Files
safe_numerics/include/safe_base_operations.hpp

1392 lines
41 KiB
C++

#ifndef BOOST_NUMERIC_SAFE_BASE_OPERATIONS_HPP
#define BOOST_NUMERIC_SAFE_BASE_OPERATIONS_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2012 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <limits>
#include <type_traits> // is_base_of, is_same, enable_if
#include <ostream>
#include <istream>
#include <boost/config.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/utility/enable_if.hpp> // lazy_enable_if
#include "safe_base.hpp"
#include "safe_literal.hpp"
#include "safe_compare.hpp"
#include "checked_result.hpp"
#include "interval.hpp"
namespace boost {
namespace numeric {
/////////////////////////////////////////////////////////////////
// validation
template<typename R, typename E>
struct validate_detail {
struct exception_possible {
template<typename T>
constexpr static R return_value(
const T & t,
const interval<R> & r_interval
){
// INT08-C
const checked_result<R> r = r_interval.includes(t) ?
checked::cast<R>(t)
:
checked_result<R>(
exception_type::range_error,
"Value out of range for this safe type"
)
;
dispatch<E>(r);
return r;
}
};
struct exception_not_possible {
template<typename T>
constexpr static R return_value(
const T & t,
const interval<R> & this_interval
){
return static_cast<R>(t);
}
};
};
template<class Stored, Stored Min, Stored Max, class P, class E>
template<class T>
constexpr Stored safe_base<Stored, Min, Max, P, E>::
validated_cast(const T & t) const {
using t_base_type = typename base_type<T>::type;
constexpr const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr const interval<Stored> this_interval(Min, Max);
// if static values don't overlap, the program can never function
static_assert(
indeterminate(t_interval < this_interval),
"safe type cannot be constructed with this type"
);
return boost::mpl::if_c<
this_interval.includes(t_interval),
typename validate_detail<Stored, E>::exception_not_possible,
typename validate_detail<Stored, E>::exception_possible
>::type::template return_value(base_value(t), this_interval);
}
template<class Stored, Stored Min, Stored Max, class P, class E>
template<typename T, T N>
constexpr Stored safe_base<Stored, Min, Max, P, E>::
validated_cast(const safe_literal_impl<T, N> & t) const {
constexpr const interval<Stored> this_interval{};
// if static values don't overlap, the program can never function
static_assert(
this_interval.includes(N),
"safe type cannot be constructed value"
);
return static_cast<Stored>(t);
}
/////////////////////////////////////////////////////////////////
// construction and assignment operators
template<class Stored, Stored Min, Stored Max, class P, class E>
constexpr safe_base<Stored, Min, Max, P, E>::
safe_base(const Stored & rhs, std::false_type) :
m_t(rhs)
{}
// construction from some arbitrary type T
template<class Stored, Stored Min, Stored Max, class P, class E>
template<class T>
constexpr safe_base<Stored, Min, Max, P, E>::
safe_base(const T & rhs) :
m_t(validated_cast(rhs))
{}
// assignment from some type T
template<class Stored, Stored Min, Stored Max, class P, class E>
template<class T, T MinT, T MaxT, class PT, class ET>
constexpr safe_base<Stored, Min, Max, P, E> &
safe_base<Stored, Min, Max, P, E>::
operator=(const safe_base<T, MinT, MaxT, PT, ET> & rhs){
m_t = validated_cast(rhs);
return *this;
}
/////////////////////////////////////////////////////////////////
// casting operators
template< class Stored, Stored Min, Stored Max, class P, class E>
template<
class R,
typename std::enable_if<
!boost::numeric::is_safe<R>::value,
int
>::type
>
constexpr safe_base<Stored, Min, Max, P, E>::
operator R () const {
constexpr const interval<R> r_interval;
constexpr const interval<Stored> this_interval(Min, Max);
// if static values don't overlap, the program can never function
static_assert(
indeterminate(r_interval < this_interval),
"safe type cannot be constructed with this type"
);
return boost::mpl::if_c<
r_interval.includes(this_interval),
typename validate_detail<R, E>::exception_not_possible,
typename validate_detail<R, E>::exception_possible
>::type::template return_value(m_t, r_interval);
}
template< class Stored, Stored Min, Stored Max, class P, class E>
constexpr safe_base<Stored, Min, Max, P, E>::
operator Stored () const {
return m_t;
}
/////////////////////////////////////////////////////////////////
// binary operators
template<class T, class U>
struct common_policies {
static_assert(is_safe<T>::value || is_safe<U>::value,
"at least one type must be a safe type"
);
using t_promotion_policy = typename get_promotion_policy<T>::type;
using u_promotion_policy = typename get_promotion_policy<U>::type;
using t_exception_policy = typename get_exception_policy<T>::type;
using u_exception_policy = typename get_exception_policy<U>::type;
static_assert(
std::is_same<t_promotion_policy, u_promotion_policy>::value
||std::is_same<t_promotion_policy, void>::value
||std::is_same<void, u_promotion_policy>::value,
"if the promotion policies are different, one must be void!"
