2
0
mirror of https://github.com/boostorg/redis.git synced 2026-01-19 04:42:09 +00:00
Files
redis/test/test_flat_tree.cpp
Anarthal (Rubén Pérez) 3b07119e54 Makes flat_tree aware of incremental parsing to avoid race conditions with pushes (#378)
Adds the concept of a "temporary working area" to flat_tree. Nodes in this area belong to a partially parsed message, and are hidden from the user. Now flat_tree can be used as the receive response without explicitly handling partial messages.
Changes flat_tree::get_view return type from const vector& to span.
Adds flat_tree::capacity.
Splits generic_flat_response tests to a separate file and adds extra cases.

close #369
2026-01-07 09:55:23 +01:00

1328 lines
35 KiB
C++

/* Copyright (c) 2018-2022 Marcelo Zimbres Silva (mzimbres@gmail.com)
*
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE.txt)
*/
#include <boost/redis/adapter/adapt.hpp>
#include <boost/redis/resp3/flat_tree.hpp>
#include <boost/redis/resp3/node.hpp>
#include <boost/redis/resp3/parser.hpp>
#include <boost/redis/resp3/type.hpp>
#include <boost/assert/source_location.hpp>
#include <boost/core/lightweight_test.hpp>
#include <boost/core/span.hpp>
#include "print_node.hpp"
#include <algorithm>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <string>
#include <string_view>
#include <vector>
using boost::redis::adapter::adapt2;
using boost::redis::adapter::result;
using boost::redis::resp3::tree;
using boost::redis::resp3::flat_tree;
using boost::redis::generic_flat_response;
using boost::redis::resp3::type;
using boost::redis::resp3::detail::deserialize;
using boost::redis::resp3::node;
using boost::redis::resp3::node_view;
using boost::redis::resp3::parser;
using boost::redis::resp3::to_string;
using boost::redis::response;
using boost::system::error_code;
namespace {
void add_nodes(
flat_tree& to,
std::string_view data,
boost::source_location loc = BOOST_CURRENT_LOCATION)
{
error_code ec;
deserialize(data, adapt2(to), ec);
if (!BOOST_TEST_EQ(ec, error_code{}))
std::cerr << "Called from " << loc << std::endl;
}
bool parse_checked(
flat_tree& to,
parser& p,
std::string_view data,
boost::source_location loc = BOOST_CURRENT_LOCATION)
{
error_code ec;
auto adapter = adapt2(to);
bool done = boost::redis::resp3::parse(p, data, adapter, ec);
if (!BOOST_TEST_EQ(ec, error_code{}))
std::cerr << "Called from " << loc << std::endl;
return done;
}
void check_nodes(
const flat_tree& tree,
boost::span<const node_view> expected,
boost::source_location loc = BOOST_CURRENT_LOCATION)
{
if (!BOOST_TEST_ALL_EQ(
tree.get_view().begin(),
tree.get_view().end(),
expected.begin(),
expected.end()))
std::cerr << "Called from " << loc << std::endl;
}
// --- Adding nodes ---
// Adding nodes works, even when reallocations happen.
// Empty nodes don't cause trouble
void test_add_nodes()
{
flat_tree t;
// Add a bunch of nodes. Single allocation. Some nodes are empty.
