Files
safe_numerics/include/utility.hpp
Robert Ramey 9b0a15e820 Made corrections so that automatic policy returns the smallest possible result.
fixed left/right shift, divide, modulus, and bitwise operations
2017-04-07 18:06:59 -07:00

160 lines
4.6 KiB
C++

#ifndef BOOST_NUMERIC_UTILITY_HPP
#define BOOST_NUMERIC_UTILITY_HPP
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2015 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstdint> // intmax_t, uintmax_t, uint8_t, ...
#include <algorithm>
#include <type_traits>
#include <limits>
#include <boost/mpl/if.hpp> // if_c
#include <boost/integer.hpp> // (u)int_t<>::least, exact
namespace boost {
namespace numeric {
namespace utility {
// used for debugging
// usage - print_type<T>;
// provokes error message with name of type T
template<typename Tx>
using print_type = typename Tx::error_message;
template<int N>
struct print_value
{
enum test : char {
value = N < 0 ? N - 256 : N + 256
};
};
template<typename T>
using bits_type = std::integral_constant<
int,
std::numeric_limits<T>::digits
+ (std::numeric_limits<T>::is_signed ? 1 : 0)
>;
/*
From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
Find the log base 2 of an integer with a lookup table
static const char LogTable256[256] =
{
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
unsigned int v; // 32-bit word to find the log of
unsigned r; // r will be lg(v)
register unsigned int t, tt; // temporaries
if (tt = v >> 16)
{
r = (t = tt >> 8) ? 24 + LogTable256[t] : 16 + LogTable256[tt];
}
else
{
r = (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
}
The lookup table method takes only about 7 operations to find the log of a 32-bit value.
If extended for 64-bit quantities, it would take roughly 9 operations. Another operation
can be trimmed off by using four tables, with the possible additions incorporated into each.
Using int table elements may be faster, depending on your architecture.
*/
// I've "improved" the above and recast as C++ code which depends upon
// the optimizer to minimize the operations. This should result in
// nine operations to calculate the position of the highest order
// bit in a 64 bit number. RR
constexpr unsigned int log2(const boost::uint_t<8>::exact & t){
constexpr const char LogTable256[256] = {
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
return LogTable256[t];
}
constexpr unsigned int log2(const boost::uint_t<16>::exact & t){
const boost::uint_t<8>::exact upper_half = (t >> 8);
return upper_half == 0
? log2(static_cast<boost::uint_t<8>::exact>(t))
: 8 + log2(upper_half);
}
constexpr unsigned int log2(const boost::uint_t<32>::exact & t){
const boost::uint_t<16>::exact upper_half = (t >> 16);
return upper_half == 0
? log2(static_cast<boost::uint_t<16>::exact>(t))
: 16 + log2(upper_half);
}
constexpr unsigned int log2(const boost::uint_t<64>::exact & t){
const boost::uint_t<32>::exact upper_half = (t >> 32);
return upper_half == 0
? log2(static_cast<boost::uint_t<32>::exact>(t))
: 32 + log2(upper_half);
}
template<typename T>
constexpr unsigned int log(const T & t){
return log2(
static_cast<typename boost::uint_t<bits_type<T>::value>::exact>(t)
);
}
// the number of bits required to render the value in x
template<typename T>
constexpr unsigned int significant_bits(const T & t){
return log(t) + 1;
}
template<typename T>
constexpr unsigned int bits_value(const T & t){
const unsigned int sb = significant_bits(t);
const unsigned int sb_max = significant_bits(std::numeric_limits<T>::max());
return sb < sb_max ? ((sb << 1) - 1) : std::numeric_limits<T>::max();
}
// return type required to store a particular range
template<
std::intmax_t Min,
std::intmax_t Max
>
// signed range
using signed_stored_type = typename boost::int_t<
std::max(
significant_bits(Min),
significant_bits(Max)
)
>::least ;
template<
std::uintmax_t Min,
std::uintmax_t Max
>
// unsigned range
using unsigned_stored_type = typename boost::uint_t<
significant_bits(Max)
>::least ;
} // utility
} // numeric
} // boost
#endif // BOOST_NUMERIC_UTILITY_HPP