Files
safe_numerics/include/cpp.hpp
Robert Ramey de48936d0e fixed problems with bitwise and shift operations
diminished dependence on mpl::if and others
made progress on getting trap policy working better
2015-12-28 09:45:20 -08:00

277 lines
8.8 KiB
C++
Executable File

#ifndef BOOST_NUMERIC_CPP_HPP
#define BOOST_NUMERIC_CPP_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2012 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// policy which creates results types equal to that of C++ promotions.
// Using the policy will permit the program to build and run in release
// mode which is identical to that in debug mode except for the fact
// that errors aren't trapped.
#include <type_traits> // integral constant, remove_cv
#include <limits>
#include <boost/integer.hpp> // integer type selection
#include <boost/mpl/if.hpp>
#include "utility.hpp"
#include "safe_common.hpp"
#include "checked.hpp"
namespace boost {
namespace numeric {
// in C++ the following rules govern integer arithmetic
// This policy is use to emulate another compiler/machine architecture
// For example, a Z80 has 8 bit char, 16 bit short, 16 bit int, 32 bit long. So one
// would use cpp<8, 16, 16, 32, 32> to test programs destined to run on a Z80
// Follow section 5 of the standard.
template<
int CharBits,
int ShortBits,
int IntBits,
int LongBits,
int LongLongBits
>
struct cpp {
using local_char_type = typename boost::int_t<CharBits>::exact;
using local_short_type = typename boost::int_t<ShortBits>::exact;
using local_int_type = typename boost::int_t<IntBits>::exact;
using local_long_type = typename boost::int_t<LongBits>::exact;
using local_long_long_type = typename boost::int_t<LongLongBits>::exact;
/*
template<typename T>
using normalize = typename std::make_signed<
typename std::remove_cv<T>::type
>::type;
// given a native type - return the equivalent local type
template<typename T>
using local_type_0 =
typename boost::mpl::if_<
std::is_same<T, char>,
local_char_type,
typename boost::mpl::if_<
std::is_same<T, short>,
local_short_type,
typename boost::mpl::if_<
std::is_same<T, int>,
local_int_type,
typename boost::mpl::if_<
std::is_same<T, long>,
local_long_type,
typename boost::mpl::if_<
std::is_same<T, long long>,
local_long_long_type,
void
>::type>::type>::type>::type>::type;
template<typename T>
using local_type_1 =
typename boost::mpl::if_<
std::is_signed<T>,
local_type_0<T>,
typename std::make_unsigned<
local_type_0<typename std::make_signed<T>::type>
>::type
>::type;
template<typename T>
using local_type =
typename boost::mpl::if_<
std::is_const<T>,
typename std::add_const<
local_type_1<typename std::remove_const<T>::type>
>::type,
typename boost::mpl::if_<
std::is_volatile<T>,
typename std::add_volatile<
local_type_1<typename std::remove_volatile<T>::type>
>::type,
local_type_1<T>
>::type>::type;
// section 4.13 integer conversion rank
template<class T>
using rank_helper =
typename boost::mpl::if_c<
std::is_same<bool, T >::value,
std::integral_constant<int, 0>,
typename boost::mpl::if_c<
std::is_same<local_char_type, T>::value,
std::integral_constant<int, 1>,
typename boost::mpl::if_c<
std::is_same<local_short_type, T>::value,
std::integral_constant<int, 2>,
typename boost::mpl::if_c<
std::is_same<local_int_type, T>::value,
std::integral_constant<int, 3>,
typename boost::mpl::if_c<
std::is_same<local_long_type, T>::value,
std::integral_constant<int, 4>,
typename boost::mpl::if_c<
std::is_same<local_long_long_type, T>::value,
std::integral_constant<int, 5>,
void
>::type>::type>::type>::type>::type>::type;
*/
template<class T>
using rank =
typename boost::mpl::if_c<
sizeof(char) == sizeof(T),
std::integral_constant<int, 1>,
typename boost::mpl::if_c<
sizeof(short) == sizeof(T),
std::integral_constant<int, 2>,
typename boost::mpl::if_c<
sizeof(int) == sizeof(T),
std::integral_constant<int, 3>,
typename boost::mpl::if_c<
sizeof(long) == sizeof(T),
std::integral_constant<int, 4>,
typename boost::mpl::if_c<
sizeof(long long) == sizeof(T),
std::integral_constant<int, 5>,
void
>::type >::type >::type >::type >::type;
// section 4.5 integral promotions
template<class T>
using integral_promotion = typename boost::mpl::if_c<
(rank<T>::value < rank<local_int_type>::value),
local_int_type,
T
>::type;
// convert smaller of two types to the size of the larger
template<class T, class U>
using higher_ranked_type = typename boost::mpl::if_c<
(rank<T>::value < rank<U>::value),
U,
T
>::type;
// note presumption that T & U don't have he same sign
// if that's not true, these won't work
template<class T, class U>
using select_signed = typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed,
T,
U
>::type;
template<class T, class U>
using select_unsigned = typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed,
U,
T
>::type;
// section 5 - usual arithmetic conversions
template<typename T, typename U>
using usual_arithmetic_conversions =
// clause 0 - if both operands have the same type
typename boost::mpl::if_c<
std::is_same<T, U>::value,
// no further conversion is needed
T,
// clause 1 - otherwise if both operands have the same sign
typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed
== std::numeric_limits<U>::is_signed,
// convert to the higher ranked type
higher_ranked_type<T, U>,
// clause 2 - otherwise if the rank of he unsigned type exceeds
// the rank of the of the signed type
typename boost::mpl::if_c<
rank< select_unsigned<T, U>>::value
>= rank< select_signed<T, U>>::value,
// use unsigned type
select_unsigned<T, U>,
// clause 3 - otherwise if the type of the signed integer type can
// represent all the values of the unsigned type
typename boost::mpl::if_c<
std::numeric_limits< select_signed<T, U> >::digits >=
std::numeric_limits< select_unsigned<T, U> >::digits,
// use signed type
select_signed<T, U>,
// clause 4 - otherwise use unsigned version of the signed type
typename std::make_signed< select_signed<T, U> >
>::type >::type >::type >::type;
template<typename T, typename U>
using result_type = usual_arithmetic_conversions<
integral_promotion<T>,
integral_promotion<U>
>;
template<typename T, typename U>
struct addition_result {
using type = result_type<T, U>;
};
template<typename T, typename U>
struct subtraction_result {
using type = result_type<T, U>;
};
template<typename T, typename U>
struct multiplication_result {
using type = result_type<T, U>;
};
template<typename T, typename U>
struct division_result {
using type = result_type<T, U>;
};
// forward to correct divide implementation
template<class R, class T, class U>
checked_result<R>
static constexpr divide(
const T & t,
const U & u
){
return checked::divide<R>(t, u);
}
template<typename T, typename U>
struct modulus_result {
using type = result_type<T, U>;
};
// forward to correct modulus implementation
template<class R, class T, class U>
checked_result<R>
static constexpr modulus(
const T & t,
const U & u
){
return checked::modulus<R>(t, u);
}
template<typename T, typename U>
struct left_shift_result {
using type = result_type<T, U>;
};
template<typename T, typename U>
struct right_shift_result {
using type = result_type<T, U>;
};
template<typename T, typename U>
struct bitwise_result {
using type = result_type<T, U>;
};
};
} // numeric
} // boost
#endif // BOOST_NUMERIC_cpp_HPP