > {};

struct CapsLockOn : fsm:sinple_state<

CapsLockOn, Active::orthogonal < 1 >,

fsm:transition< EvCapsLockPressed, CapsLockOf > > {};
struct CapsLockOrf : fsm:sinple_state<

CapsLockOF f, Active::orthogonal < 1 >,

fsm:transition< EvCapsLockPressed, CapsLockOn > > {};

struct Scroll LockOn : fsm:sinple_state<

Scrol | LockOn, Active::orthogonal < 2 >,

fsm:transition< EvScroll LockPressed, ScrollLockOf > > {};
struct Scroll LockOrf : fsm:sinple_state<

Scrol | LockOrf, Active::orthogonal < 2 >,

fsm:transition< EvScrol |l LockPressed, ScrollLockOn > > {};

ort hogonal < 0 > is the default, sblumLockOn andNunmLockOf f could just as well pass
Acti ve instead ofAct i ve: : ort hogonal < 0 > to specify their context. The numbers passed
to theor t hogonal member template must correspond to the list pwsiti the outer state.
Moreover, the orthogonal position of the sourcéesté a transition must correspond to the
orthogonal position of the target state. Any vimas of these rules lead to compile time errors.
Examples:

/'l Exanple 1: does not conpile because Active specifies
/1 only 3 orthogonal regions
struct What everLockOn: fsm:sinple_state<

What ever LockOn, Active::orthogonal< 3 > > {};

/'l Exanple 2: does not conpile because Active specifies
/1 that NumLockOi'f is part of the "Oth" orthogonal region
struct NumLockOFf : fsm:sinple_state<

NurmLockOF f, Active::orthogonal< 1 > > {};

/'l Exanple 3: does not conpile because a transition between
/1 different orthogonal regions is not permtted
struct CapsLockOn : fsm:sinple_state<

CapsLockOn, Active::orthogonal < 1 >,

fsm:transition< EvCapsLockPressed, CapsLockOf > > {};
struct CapsLockOrf : fsm:sinple_state<

CapsLockOr f, Active::orthogonal < 2 >,

fsm:transition< EvCapsLockPressed, CapsLockOn > > {};

State queries

Often reactions in a state machine depend on therdustate in one or more orthogonal regions.
This is because orthogonal regions are not completthogonal or a certain reaction in an ot

2003/08/1.

The

boost::fsm librar- Tutoria Pagel8 of 25

state can only take place if the inner orthogoegians are in particular states. For this purpths
previously introducedt at e_cast <>() function is also available within states.

As a somewhat far-fetched example, let's assumeth&eyboard above also accepts
EvRequest Shut down events, the reception of which makes the keybterdinate only if all

lock keys are in the off state. We would then mptlie Act i ve state as follows:

struct EvRequest Shutdown : fsm:event< EvRequest Shut down > {};

struct NumLockOff;
struct CapsLockOrf;
struct ScrollLockOf;
struct Active: fsm:sinple_state<
Active, Keyboard, fsm:customreaction< EvRequest Shutdown >,

npl ::list< NunLockOrf, CapsLockOff, ScrollLockOf > >
{
fsm:result react(const EvRequest Shutdown &)
{
if ((state_downcast< const NuniockOrf * >() '=0) &&
(state_downcast< const CapsLockOrf * >() '=0) &&
(state_downcast< const ScrollLockOif * >() '=0))
{
return termnate();
}
el se
{
return discard_event();
}
}
1

Just likedynam c_cast , passing a pointer type instead of reference tgpelts in O pointers
being returned when the cast fails. Note also feeaist at e_downcast instead of

st at e_cast . Similar to the differences betwebnost : : pol ynor phi c_downcast and
dynam c_cast, st at e_downcast is a much faster variant ef at e_cast and can only be
used when the passed type is a most-derived $y. €_cast should only be used if you want
to query an additional base, as un@etting state information out of the machine

Exception handling

Exceptions can be propagated from all user codepgxmom state exit actions (mapped to
destructors and destructors should virtually nélweaw in C++). Out of the box,
st at e_nmachi ne does the following:

1.
2.
3.

The exception is caught.

In the catch block, aihsm : excepti on_t hr own event is allocated on the stack.

Also in the catch block, ammediate dispatch of thé sm : excepti on_t hr own event

is attempted. That is, possibly remaining eventhiénqueue are dispatched only after the
exception has been handled successfully.

If the exception was handled successfully, theegnachine returns to the client normally. If
the exception could not be handled successfulg/ptiginal exception is rethrown so that
client of the state machine can handle the excey

2003/08/1.

The boost::fsm librar- Tutoria PagelQ of 25

This behavior is implemented in te@cept i on_t r ansl at or class, which is the default for 1
Excepti onTransl at or parameter of thet at e_machi ne class template. It was introduced
because users would want to change this on sortferpta to work around buggy exception
handling implementations (s&€escriminating exceptior)sMoreover, applications running on
heavily resource-starved platforms are often camapilith C++ exception handling turned off.
Such applications can still use boost::fsm if thags the following exception translator instead of
the default one:

struct NoExcepti onHandl i ngTr ansl at or
{
tenpl ate< class Action, class ExceptionEvent Handl er >
result operator()(
Action action, ExceptionEventHandler, fsm:result)
{

}
s

return action();

However, doing so also means losallgboost::fsm error handling support, making propeore
handling much more cumbersome (&seor handlingn the Rationale).