);
static_assert(
! std::is_same<t_promotion_policy, void>::value
|| !std::is_same<void, u_promotion_policy>::value,
"at least one promotion polcy must be non void"
);
static_assert(
! (std::is_same<t_promotion_policy, void>::value
&& std::is_same<void, u_promotion_policy>::value),
"at least one promotion policy must not be void"
);
static_assert(
std::is_same<t_exception_policy, u_exception_policy>::value
|| std::is_same<t_exception_policy, void>::value
|| std::is_same<void, u_exception_policy>::value,
"if the exception policies are different, one must be void!"
);
static_assert(
! (std::is_same<t_exception_policy, void>::value
&& std::is_same<void, u_exception_policy>::value),
"at least one promotion policy must not be void"
);
using promotion_policy =
typename boost::mpl::if_c<
! std::is_same<void, u_promotion_policy>::value,
u_promotion_policy,
typename boost::mpl::if_c<
! std::is_same<void, t_promotion_policy>::value,
t_promotion_policy,
//
void
>::type >::type;
static_assert(
! std::is_same<void, promotion_policy>::value,
"promotion_policy is void"
);
using exception_policy =
typename boost::mpl::if_c<
!std::is_same<void, u_exception_policy>::value,
u_exception_policy,
typename boost::mpl::if_c<
!std::is_same<void, t_exception_policy>::value,
t_exception_policy,
//
void
>::type >::type;
static_assert(
!std::is_same<void, exception_policy>::value,
"exception_policy is void"
);
};
// Note: the following global operators will be only found via
// argument dependent lookup. So they won't conflict any
// other global operators for types in namespaces other than
// boost::numeric
/////////////////////////////////////////////////////////////////
// addition
template<class T, class U>
struct addition_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template addition_result<
t_base_type,
u_base_type
>::type;
// filter out case were overflow cannot occur
// note: subtle trickery. Suppose t is safe_range<MIN, ..>. Then
// std::numeric_limits<T>::min() will be safe_range<MIN with a value of MIN
// Use base_value(T) ( which equals MIN ) to create a new interval. Same
// for MAX. Now
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
// when we add the temporary intervals above, we'll get a new interval
// with the correct range for the sum !
constexpr static const checked_result<interval<result_base_type>> r_interval =
add<result_base_type>(t_interval, u_interval);
constexpr static bool exception_possible() {
return ! r_interval.no_exception();
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::add<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
+ static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
addition_result<T, U>
>::type
constexpr inline operator+(const T & t, const U & u){
// argument dependent lookup should guarentee that we only get here
using ar = addition_result<T, U>;
return typename ar::type(
ar::return_value(
t,
u,
typename std::integral_constant<bool, ar::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator+=(T & t, const U & u){
t = static_cast<T>(t + u);
return t;
}
/////////////////////////////////////////////////////////////////
// subtraction
template<class T, class U>
struct subtraction_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template subtraction_result<
t_base_type,
u_base_type
>::type;
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
// when we add the temporary intervals above, we'll get a new interval
// with the correct range for the difference !
