Files
safe_numerics/include/automatic.hpp
2015-11-04 21:26:07 -08:00

539 lines
18 KiB
C++

#ifndef BOOST_NUMERIC_AUTOMATIC_HPP
#define BOOST_NUMERIC_AUTOMATIC_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2012 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// policy which creates results types equal to that of C++ promotions.
// Using the policy will permit the program to build and run in release
// mode which is identical to that in debug mode except for the fact
// that errors aren't trapped.
#include <limits>
#include <cstdint> // (u)intmax_t,
#include <type_traits> // true_type, false_type, is_same
#include <boost/mpl/if.hpp>
#include "safe_common.hpp"
#include "checked_result.hpp"
#include "interval.hpp"
#include "safe_range.hpp"
namespace boost {
namespace numeric {
namespace checked {
template<class R, class T, class U>
checked_result<R>
SAFE_NUMERIC_CONSTEXPR divide(
const T & t,
const U & u
);
} // checked
struct automatic {
/*
template<class T, class U>
using calculate_max_t2 =
typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed
|| std::numeric_limits<U>::is_signed,
std::intmax_t,
std::uintmax_t
>::type;
*/
// section 4.13 integer conversion rank
template<class T>
using rank =
typename boost::mpl::if_c<
sizeof(char) == sizeof(T),
std::integral_constant<int, 1>,
typename boost::mpl::if_c<
sizeof(short) == sizeof(T),
std::integral_constant<int, 2>,
typename boost::mpl::if_c<
sizeof(int) == sizeof(T),
std::integral_constant<int, 3>,
typename boost::mpl::if_c<
sizeof(long) == sizeof(T),
std::integral_constant<int, 4>,
typename boost::mpl::if_c<
sizeof(long long) == sizeof(T),
std::integral_constant<int, 5>,
void
>::type >::type >::type >::type >::type;
// note presumption that T & U don't have he same sign
// if that's not true, these won't work
template<class T, class U>
using select_signed = typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed,
T,
U
>::type;
template<class T, class U>
using select_unsigned = typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed,
U,
T
>::type;
template<class T, class U>
using calculate_max_t =
typename boost::mpl::if_c<
// clause 1 - if both operands have the same sign
std::numeric_limits<T>::is_signed
== std::numeric_limits<U>::is_signed,
// use that sign
typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed,
std::intmax_t,
std::uintmax_t
>::type,
// clause 2 - otherwise if the rank of he unsigned type exceeds
// the rank of the of the maximum signed type
typename boost::mpl::if_c<
(rank< select_unsigned<T, U>>::value
> rank< std::intmax_t >::value),
// use unsigned type
std::uintmax_t,
// clause 3 - otherwise if the type of the signed integer type can
// represent all the values of the unsigned type
typename boost::mpl::if_c<
std::numeric_limits< std::intmax_t >::digits >=
std::numeric_limits< select_unsigned<T, U> >::digits,
// use signed type
std::intmax_t,
// clause 4 - otherwise use unsigned version of the signed type
std::uintmax_t
>::type >::type >::type;
template<typename T, T Min, T Max, class P, class E>
struct defer_signed_lazily {
using type = boost::numeric::safe_signed_range<Min, Max, P, E>;
};
template<typename T, T Min, T Max, class P, class E>
struct defer_unsigned_lazily {
using type = boost::numeric::safe_unsigned_range<Min, Max, P, E>;
};
template<typename T, T Min, T Max, class P, class E>
using safe_range =
typename boost::mpl::if_<
std::is_signed<T>,
defer_signed_lazily<T, Min, Max, P, E>,
defer_unsigned_lazily<T, Min, Max, P, E>
>::type;
///////////////////////////////////////////////////////////////////////
template<typename T, typename U, typename P, typename E>
struct addition_result {
typedef typename base_type<T>::type base_type_t;
typedef typename base_type<U>::type base_type_u;
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_t> t = {
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_u> u = {
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
typedef calculate_max_t<T, U> max_t;
SAFE_NUMERIC_CONSTEXPR static const interval< max_t> r
= operator+<max_t>(t, u);
SAFE_NUMERIC_CONSTEXPR static const max_t newmin = r.l.no_exception() ?
static_cast<max_t>(r.l)
:
std::numeric_limits<max_t>::min()
;
SAFE_NUMERIC_CONSTEXPR static const max_t newmax = r.u.no_exception() ?