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// Capacity will have raised to 512 bytes, at least. Add some more without reallocations
add_nodes(t, "$3\r\nbye\r\n");
expected_nodes.push_back({type::blob_string, 1u, 0u, "bye"});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 13u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 2u);
// Add nodes above the first reallocation threshold. Node strings are still valid
const std::string long_value(600u, 'a');
add_nodes(t, "+" + long_value + "\r\n");
expected_nodes.push_back({type::simple_string, 1u, 0u, long_value});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 613u);
BOOST_TEST_EQ(t.data_capacity(), 1024u);
BOOST_TEST_EQ(t.get_reallocs(), 2u);
BOOST_TEST_EQ(t.get_total_msgs(), 3u);
// Add some more nodes, still within the reallocation threshold
add_nodes(t, "+some_other_value\r\n");
expected_nodes.push_back({type::simple_string, 1u, 0u, "some_other_value"});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 629u);
BOOST_TEST_EQ(t.data_capacity(), 1024u);
BOOST_TEST_EQ(t.get_reallocs(), 2u);
BOOST_TEST_EQ(t.get_total_msgs(), 4u);
// Add some more, causing another reallocation
add_nodes(t, "+" + long_value + "\r\n");
expected_nodes.push_back({type::simple_string, 1u, 0u, long_value});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 1229u);
BOOST_TEST_EQ(t.data_capacity(), 2048u);
BOOST_TEST_EQ(t.get_reallocs(), 3u);
BOOST_TEST_EQ(t.get_total_msgs(), 5u);
}
// Strings are really copied into the object
void test_add_nodes_copies()
{
flat_tree t;
// Place the message in dynamic memory
constexpr std::string_view const_msg = "+some_long_value_for_a_node\r\n";
std::unique_ptr<char[]> data{new char[100]{}};
std::copy(const_msg.begin(), const_msg.end(), data.get());
// Add nodes pointing into this message
add_nodes(t, data.get());
// Invalidate the original message
data.reset();
// Check
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "some_long_value_for_a_node"},
};
check_nodes(t, expected_nodes);
}
// Reallocations happen only when we would exceed capacity
void test_add_nodes_capacity_limit()
{
flat_tree t;
// Add a node to reach capacity 512
add_nodes(t, "+hello\r\n");
BOOST_TEST_EQ(t.data_size(), 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
// Fill the rest of the capacity
add_nodes(t, "+" + std::string(507u, 'b') + "\r\n");
BOOST_TEST_EQ(t.data_size(), 512u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
// Adding an empty node here doesn't change capacity
add_nodes(t, "_\r\n");
BOOST_TEST_EQ(t.data_size(), 512u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
// Adding more data causes a reallocation
add_nodes(t, "+a\r\n");
BOOST_TEST_EQ(t.data_size(), 513u);
BOOST_TEST_EQ(t.data_capacity(), 1024);
// Same goes for the next capacity limit
add_nodes(t, "+" + std::string(511u, 'c') + "\r\n");
BOOST_TEST_EQ(t.data_size(), 1024);
BOOST_TEST_EQ(t.data_capacity(), 1024);
// Reallocation
add_nodes(t, "+u\r\n");
BOOST_TEST_EQ(t.data_size(), 1025u);
BOOST_TEST_EQ(t.data_capacity(), 2048u);
// This would continue
add_nodes(t, "+" + std::string(1024u, 'd') + "\r\n");
BOOST_TEST_EQ(t.data_size(), 2049u);
BOOST_TEST_EQ(t.data_capacity(), 4096u);
}
// It's no problem if a node is big enough to surpass several reallocation limits
void test_add_nodes_big_node()
{
flat_tree t;
// Add a bunch of nodes. Single allocation. Some nodes are empty.
const std::string long_value(1500u, 'h');
add_nodes(t, "+" + long_value + "\r\n");
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, long_value},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 1500u);
BOOST_TEST_EQ(t.data_capacity(), 2048u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Flat trees have a temporary area (tmp) where nodes are stored while
// messages are being parsed. Nodes in the tmp area are not part of the representation
// until they are committed when the message has been fully parsed
void test_add_nodes_tmp()
{
flat_tree t;
parser p;
// Add part of a message, but not all of it.