Which states can react to arf sm : excepti on_t hr own event?
This depends on where the exception occurred. Tdreréhree scenarios:
1. Areact member function propagates an excephkefore calling any of the reaction

functions. The state that caused the exceptianrsistfied for a reaction, so the following
machine will transit to Defective after receiving BvStart event:

(Idle)
. E EvStart[jfthmw std::runtime_ermr(u

exception_thrown
\V4
(r Defective “\

_

2. A state entry action (constructor) propagatesxaeption. The outer state of the state that
caused the exception is first tried for a reactsmthe following machine will transit to
Defective after trying to enter Stopped:

2003/08/1.

The boost::fsm librar- Tutoria Page2C of 25

Active

® 5 4 Stopped h\

Sntryf / throw std: runtime_error() J

. Iy

exception_thrown

\
(Defective)

|)

3. A transition action propagates an exception.imhermost common outer state of the source
and the target state is first tried for a reactsmthe following machine will transit to
Defective after receiving an EvStartStop event:

4 Active)
H (Stopped)
| <@
EvStartStop / throw std: runtime_error();
\
(" Running)
\. /

exception_thrown

\
(Defective)

|)

As with a normal event, the dispatch algorithm witbve outward to find a reaction if the first tried
state does not provide one (or if the reactionieitiyl returnedf or war d_event () ;). However,

in contrast to normal events, it will give up oncet has unsuccessfully tried an outermost state
so the following machine winot transit to Defective after receiving an EvNumLod$sed ever

2003/08/1.

The boost::fsm librar- Tutoria Page21 of 25

(" Active)

(NumLockOff
. E EviumLockPressed () / throw std::runtime_error{);

| D

N

exception_thrown

V
r Defective w

_

Instead, the machine is terminated and the origired¢ption rethrown.

Successful exception handling
An exception is considered handled successfully, if

e an appropriate reaction to them : excepti on_t hr own eventnot returning by calling
forward_event () has been found.
e the state machine is in a stable state, aftereetion has completed.

The second condition is important for scenarioa@ &uin the last section. In these scenarios, the
state machine is in the middle of a transition wtienexception is handled. The machine would be
left in an invalid state, should the reaction siynghiscard the event without doing anything else.

The out of the box behavior for unsuccessful exoagtandling is to rethrow the original
exception. The state machine is terminated befe@xception is propagated to the machine client.

Discriminating exceptions

Because thésm : except i on_t hr own object is dispatched from within the catch bloek,
can rethrow and catch the exception in a custowticea

struct Defective : fsm:sinple_state<
Def ective, Purifier > {};

struct Idle : fsm:sinple_state< Idle, Purifier,
mpl::list<
fsm:customreaction< EvStart >,
fsm:customreaction< fsm:exception_thrown > > >

{

fsm:result react(const EvStart &)

{

throw std::runtinme_error("");

2003/08/1.

The boost::fsm librar- Tutoria Page22 of 25

}

fsm:result react(const fsm:exception_thrown &)

{
try
{

t hr ow;

}

catch (const std::runtinme_error &)

{
/1 only std::runtinme_errors will lead to a transition
/'l to Defective, all other exceptions are propagated
/1l to the state machine client
return transit< Defective >();

}

}
s

Unfortunately, this idiom does not work on at leasbne very popular compiler.If you have to
use one of these platforms, you can pass a custdmieption translator class to the

st at e_machi ne class template. This will allow you to generatifedent events depending on
the type of the exception.

Submachines

Submachines are to event-driven programming whattions are to procedural programming,
reusable building blocks implementing often neefdedtionality. The associated UML notation is
not entirely clear to me. It seems to be severslitdd (e.g. the same submachine cannot appear in
different orthogonal regions) and does not seeattount for obvious stuff like e.g. parameters.

boost::fsm is completely unaware of submachinesghayt can be implemented quite nicely with
templates. Here, a submachine is used to impravedfy-paste implementation of the keyboard
machine discussed und@rthogonal states

enum LockType
{
NUM_LOCK,
CAPS LOCK,
SCROLL_LOCK
}s

tenpl at e< LockType | ockType >
struct Of;
struct Active : fsm:sinple_state<
Active, Keyboard, fsm:no_reactions, npl::list<
Of< NUMLOCK > Of< CAPS LOCK >, Of< SCROLL_LOCK > > > {};

tenpl at e< LockType | ockType >
struct EvPressed : fsm:event< EvPressed< | ockType > > {};

tenpl at e< LockType | ockType >

struct On : fsm:sinple_state<
On< | ockType >, Active::orthogonal < | ockType >,

2003/08/1.