static_cast<max_t>(r.u)
:
std::numeric_limits<max_t>::max()
;
//typedef typename print<max_t>::type p_max_t;
//typedef typename print<std::integral_constant<max_t, newmin>>::type p_newmin;
//typedef typename print<std::integral_constant<max_t, newmax>>::type p_newmax;
static_assert(
newmin < newmax,
"new minimumum must be less than new maximum"
);
static_assert(
std::numeric_limits<max_t>::min() >= 0 || std::is_signed<max_t>::value,
"newmin < 0 and unsigned can't happen"
);
typedef typename safe_range<
max_t,
newmin,
newmax,
P,
E
>::type type;
/*
typedef typename print<
typename safe_range<
max_t,
newmin,
newmax,
P,
E
>::type
>::type p_safe_range;
*/
};
///////////////////////////////////////////////////////////////////////
template<typename T, typename U, typename P, typename E>
struct subtraction_result {
typedef typename base_type<T>::type base_type_t;
typedef typename base_type<U>::type base_type_u;
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_t> t = {
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_u> u = {
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
typedef calculate_max_t<T, U> max_t;
// typedef typename print<max_t>::type p_max_t;
SAFE_NUMERIC_CONSTEXPR static const interval< max_t> r
= operator-<max_t>(t, u);
SAFE_NUMERIC_CONSTEXPR static const max_t newmin = r.l.no_exception() ?
static_cast<max_t>(r.l)
:
std::numeric_limits<max_t>::min()
;
// typedef print<std::integral_constant<max_t, newmin>> p_newmin;
SAFE_NUMERIC_CONSTEXPR static const max_t newmax = r.u.no_exception() ?
static_cast<max_t>(r.u)
:
std::numeric_limits<max_t>::max()
;
// typedef print<std::integral_constant<max_t, newmax>> p_newmax;
static_assert(
newmin < newmax,
"new minimumum must be less than new maximum"
);
static_assert(
std::numeric_limits<max_t>::min() >= 0 || std::is_signed<max_t>::value,
"newmin < 0 and unsigned can't happen"
);
typedef typename safe_range<
max_t,
newmin,
newmax,
P,
E
>::type type;
};
///////////////////////////////////////////////////////////////////////
template<typename T, typename U, typename P, typename E>
struct multiplication_result {
typedef typename base_type<T>::type base_type_t;
typedef typename base_type<U>::type base_type_u;
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_t> t = {
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
SAFE_NUMERIC_CONSTEXPR static const interval<base_type_u> u = {
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
typedef calculate_max_t<T, U> max_t;
SAFE_NUMERIC_CONSTEXPR static const interval< max_t> r
= operator*<max_t>(t, u);
SAFE_NUMERIC_CONSTEXPR static const max_t newmin = r.l.no_exception() ?
static_cast<max_t>(r.l)
:
std::numeric_limits<max_t>::min()
;
SAFE_NUMERIC_CONSTEXPR static const max_t newmax = r.u.no_exception() ?
static_cast<max_t>(r.u)
:
std::numeric_limits<max_t>::max()
;
// typedef typename print<max_t>::type p_max_t;
// typedef typename print<std::integral_constant<max_t, newmin>>::type p_newmin;
// typedef typename print<std::integral_constant<max_t, newmax>>::type p_newmax;
static_assert(
newmin < newmax,
"new minimumum must be less than new maximum"
);
static_assert(
std::numeric_limits<max_t>::min() >= 0 || std::is_signed<max_t>::value,
"newmin < 0 and unsigned can't happen"
);
typedef typename safe_range<
max_t,
newmin,
newmax,
P,
E
>::type type;
};
///////////////////////////////////////////////////////////////////////
template<typename T, typename U, typename P, typename E>
struct division_result {
typedef typename base_type<T>::type base_type_t;
static_assert(
std::is_literal_type< interval<base_type_t> >::value,
"interval<base_type_t> is not literal type"
);
typedef typename base_type<U>::type base_type_u;
static_assert(
std::is_literal_type< interval<base_type_u> >::value,
"interval<base_type_u> is not tliteral type"
);
SAFE_NUMERIC_CONSTEXPR static interval<base_type_t> t(){
return interval<base_type_t>(
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
);
};
SAFE_NUMERIC_CONSTEXPR static interval<base_type_u> u(){
return interval<base_type_u>(
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
);
};
using max_t = typename boost::mpl::if_c<
std::numeric_limits<base_type_t>::is_signed
|| std::numeric_limits<base_type_u>::is_signed,
std::intmax_t,
std::uintmax_t
>::type;
template<typename Tx>
SAFE_NUMERIC_CONSTEXPR static const interval<Tx> r_upper(const interval<Tx> & t){
static_assert(
std::is_literal_type< interval<Tx> >::value,
"interval<Tx> is not literal type"
);