constexpr static const checked_result<interval<result_base_type>> r_interval
= subtract<result_base_type>(t_interval, u_interval);
constexpr static bool exception_possible() {
return ! r_interval.no_exception();
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::subtract<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
- static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
subtraction_result<T, U>
>::type
constexpr operator-(const T & t, const U & u){
using sr = subtraction_result<T, U>;
return typename sr::type(
sr::return_value(
t,
u,
typename std::integral_constant<bool, sr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator-=(T & t, const U & u){
t = static_cast<T>(t - u);
return t;
}
/////////////////////////////////////////////////////////////////
// multiplication
template<class T, class U>
struct multiplication_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template multiplication_result<
t_base_type,
u_base_type
>::type;
// filter out case were overflow cannot occur
// note: subtle trickery. Suppose t is safe_range<MIN, ..>. Then
// std::numeric_limits<T>::min() will be safe_range<MIN with a value of MIN
// Use base_value(T) ( which equals MIN ) to create a new interval. Same
// for MAX. Now
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
// when we add the temporary intervals above, we'll get a new interval
// with the correct range for the sum !
constexpr static const checked_result<interval<result_base_type>> r_interval
= multiply<result_base_type>(t_interval, u_interval);
constexpr static bool exception_possible() {
return ! r_interval.no_exception();
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
constexpr static bool no_exception() {
return r_interval.no_exception();
}
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::multiply<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
* static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
multiplication_result<T, U>
>::type
constexpr operator*(const T & t, const U & u){
// argument dependent lookup should guarentee that we only get here
using mr = multiplication_result<T, U>;
return typename mr::type(
mr::return_value(
t,
u,
typename std::integral_constant<bool, mr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator*=(T & t, const U & u){
t = static_cast<T>(t * u);
return t;
}
/////////////////////////////////////////////////////////////////
// division
template<class T, class U>
struct division_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template division_result<
t_base_type,
u_base_type
>::type;
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
constexpr static const checked_result<interval<result_base_type>> r_interval
= divide_nz<result_base_type>(t_interval, u_interval);
constexpr static bool exception_possible() {
return
// if over/under flow or domain error possible
! r_interval.no_exception()
// if the denominator can contain zero
|| (u_interval.l <= 0 && u_interval.u >=0 )
;
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r =
promotion_policy::template divide<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
/ static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
division_result<T, U>
>::type
constexpr operator/(const T & t, const U & u){
// argument dependent lookup should guarentee that we only get here
using dr = division_result<T, U>;
return typename dr::type(
dr::return_value(
t,
u,
typename std::integral_constant<bool, dr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator/=(T & t, const U & u){
t = static_cast<T>(t / u);
return t;
}
/////////////////////////////////////////////////////////////////
// modulus
template<class T, class U>
struct modulus_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template modulus_result<
t_base_type,
u_base_type
>::type;
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
constexpr static const checked_result<interval<result_base_type>> r_interval
= modulus_nz<result_base_type>(t_interval, u_interval);
constexpr static bool exception_possible() {
return
// if over/under flow or domain error possible
! r_interval.no_exception()
// if the denominator can contain zero
|| (u_interval.l <= 0 && u_interval.u >=0 )
;
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::modulus<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
% static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
modulus_result<T, U>
>::type
inline operator%(const T & t, const U & u){
using mr = modulus_result<T, U>;
return typename mr::type(
mr::return_value(
t,
u,
typename std::integral_constant<bool, mr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator%=(T & t, const U & u){
t = static_cast<T>(t % u);
return t;
}
/////////////////////////////////////////////////////////////////
// comparison
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator<(const T & lhs, const U & rhs) {
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
// filter out case were overflow cannot occur
constexpr const interval<t_base_type> t_interval(
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
);
constexpr const interval<u_base_type> u_interval(
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
);
constexpr const boost::logic::tribool r =
t_interval < u_interval;
return
// if the ranges don't overlap
(! boost::logic::indeterminate(r)) ?
// values in those ranges can't be equal
false
:
// otherwise we have to check
safe_compare::less_than(base_value(lhs), base_value(rhs));
;
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator>(const T & lhs, const U & rhs) {
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
constexpr const interval<t_base_type> t_interval(
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
);
constexpr const interval<u_base_type> u_interval(
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
);
constexpr const boost::logic::tribool r =
t_interval > u_interval;
return
// if the ranges don't overlap
(! boost::logic::indeterminate(r)) ?