The boost::fsm librar- Tutoria Page23 of 25

fsm:transition< EvPressed< | ockType >, Of< | ockType > > > {}

tenpl at e< LockType | ockType >

struct Of : fsm:sinple_state<
O f< | ockType >, Active::orthogonal < | ockType >,
fsm:transition< EvPressed< | ockType > On< | ockType > > > {};

TheOn andO f templates could be given additional parametersdke them truly reusable.

Asynchronous state machines

Why asynchronous state machines are necess

As the name suggests, a synchronous state madioicesges each event synchronously. In
boost::fsm this behavior is implemented by sfieit e_nmachi ne<> class template, whose
process_event () only returns after having executed all reactionslding the ones provoke
by internal events that actions might have postddyeover, this function is also strictly non-
reentrant (just like all other member functionssé@t e_nmachi ne<> is not thread-safe). This
makes it difficult for twost at e_machi ne<> subclasses to communicate via events in a bi-
directional fashion correctlgven in a single-threaded programFor example, state machifAds
in the middle of processing an external eventd@sin action, it decides to send a new event to
state machin® (by callingB: : pr ocess_event with an appropriate event). It then "waits" fo
to send back an answer via a boost::function-lidelwack, which references

A: : process_event and was passed as a data member of the eventvelQweileA is
"waiting" for B to send back an evert, : pr ocess_event has not yet returned from processing
the external event and as soorBamswers via the call-bachk; : process_event is
unavoidably reentered. This all really happens in a singledtr that's why "wait" is in quotes.

How it works

In contrast tst at e_nmachi ne<>, asynchr onous_st at e_nachi ne<> does not have a
member functiorpr ocess_event () . Instead, there is onlyueue_event () , which returns
immediately after pushing the event into a queueioiker thread will later pop the event out of
gueue to have it processed. For applications ubmdpoost::thread library, the necessary locking,
unlocking and waiting logic is readily availabledtasswor ker <>,

Applications will usually first create\sor ker <> object and then create one or more

asynchr onous_st at e_nmachi ne<> subclass objects, passing the worker object to the
constructor(s). Finallpwor ker <>: : oper at or () () is either called directly to let the machine
(s) run in the current thread, orpaost : : f unct i on object referencingper at or () is passe
to a newboost : : t hr ead. | the following code, we are running one statehize in a new
boost::thread and the other in the main threadtfs®ingPong example for the full source code):

11

struct Witing;
struct Pl ayer
public fsm:asynchronous_state machi ne< Player, Waiting >
{
typedef fsm:asynchronous_state_nmachi ne< Player, Waiting >
BaseType,;
publi c:

2003/08/1.

The boost::fsm librar- Tutoria Page24 of 25

Pl ayer (fsm:worker<> & nmyWorker)
BaseType(nyWorker) //

{
11
}
11
3
11
int main()
{

}

fsm:worker<> worker1;
fsm:worker<> worker 2;

/'l each player runs in its own worker thread
Pl ayer playerl1l(workerl);
Pl ayer player2(worker2);

/1
[l run first worker in a new thread
boost: :thread ot her Thread(
boost:: bi nd(& sm :worker<>::operator(), &wrkerl));

worker2(); // run second worker in this thread
ot her Thread. j oi n();

return O;

We could just as well use two boost::threads:

int main()

{

}

Or, run

/11
boost::thread threadl(

boost: : bi nd(& sm :worker<>::operator(), &wrkerl));
boost::thread thread2(

boost:: bi nd(& sm :worker<>::operator(), &wrker2));
/1 do sonmething else ...

t hreadl.join();
t hread2.join();

return O;

both machines in the same worker th

2003/08/1.

The boost::fsm librar- Tutoria Page25 of 25

{

}

nt main()
fsm : wor ker <> wor ker 1;

Pl ayer playerl1l(workerl);
Pl ayer player2(workerl);

11
wor ker 1() ;

return O;

wor ker <>: : operator () () firstinitiates all machines and then waits foeets. Whenever
queue_event is called on one of the previously registered nrees) the passed event is pushed
into the worker's queue and the worker thread isadaip to dispatch all queued events before
waiting againwor ker <>: : oper at or () () returns as soon as all machines have terminated.
wor ker <>: : operator () () also throws any exceptions that machines faiatade. In this
case all machines are terminated before the extestipropagated.

Caution:

State machine objects must not be destructed befove®r ker : : operat or () ()

returns. Moreover, thewor ker <> object may be destructed only after all of the
registered state machines have been destructed. \&bons of these rules will result in
failing runtime asserts.

The interface ofasynchr onous_st at e_nmachi ne consists of only the constructor
and queue_event () . For technical reasons, other functions like ni ti ate(),
process_event (), etc. are nevertheless also publicly available, bit is not safe to
call these functions from any other thread than thevorker (over which most users have
no control). asynchr onous_st at e_nmachi ne<>: : queue_event () is the only
function than can safely be called simultaneouslydm multiple threads.

Revised 16 August, 2003

Copyright© 2003Andreas Huber 6nni. All Rights Reserve

2003/08/1.