return interval<Tx>(
max(checked_result<Tx>(1), t.l),
t.u
);
}
template<typename Tx>
SAFE_NUMERIC_CONSTEXPR static const interval<Tx> r_lower(const interval<Tx> & t){
static_assert(
std::is_literal_type< interval<Tx> >::value,
"interval<Tx> is not literal type"
);
return interval<Tx>(
t.l,
min(checked_result<Tx>(-1), t.u)
);
}
// result unsigned
template<class R, typename Tx, typename Ux>
static typename boost::enable_if_c<
! std::numeric_limits<Ux>::is_signed,
const interval<R>
>::type
SAFE_NUMERIC_CONSTEXPR r(
const interval<Tx> & t,
const interval<Ux> & u
){
if(u.l > 0)
return operator/<R>(t, u);
else
return operator/<R>(t, r_upper(u)) ;
};
// result signed
template<class R, typename Tx, typename Ux>
static typename boost::enable_if_c<
std::numeric_limits<Ux>::is_signed,
const interval<R>
>::type
SAFE_NUMERIC_CONSTEXPR r(
const interval<Tx> & t,
const interval<Ux> & u
){
if(u.l > 0 || u.u < 0){
return operator/<R>(t, u);
}
else{
auto lower = operator/<R>(t,r_lower(u));
auto upper = operator/<R>(t,r_upper(u));
return
interval<R>(
min(lower.l, upper.l),
max(lower.u, upper.u)
);
}
}
//typedef print<std::integral_constant<bool, (u.l > 0) >> p_ulgt0;
//typedef print<std::integral_constant<bool, (u.u < 0) >> p_uult0;
constexpr const static interval<max_t> ni = r<max_t>(t(), u());
//static_assert(ni.l.no_exception(), "invalid lower bound");
//static_assert(ni.u.no_exception(), "invalid upper bound");
SAFE_NUMERIC_CONSTEXPR static const max_t newmin = ni.l.no_exception() ?
static_cast<max_t>(ni.l)
:
std::numeric_limits<max_t>::min()
;
//typedef print<std::integral_constant<max_t, newmin>> p_newmin;
SAFE_NUMERIC_CONSTEXPR static const max_t newmax = ni.u.no_exception() ?
static_cast<max_t>(ni.u)
:
std::numeric_limits<max_t>::max()
;
//typedef print<std::integral_constant<max_t, newmax>> p_newmax;
static_assert(
newmin <= newmax,
"new minimumum must be less than new maximum"
);
static_assert(
std::numeric_limits<max_t>::min() >= 0 || std::is_signed<max_t>::value,
"newmin < 0 and unsigned can't happen"
);
typedef typename safe_range<
max_t,
newmin,
newmax,
P,
E
>::type type;
};
// forward to correct divide implementation
template<class R, class T, class U>
checked_result<R>
static SAFE_NUMERIC_CONSTEXPR divide(
const T & t,
const U & u
){
return checked::divide_automatic<R>(t, u);
}
///////////////////////////////////////////////////////////////////////
template<typename T, typename U, typename P, typename E>
struct modulus_result {
typedef typename base_type<T>::type base_type_t;
static_assert(
std::is_literal_type< interval<base_type_t> >::value,
"interval<base_type_t> is not literal type"
);
typedef typename base_type<U>::type base_type_u;
static_assert(
std::is_literal_type< interval<base_type_u> >::value,
"interval<base_type_u> is not tliteral type"
);
using max_t = typename boost::mpl::if_c<
std::numeric_limits<base_type_t>::is_signed
|| std::numeric_limits<base_type_u>::is_signed,
std::intmax_t,
std::uintmax_t
>::type;
typedef typename safe_range<
max_t,
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max()),
P,
E
>::type type;
};
template<typename T, typename U, typename P, typename E>
struct left_shift_result {
typedef typename base_type<T>::type t_base_type;
typedef typename base_type<U>::type u_base_type;
SAFE_NUMERIC_CONSTEXPR static const interval<t_base_type> t = {
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
SAFE_NUMERIC_CONSTEXPR static const interval<u_base_type> u = {
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
typedef decltype(t_base_type() << u_base_type()) r_base_type;
SAFE_NUMERIC_CONSTEXPR static const interval<r_base_type> r
= operator<<<r_base_type>(t, u);
typedef safe_base<r_base_type, r.l, r.u, P, E> type;
};
template<typename T, typename U, typename P, typename E>
struct right_shift_result {
typedef typename base_type<T>::type t_base_type;
typedef typename base_type<U>::type u_base_type;
SAFE_NUMERIC_CONSTEXPR static const interval<t_base_type> t = {
base_value(std::numeric_limits<T>::min()),
base_value(std::numeric_limits<T>::max())
};
SAFE_NUMERIC_CONSTEXPR static const interval<u_base_type> u = {
base_value(std::numeric_limits<U>::min()),
base_value(std::numeric_limits<U>::max())
};
typedef decltype(t_base_type() >> u_base_type()) r_base_type;
SAFE_NUMERIC_CONSTEXPR static const interval<r_base_type> r
= operator>><r_base_type>(t, u);
typedef safe_base<r_base_type, r.l, r.u, P, E> type;
};
};
} // numeric
} // boost
#endif // BOOST_NUMERIC_AUTOMATIC_HPP