Files
safe_numerics/include/checked.hpp
Robert Ramey ff4b3dca72 eliminated unused headers test_add.hpp, test_subtract.hp, etc.
The code in these haaders has been moved into test_add.cpp, test_subtract.cpp, etc.
2015-05-29 14:48:07 -07:00

461 lines
14 KiB
C++

#ifndef BOOST_NUMERIC_CHECKED_HPP
#define BOOST_NUMERIC_CHECKED_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2012 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// contains operations for doing checked aritmetic on NATIVE
// C++ types.
#include <limits>
#include <boost/utility/enable_if.hpp>
//#include <utility>
#include <type_traits> // make_unsigned
//#include "safe_compare.hpp"
//#include "safe_cast.hpp"
#include "safe_base.hpp"
#include "checked_result.hpp"
namespace boost {
namespace numeric {
namespace checked {
namespace detail {
template<class R, class T>
SAFE_NUMERIC_CONSTEXPR checked_result<R>
cast(
const T & t
){
return
std::is_signed<R>::value ?
std::is_signed<T>::value ?
t > std::numeric_limits<R>::max() ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted signed value too large"
)
:
t < std::numeric_limits<R>::min() ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted signed value too small"
)
:
checked_result<R>(t)
: // T is unsigned
t > std::numeric_limits<R>::max() ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted unsigned value too large"
)
:
checked_result<R>(t)
: // std::is_unsigned<R>::value
std::is_unsigned<T>::value ?
t > std::numeric_limits<R>::max() ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted unsigned value too large"
)
:
checked_result<R>(t)
: // T is signed
t < 0 ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted negative value to unsigned"
)
:
t > std::numeric_limits<R>::max() ?
checked_result<R>(
checked_result<R>::exception_type::range_error,
"converted signed value too large"
)
:
checked_result<R>(t)
;
}
// both arguments unsigned
template<class R>
typename boost::enable_if<
typename std::is_unsigned<R>,
checked_result<R>
>::type
SAFE_NUMERIC_CONSTEXPR add(
const R & minr,
const R & maxr,
const checked_result<R> t,
const checked_result<R> u
) {
return
t != checked_result<R>::exception_type::no_exception ?
t
:
u != checked_result<R>::exception_type::no_exception ?
u
:
maxr - u < t ?
checked_result<R>(
checked_result<R>::exception_type::overflow_error,
"addition overflow"
)
:
checked_result<R>(static_cast<R>(t) + static_cast<R>(u))
;
}
template<class R>
typename boost::enable_if<
typename std::is_signed<R>,
checked_result<R>
>::type
SAFE_NUMERIC_CONSTEXPR add(
const R & minr,
const R & maxr,
const checked_result<R> t,
const checked_result<R> u
) {
return
t != checked_result<R>::exception_type::no_exception ?
t
:
((u > 0) && (t > (maxr - u)))
|| ((u < 0) && (t < (minr - u))) ?
checked_result<R>(
checked_result<R>::exception_type::overflow_error,
"addition overflow"
)
:
checked_result<R>(static_cast<R>(t) + static_cast<R>(u))
;
}
} // namespace detail
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR checked_result<R> add(
const R & minr,
const R & maxr,
const T & t,
const U & u
) {
return detail::add<R>(
minr,
maxr,
detail::cast<R>(t),
detail::cast<R>(u)
);
}
/*
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR checked_result<R> add(
const R & minr,
const R & maxr,
const T & t,
const U & u
){
static_assert(
std::is_convertible<decltype(t + u), R>::value,
"invalid result type"
);
// is t convertible to r without change
return
// we have to perform he checked addition
detail::addition<
std::numeric_limits<T>::is_signed,
std::numeric_limits<U>::is_signed
>::template add(minr, maxr, t, u)
;
}
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR checked_result<R> add(
const R maxr,
const R minr,
const T t,
const U u
){
static_assert(
std::is_convertible<decltype(t + u), R>::value,
"invalid result type"
);
return
// we have to perform he checked addition
detail::addition<
std::numeric_limits<R>::is_signed,
std::numeric_limits<T>::is_signed,
std::numeric_limits<U>::is_signed
>::template add(minr, maxr, t, u)
;
}
*/
/*
namespace detail {
////////////////////////////////////////////////////
// layer 0 - detect overflows / alteration at the
// atomic operation level taking care to work around
// otherwise undetect alterations in integers due
// to machine architecture. Note presumption of twos
// complement integer arithmetic
/////////////////////////////
// subtraction implementation
template<bool TS, bool US>
struct subtraction;
// both arguments unsigned
template<>
struct subtraction<false, false> {
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR static bool overflow(const R & r, const T & t, const U & u){
return safe_compare::less_than(t, u);
}
template<class R, class P, class T, class U>
static R subtract(const T & t, const U & u) {
R tmp = t - u;
if(overflow(tmp, t, u))
P::overflow_error("safe range subtraction unsigned difference less than zero");
return tmp;
}
};
// both arguments signed
template<>
struct subtraction<true, true> {
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR static bool overflow(const R & r, const T & t, const U & u){
return (t > 0 && u < 0 && r < 0) ||(t < 0 && u > 0 && r >= 0);
}