// These nodes are stored but are not part of the user-facing representation
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// Finish the message. Nodes will now show up
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// We can repeat this cycle again
p.reset();
BOOST_TEST_NOT(parse_checked(t, p, ">2\r\n+good\r\n"));
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
BOOST_TEST(parse_checked(t, p, ">2\r\n+good\r\n+bye\r\n"));
expected_nodes.push_back({type::push, 2u, 0u, ""});
expected_nodes.push_back({type::simple_string, 1u, 1u, "good"});
expected_nodes.push_back({type::simple_string, 1u, 1u, "bye"});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 17u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_total_msgs(), 2u);
}
// If there was an unfinished message when another message is started,
// the former is discarded
void test_add_nodes_existing_tmp()
{
flat_tree t;
parser p;
// Add part of a message
BOOST_TEST_NOT(parse_checked(t, p, ">3\r\n+some message\r\n"));
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// This message is abandoned, and another one is started
p.reset();
BOOST_TEST_NOT(parse_checked(t, p, "%66\r\n+abandoned\r\n"));
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// This happens again, but this time a complete message is added
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// The same works even if there is existing committed data
void test_add_nodes_existing_data_and_tmp()
{
flat_tree t;
parser p;
// Add a full message
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// Add part of a message
p.reset();
BOOST_TEST_NOT(parse_checked(t, p, "%66\r\n+abandoned\r\n"));
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// This message is abandoned, and replaced by a full one
add_nodes(t, "+complete message\r\n");
expected_nodes.push_back({type::simple_string, 1u, 0u, "complete message"});
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 26u);
BOOST_TEST_EQ(t.get_total_msgs(), 2u);
}
// --- Reserving space ---
// The usual case, calling it before using it
void test_reserve()
{
flat_tree t;
t.reserve(1024u, 5u);
check_nodes(t, {});
BOOST_TEST_GE(t.capacity(), 5u);
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 1024);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// Adding some nodes now works
add_nodes(t, "+hello\r\n");
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
check_nodes(t, expected_nodes);
}
// Reserving space uses the same allocation thresholds
void test_reserve_not_power_of_2()
{
flat_tree t;
// First threshold at 512
t.reserve(200u, 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
// Second threshold at 1024
t.reserve(600u, 5u);
BOOST_TEST_EQ(t.data_capacity(), 1024u);
BOOST_TEST_EQ(t.get_reallocs(), 2u);
}
// Requesting a capacity below the current one does nothing
void test_reserve_below_current_capacity()
{
flat_tree t;
// Reserving with a zero capacity does nothing
t.reserve(0u, 0u);
BOOST_TEST_EQ(t.data_capacity(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
// Increase capacity
t.reserve(400u, 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
// Reserving again does nothing
t.reserve(400u, 5u);
t.reserve(512u, 5u);
t.reserve(0u, 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
}
// Reserving might reallocate. If there are nodes, strings remain valid
void test_reserve_with_data()
{
flat_tree t;
// Add a bunch of nodes, and then reserve
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
t.reserve(1000u, 10u);
// Check
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 1024u);
BOOST_TEST_EQ(t.get_reallocs(), 2u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Reserve also handles the tmp area
void test_reserve_with_tmp()
{
flat_tree t;
parser p;
// Add a partial message, and then reserve
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
t.reserve(1000u, 10u);
// Finish the current message so nodes in the tmp area show up
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
// Check
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 1024u);
BOOST_TEST_EQ(t.get_reallocs(), 2u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// --- Clear ---
void test_clear()
{
flat_tree t;
// Add a bunch of nodes, then clear
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
t.clear();
// Nodes are no longer there, but memory hasn't been fred
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// Clearing an empty tree doesn't cause trouble
void test_clear_empty()
{
flat_tree t;
t.clear();
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// With clear, memory can be reused
// The response should be reusable.
