Files
safe_numerics/examples/example9.cpp
Robert Ramey de48936d0e fixed problems with bitwise and shift operations
diminished dependence on mpl::if and others
made progress on getting trap policy working better
2015-12-28 09:45:20 -08:00

344 lines
9.3 KiB
C++

//////////////////////////////////////////////////////////////////
// test wrapper to permit compilation execution and debug of code
// intended for the PIC family of processors on the desktop
// development environment.
//
// Robert Ramey, 2015
#include <limits>
#include <iostream>
#include "../include/cpp.hpp"
#include "../include/automatic.hpp"
#include "../include/exception.hpp"
#include "../include/safe_integer.hpp"
#include "../include/safe_range.hpp"
#include "../include/safe_literal.hpp"
using pic16_promotion = boost::numeric::cpp<
8, // char
8, // short
8, // int
16, // long
32 // long long
>;
template <typename T> // T is char, int, etc data type
using safe_t = boost::numeric::safe<
T,
boost::numeric::automatic,
boost::numeric::trap_exception // use for compiling and running tests
>;
using safe_bool_t = boost::numeric::safe_unsigned_range<
0,
1,
pic16_promotion,
boost::numeric::trap_exception // use for compiling and running tests
>;
using int8 = safe_t<std::uint8_t>;
using int16 = safe_t<std::uint16_t>;
using int32 = safe_t<std::uint32_t>;
using uint8 = safe_t<std::uint8_t>;
using uint16 = safe_t<std::uint16_t>;
using uint32 = safe_t<std::uint32_t>;
using signed_int16 = safe_t<std::int16_t>;
#define literal(x) boost::numeric::safe_literal<x>{}
std::uint8_t base[0xfff];
#define TRISC base[0xf94]
#define T3CON base[0xfb1]
#define CCP2CON base[0xfba]
#define CCPR2L base[0xfbb]
#define CCPR2H base[0xfbc]
#define CCP1CON base[0xfbd]
#define CCPR1L base[0xfbe]
#define CCPR1H base[0xfbf]
#define T1CON base[0xfcd]
#define TMR1L base[0xfce]
#define TMR1H base[0xfcf]
// implement equivalent to #bit in C++
// this types is meant to implement operations of naming bits
// which are part of a larger word.
// example
// unsigned int x.
// bit<unsigned int, 2> switch; // switch now refers to the
// second bit from the right of the variable x. So now can use:
//
// switch = 1;
// if(switch)
// ...
template<typename T, std::int8_t N>
struct bit {
T & m_word;
bit(T & rhs) :
m_word(rhs)
{}
bit & operator=(const safe_bool_t & b){
if(b)
m_word |= (1 << N);
else
m_word &= ~(1 << N);
return *this;
}
bit & operator=(const boost::numeric::safe_literal<0>){
m_word &= ~(1 << N);
return *this;
}
bit & operator=(const boost::numeric::safe_literal<1>){
m_word |= (1 << N);
return *this;
}
operator safe_bool_t () const {
return m_word >> N & 1;
}
};
// now we can render
//#bit TMR1ON = T1CON.0
// as
bit<std::uint8_t, 0> TMR1ON(T1CON);
// and use expressions such as TMR1ON = 0
// make a 16 bit value from two 8 bit ones
int16 make16(int8 h, int8 l){
return (h << literal(8)) | l;
}
#define disable_interrupts(x)
#define enable_interrupts(x)
#define output_c(x)
#define set_tris_c(x)
#define TRUE literal(1)
#define FALSE literal(0)
// note changes to original source code
// signed int16 <- signed_int16 note '-' added
// commented out the #byte and #bit statements
// commented out the #INT_CCP1
// void main() <- int main()
// added return 0 to main
// changed instances of x = 0 to x = literal(0)
//////////////////////////////////////////////////////////////////
// motor.c
// david austin
// http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
// DECEMBER 30, 2004
// Demo program for stepper motor control with linear ramps
// Hardware: PIC18F252, L6219
// #include "18F252.h"
// PIC18F252 SFRs
/*
#byte TRISC = 0xf94
#byte T3CON = 0xfb1
#byte CCP2CON = 0xfba
#byte CCPR2L = 0xfbb
#byte CCPR2H = 0xfbc
#byte CCP1CON = 0xfbd
#byte CCPR1L = 0xfbe
#byte CCPR1H = 0xfbf
#byte T1CON = 0xfcd
#byte TMR1L = 0xfce
#byte TMR1H = 0xfcf
#bit TMR1ON = T1CON.0
*/
// 1st step=50ms; max speed=120rpm (based on 1MHz timer, 1.8deg steps)
#define C0 literal(50000)
#define C_MIN literal(2500)
// ramp state-machine states
#define ramp_idle literal(0)
#define ramp_up literal(1)
#define ramp_max literal(2)
#define ramp_down literal(3)
#define ramp_last literal(4)
// Types: int8,int16,int32=8,16,32bit integers, unsigned by default
int8 ramp_sts=ramp_idle;
signed_int16 motor_pos = literal(0); // absolute step number
signed_int16 pos_inc = literal(0); // motor_pos increment
int16 phase=literal(0); // ccpPhase[phase_ix]