template<class R, class P, class T, class U>
static R subtract(const T & t, const U & u){
R tmp = t - u;
if(overflow(tmp, t, u))
P::overflow_error("safe range subtraction result overflow");
return tmp;
}
};
// T unsigned, U signed
template<>
struct subtraction<false, true> {
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR static bool overflow(const R & r, const T & t, const U & u){
return u < 0 || u >= t;
}
template<class R, class P, class T, class U>
static R subtract(const T & t, const U & u){
if(boost::numeric::is_unsigned<R>::value){
if(u < 0)
P::overflow_error("safe range left operand value altered");
// u >= 0
if(u > t)
P::overflow_error("unsigned result is negative");
}
// result is signed
return t - u;
}
};
// T signed, U unsigned
template<>
struct subtraction<true, false> {
template<class R, class T, class U>
SAFE_NUMERIC_CONSTEXPR static bool overflow(const R & r, const T & t, const U & u){
return u < 0 || u >= t;
}
template<class R, class P, class T, class U>
static R subtract(const T & t, const U & u){
if(boost::numeric::is_unsigned<R>::value){
return subtraction<false, false>::subtract<R, P>(
safe_cast<R>(t),
safe_cast<R>(u)
);
}
// result is signed
return subtraction<true, true>::subtract<R, P>(
t,
safe_cast<R>(u)
);
}
};
} // detail
template<class R, class P, class T, class U>
R subtract(const T & t, const U & u){
return detail::subtraction<
boost::is_signed<T>::value,
boost::is_signed<U>::value
>::template subtract<R, P, T, U>(t, u);
}
namespace detail {
////////////////////////////////
// multiplication implementation
template<class T, class U>
decltype(T() * U())
check_multiplication_overflow(const T & t, const U & u){
typedef decltype(T() * U()) result_type;
char const * const msg = "safe range multiplication overflow";
// presume that size of uintmax_t and intmax_t are the same
typedef bits<boost::uintmax_t> available_bits;
if(multiply_result_bits<T, U>::value
<= boost::numeric::bits<result_type>::value)
return t * u;
if(multiply_result_bits<T, U>::value <= available_bits::value){
typedef typename multiply_result_type<T, U>::type temp_type;
temp_type tmp = static_cast<temp_type>(t) * temp_type(u);
// the following works for both positive and negative results
// and for both signed and unsigned numbers
if(tmp > boost::integer_traits<result_type>::const_max)
boost::numeric::overflow(msg);
if(tmp < boost::integer_traits<result_type>::const_min)
boost::numeric::overflow(msg);
return static_cast<result_type>(tmp);
}
// when the there is no native type which can hold the product
// use multible precision
// t is factored as (a << temp_bits) + b
// u is factored as (c << temp_bits) + d
// so we use multi-precision:
// a + b
// c + d
// -----
// bd
// ad
// cb
// ac
// -----
// ..
if(boost::numeric::is_unsigned<result_type>::value
&& (t < 0 || u < 0))
overflow("conversion of negative value to unsigned");
if(t == 1)
return u;
if(u == 1)
return t;
result_type rt = t;
if(rt < 0){
rt = ~rt + 1;
// address
if(rt < 0)
overflow("overflow of negative value");
}
result_type ru = u;
if(ru < 0){
ru = ~ru + 1;
// address
if(ru < 0)
overflow("overflow of negative value");
}
// check positive values for overflow
// t is factored as (a << temp_bits) + b
// u is factored as (c << temp_bits) + d
// so we use multi-precision:
// a + b
// c + d
// -----
// bd
// ad
// cb
// ac
// -----
// ..
typedef boost::uintmax_t accumulator_type;
const int temp_bits = bits<accumulator_type>::value / 2;
typedef typename boost::uint_t<temp_bits>::least temp_type;
temp_type a = (static_cast<accumulator_type>(rt) >> temp_bits);
temp_type c = (static_cast<accumulator_type>(ru) >> temp_bits);
if(0 != a && 0 != c)
overflow(msg);
temp_type b = static_cast<temp_type>(rt);
if((static_cast<accumulator_type>(b) * static_cast<accumulator_type>(c) >> temp_bits) > 0)
overflow(msg);
temp_type d = static_cast<const temp_type>(ru);
if(0 != (static_cast<accumulator_type>(a) * static_cast<accumulator_type>(d) >> temp_bits))
overflow(msg);
return t * u;
}
template<class T, class U>
decltype(T() / U())
check_division_overflow(const T & t, const U & u){
if(0 == u)
overflow("divide by zero");
if(boost::numeric::is_signed<U>::value){
// t unsigned, u signed
if(boost::numeric::is_unsigned<T>::value){
if(u < 0){
overflow("conversion of negative value to unsigned");
}
}
else{
// both signed
// pathological case: change sign on negative number so it overflows
if(t == boost::integer_traits<T>::const_min && u == -1)
overflow("overflow in result");
}
}
// both unsigned
// t signed, u unsigned
return t / u;
}
template<class T, class U>
decltype(T() / U())
check_modulus_overflow(const T & t, const U & u){
if(0 == u)
overflow("modulus divide by zero");
if(boost::numeric::is_signed<U>::value){
// t unsigned, u signed
if(boost::numeric::is_unsigned<T>::value){
if(u < 0){
overflow("conversion of negative value to unsigned");
}
}
else{
// both signed
// pathological case: change sign on negative number so it overflows
if(t == boost::integer_traits<T>::const_min && u == -1)
overflow("overflow in result");
}
}
// both unsigned
// t signed, u unsigned
return t % u;
}
} // detail
*/
} // checked
} // numeric
} // boost
#endif // BOOST_NUMERIC__HPP