// values in those ranges can't be equal
false
:
// otherwise we have to check
safe_compare::greater_than(base_value(lhs), base_value(rhs));
;
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator==(const T & lhs, const U & rhs) {
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
constexpr const interval<t_base_type> t_interval(
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
);
constexpr const interval<u_base_type> u_interval(
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
);
return
// if the ranges don't overlap
( t_interval < u_interval || t_interval > u_interval) ?
// values in those ranges can't be equal
false
:
// otherwise we have to check
safe_compare::equal(base_value(lhs), base_value(rhs));
;
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator!=(const T & lhs, const U & rhs) {
return ! (lhs == rhs);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator>=(const T & lhs, const U & rhs) {
return ! ( rhs < lhs );
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<bool>
>::type
constexpr operator<=(const T & lhs, const U & rhs) {
return ! ( lhs > rhs );
}
/////////////////////////////////////////////////////////////////
// shift operators
// left shift
template<class T, class U>
struct left_shift_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template left_shift_result<
t_base_type,
u_base_type
>::type;
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
constexpr static const checked_result<interval<result_base_type>> r_interval {
left_shift<result_base_type>(t_interval, u_interval)
};
constexpr static bool exception_possible() {
return ! r_interval.no_exception();
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::left_shift<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
<< static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
// handle safe<T> << int, int << safe<U>, safe<T> << safe<U>
// exclude std::ostream << ...
(! std::is_base_of<std::ios_base, T>::value)
&& (
boost::numeric::is_safe<T>::value
||boost::numeric::is_safe<U>::value
),
left_shift_result<T, U>
>::type
constexpr inline operator<<(const T & t, const U & u){
// INT13-CPP
using lsr = left_shift_result<T, U>;
return typename lsr::type(
lsr::return_value(
t,
u,
typename std::integral_constant<bool, lsr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator<<=(T & t, const U & u){
t = static_cast<T>(t << u);
return t;
}
// right shift
template<class T, class U>
struct right_shift_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template right_shift_result<
t_base_type,
u_base_type
>::type;
constexpr static const interval<t_base_type> t_interval{
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
constexpr static const interval<u_base_type> u_interval{
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
constexpr static const checked_result<interval<result_base_type>> r_interval {
right_shift<result_base_type>(t_interval, u_interval)
};
constexpr static bool exception_possible() {
return ! r_interval.no_exception();
}
constexpr static const interval<result_base_type> type_interval =
exception_possible() ?
interval<result_base_type>{}
:
static_cast<interval<result_base_type>>(r_interval)
;
using type = safe_base<
result_base_type,
type_interval.l,
type_interval.u,
promotion_policy,
exception_policy
>;
// exception possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::true_type){
static_assert(exception_possible(), "implement runtime check");
checked_result<result_base_type> r = checked::right_shift<result_base_type>(
base_value(t),
base_value(u)
);
dispatch<exception_policy>(r);
return static_cast<result_base_type>(r);
}
// exception not possible
constexpr static result_base_type
return_value(const T & t, const U & u, std::false_type){
static_assert(! exception_possible(), "no runtime check");
return
static_cast<result_base_type>(base_value(t))
>> static_cast<result_base_type>(base_value(u))
;
}
};
template<class T, class U>
typename boost::lazy_enable_if_c<
// handle safe<T> << int, int << safe<U>, safe<T> << safe<U>
// exclude std::ostream << ...
(! std::is_base_of<std::ios_base, T>::value)
&& (
boost::numeric::is_safe<T>::value
||boost::numeric::is_safe<U>::value
),
right_shift_result<T, U>
>::type
constexpr inline operator>>(const T & t, const U & u){
// INT13-CPP
using rsr = right_shift_result<T, U>;
return typename rsr::type(
rsr::return_value(
t,
u,
typename std::integral_constant<bool, rsr::exception_possible()>()
),
std::false_type() // don't need to revalidate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator>>=(T & t, const U & u){
t = static_cast<T>(t >> u);
return t;
}
/////////////////////////////////////////////////////////////////
// bitwise operators
// operator |
template<class T, class U>
struct bitwise_or_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template bitwise_result<
t_base_type,
u_base_type
>::type;
constexpr static result_base_type r =
safe_compare::greater_than(
base_value(std::numeric_limits<T>::max()),
base_value(std::numeric_limits<U>::max())
) ?