int8 phase_ix=literal(0); // index to ccpPhase[]
int8 phase_inc; // phase_ix increment
int8 run_flg; // true while motor is running
int16 ccpr; // copy of CCPR1&2
int16 c; // integer delay count
int16 step_no; // progress of move
int16 step_down; // start of down-ramp
int16 move; // total steps to move
int16 midpt; // midpoint of move
int32 c32; // 24.8 fixed point delay count
signed_int16 denom; // 4.n+1 in ramp algo
// Config data to make CCP1&2 generate quadrature sequence on PHASE pins
// Action on CCP match: 8=set+irq; 9=clear+irq
int16 const ccpPhase[] = {
literal(0x909),
literal(0x908),
literal(0x808),
literal(0x809)
}; // 00,01,11,10
void current_on(){/* code as needed */} // motor drive current
void current_off(){/* code as needed */} // reduce to holding value
// compiler-specific ISR declaration
// #INT_CCP1
void isr_motor_step()
{ // CCP1 match -> step pulse + IRQ
ccpr += c; // next comparator value: add step delay count
switch (ramp_sts)
{
case ramp_up: // accel
if (step_no==midpt)
{ // midpoint: decel
ramp_sts = ramp_down;
denom = ((step_no - move) << literal(2) )+literal(1);
if (!(move & literal(1)))
{ // even move: repeat last delay before decel
denom +=literal(4);
break;
}
}
// no break: share code for ramp algo
case ramp_down: // decel
if (step_no == move-literal(1))
{ // next irq is cleanup (no step)
ramp_sts = ramp_last;
break;
}
denom+=4;
c32 -= (c32 << literal(1)) / denom; // ramp algorithm
// beware confict with foreground code if long div not reentrant
c = (c32+literal(128))>>literal(8); // round 24.8format->int16
if (c <= C_MIN)
{ // go to constant speed
ramp_sts = ramp_max;
step_down = move - step_no;
c = C_MIN;
break;
}
break;
case ramp_max: // constant speed
if (step_no == step_down)
{ // start decel
ramp_sts = ramp_down;
/*
denom = ((step_no - move)<<literal(2))+literal(5);
*/
auto x1 = step_no - move;
auto x2 = x1 * literal(4);
auto x3 = x2 + literal(5);
denom = x3;
}
break;
default: // last step: cleanup
ramp_sts = ramp_idle;
current_off(); // reduce motor current to holding value
disable_interrupts(INT_CCP1);
run_flg = FALSE; // move complete
break;
} // switch (ramp_sts)
if (ramp_sts!=ramp_idle)
{
motor_pos += pos_inc;
++step_no;
CCPR2H = CCPR1H = (ccpr >> literal(8)); // timer value at next CCP match
CCPR2L = CCPR1L = (ccpr & literal(0xff));
if (ramp_sts!=ramp_last) // else repeat last action: no step
phase_ix = (phase_ix + phase_inc) & literal(3);
phase = ccpPhase[phase_ix];
CCP1CON = phase & literal(0xff); // set CCP action on next match
CCP2CON = phase >> literal(8);
} // if (ramp_sts != ramp_idle)
} // isr_motor_step()
void motor_run(signed_int16 pos_new)
{ // set up to drive motor to pos_new (absolute step#)
if (pos_new < motor_pos) // get direction & #steps
{
move = motor_pos-pos_new;
pos_inc = literal(-1);
phase_inc = literal(0xff);
}
else if (pos_new != motor_pos)
{
move = pos_new-motor_pos;
pos_inc = literal(1);
phase_inc = literal(1);
}
else return; // already there
/*
midpt = (move-1)>>1;
*/
auto x1 = move - 1;
auto x2 = x1 >> 1;
midpt = x2;
c = C0;
c32 = c<<literal(8); // keep c in 24.8 fixed-point format for ramp calcs
step_no = literal(0); // step counter
denom = literal(1); // 4.n+1, n=0
ramp_sts = ramp_up; // start ramp state-machine
run_flg = TRUE;
TMR1ON = 0; // stop timer1;
ccpr = make16(TMR1H,TMR1L); // 16bit value of Timer1
ccpr += 1000; // 1st step + irq 1ms after timer1 restart
CCPR2H = CCPR1H = (ccpr >> literal(8));
CCPR2L = CCPR1L = (ccpr & literal(0xff));
phase_ix = (phase_ix + phase_inc) & literal(3);
phase = ccpPhase[phase_ix];
CCP1CON = phase & literal(0xff); // sets action on match
CCP2CON = phase >> literal(8);
current_on(); // current in motor windings
enable_interrupts(INT_CCP1);
TMR1ON=TRUE; // restart timer1;
} // motor_run()
void initialize()
{
disable_interrupts(GLOBAL);
disable_interrupts(INT_CCP1);
disable_interrupts(INT_CCP2);
output_c(0);
set_tris_c(0);
T3CON = 0;
T1CON = 0x35;
enable_interrupts(GLOBAL);
} // initialize()
// test program
int main()
{
std::cout << "start test\n";
try{
initialize();
motor_run(literal(100));
// move motor to position 1000
motor_run(literal(1000));
while (run_flg){
isr_motor_step();
}
// move back to position 0
motor_run(literal(0));
while (run_flg)
isr_motor_step();
}
catch(...){
std::cout << "test interrupted\n";
return 1;
}
std::cout << "end test\n";
return literal(0);
} // main()
// end of file motor.c