base_value(std::numeric_limits<T>::max())
:
base_value(std::numeric_limits<U>::max())
;
using type = safe_base<
result_base_type,
0,
r,
promotion_policy,
exception_policy
>;
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
bitwise_or_result<T, U>
>::type
constexpr inline operator|(const T & t, const U & u){
using bwr = bitwise_or_result<T, U>;
using result_base_type = typename bwr::result_base_type;
using exception_policy = typename bwr::exception_policy;
const checked_result<result_base_type> r =
checked::bitwise_or<result_base_type>(
base_value(t),
base_value(u)
);
assert(r.no_exception());
return typename bwr::type(
static_cast<result_base_type>(r),
std::false_type() // don't need to re-validate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator|=(T & t, const U & u){
t = static_cast<T>(t | u);
return t;
}
// operator &
template<class T, class U>
struct bitwise_and_result {
using P = common_policies<T, U>;
using exception_policy = typename P::exception_policy;
using promotion_policy = typename P::promotion_policy;
using t_base_type = typename base_type<T>::type;
using u_base_type = typename base_type<U>::type;
using result_base_type =
typename promotion_policy::template bitwise_result<
t_base_type,
u_base_type
>::type;
constexpr static result_base_type r =
safe_compare::less_than(
base_value(std::numeric_limits<T>::max()),
base_value(std::numeric_limits<U>::max())
) ?
base_value(std::numeric_limits<T>::max())
:
base_value(std::numeric_limits<U>::max())
;
using type = safe_base<
result_base_type,
0,
r,
promotion_policy,
exception_policy
>;
};
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
bitwise_and_result<T, U>
>::type
constexpr inline operator&(const T & t, const U & u){
using bwr = bitwise_and_result<T, U>;
using result_base_type = typename bwr::result_base_type;
using exception_policy = typename bwr::exception_policy;
const checked_result<result_base_type> r =
checked::bitwise_and<result_base_type>(
base_value(t),
base_value(u)
);
assert(r.no_exception());
return typename bwr::type(
static_cast<result_base_type>(r),
std::false_type() // don't need to re-validate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator&=(T & t, const U & u){
t = static_cast<T>(t & u);
return t;
}
// operator ^
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
bitwise_or_result<T, U>
>::type
constexpr inline operator^(const T & t, const U & u){
using bwr = bitwise_or_result<T, U>;
using result_base_type = typename bwr::result_base_type;
using exception_policy = typename bwr::exception_policy;
const checked_result<result_base_type> r =
checked::bitwise_xor<result_base_type>(t, u);
assert(r.no_exception());
return typename bwr::type(
static_cast<result_base_type>(r),
std::false_type() // don't need to re-validate
);
}
template<class T, class U>
typename boost::lazy_enable_if_c<
boost::numeric::is_safe<T>::value
|| boost::numeric::is_safe<U>::value
,
boost::mpl::identity<T &>
>::type
constexpr inline operator^=(T & t, const U & u){
t = static_cast<T>(t ^ u);
return t;
}
/////////////////////////////////////////////////////////////////
// stream operators
template<
class T,
T Min,
T Max,
class P, // promotion polic
class E // exception policy
>
std::ostream & operator<<(
std::ostream & os,
const safe_base<T, Min, Max, P, E> & t
){
os << (
(std::is_same<T, signed char>::value
|| std::is_same<T, unsigned char>::value
) ?
static_cast<int>(t.m_t)
:
t.m_t
);
return os;
}
namespace {
template<class T>
struct Temp {
T value;
}; // primary template
template<> struct Temp<signed char> {
int value;
}; // secondary template
template<> struct Temp<unsigned char> {
int value;
}; // secondary template
template<> struct Temp<signed wchar_t> {
int value;
}; // secondary template
template<> struct Temp<unsigned wchar_t> {
int value;
}; // secondary template
}
template<
class T,
T Min,
T Max,
class P, // promotion polic
class E // exception policy
>
std::istream & operator>>(
std::istream & is,
safe_base<T, Min, Max, P, E> & t
){
Temp<T> tx;
is >> tx.value;
if(is.fail())
E::range_error("error in file input");
t = tx.value;
return is;
}
} // numeric
} // boost
#endif // BOOST_NUMERIC_SAFE_BASE_OPERATIONS_HPP