void test_clear_reuse()
{
flat_tree t;
// First use
add_nodes(t, "~6\r\n+orange\r\n+apple\r\n+one\r\n+two\r\n+three\r\n+orange\r\n");
std::vector<node_view> expected_nodes{
{type::set, 6u, 0u, "" },
{type::simple_string, 1u, 1u, "orange"},
{type::simple_string, 1u, 1u, "apple" },
{type::simple_string, 1u, 1u, "one" },
{type::simple_string, 1u, 1u, "two" },
{type::simple_string, 1u, 1u, "three" },
{type::simple_string, 1u, 1u, "orange"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// Second use
t.clear();
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
expected_nodes = {
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Clear doesn't remove the tmp area
void test_clear_tmp()
{
flat_tree t;
parser p;
// Add a full message and part of another
add_nodes(t, ">2\r\n+orange\r\n+apple\r\n");
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
std::vector<node_view> expected_nodes{
{type::push, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "orange"},
{type::simple_string, 1u, 1u, "apple" },
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// Clearing removes the user-facing representation
t.clear();
check_nodes(t, {});
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// The nodes in the tmp area are still alive. Adding the remaining yields the full message
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
expected_nodes = {
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Clearing having only tmp area is safe
void test_clear_only_tmp()
{
flat_tree t;
parser p;
// Add part of a message
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
check_nodes(t, {});
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// Clearing here does nothing
t.clear();
check_nodes(t, {});
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// The nodes in the tmp area are still alive. Adding the remaining yields the full message
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
std::vector<node_view> expected_nodes = {
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Clearing having tmp nodes but no data is also safe
void test_clear_only_tmp_nodes()
{
flat_tree t;
parser p;
// Add part of a message
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n"));
check_nodes(t, {});
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// Clearing here does nothing
t.clear();
check_nodes(t, {});
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
// The nodes in the tmp area are still alive. Adding the remaining yields the full message
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
std::vector<node_view> expected_nodes = {
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// --- Default ctor ---
void test_default_constructor()
{
flat_tree t;
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// --- Copy ctor ---
void test_copy_ctor()
{
// Setup
auto t = std::make_unique<flat_tree>();
add_nodes(*t, "*2\r\n+hello\r\n+world\r\n");
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
// Construct, then destroy the original copy
flat_tree t2{*t};
t.reset();
// Check
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 10u);
BOOST_TEST_EQ(t2.data_capacity(), 512u);
BOOST_TEST_EQ(t2.get_reallocs(), 1u);
BOOST_TEST_EQ(t2.get_total_msgs(), 1u);
}
// Copying an empty tree doesn't cause problems
void test_copy_ctor_empty()
{
flat_tree t;
flat_tree t2{t};
check_nodes(t2, {});
BOOST_TEST_EQ(t2.data_size(), 0u);
BOOST_TEST_EQ(t2.data_capacity(), 0u);
BOOST_TEST_EQ(t2.get_reallocs(), 0u);
BOOST_TEST_EQ(t2.get_total_msgs(), 0u);
}
// Copying an object that has no elements but some capacity doesn't cause trouble
void test_copy_ctor_empty_with_capacity()
{
flat_tree t;
t.reserve(300u, 8u);
flat_tree t2{t};
check_nodes(t2, {});
BOOST_TEST_EQ(t2.data_size(), 0u);
BOOST_TEST_EQ(t2.data_capacity(), 0u);
BOOST_TEST_EQ(t2.get_reallocs(), 0u);
BOOST_TEST_EQ(t2.get_total_msgs(), 0u);
}
// Copying an object with more capacity than required adjusts its capacity
void test_copy_ctor_adjust_capacity()
{
// Setup
flat_tree t;
add_nodes(t, "+hello\r\n");
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
// Cause reallocations
t.reserve(1000u, 10u);
t.reserve(2000u, 10u);
t.reserve(4000u, 10u);
// Copy
flat_tree t2{t};
// The target object has the minimum required capacity,
// and the number of reallocs has been reset
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 5u);
BOOST_TEST_EQ(t2.data_capacity(), 512u);
BOOST_TEST_EQ(t2.get_reallocs(), 1u);
BOOST_TEST_EQ(t2.get_total_msgs(), 1u);
}
// Copying an object also copies its tmp area
void test_copy_ctor_tmp()
{
// Setup
flat_tree t;
parser p;
add_nodes(t, "+message\r\n");
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "message"},
};
// Copy. The copy has the tmp nodes but they're hidden in its tmp area
flat_tree t2{t};
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 7u);
BOOST_TEST_EQ(t2.get_total_msgs(), 1u);
// Finishing the message in the copy works
BOOST_TEST(parse_checked(t2, p, "*2\r\n+hello\r\n+world\r\n"));
expected_nodes = {
{type::simple_string, 1u, 0u, "message"},
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello" },
{type::simple_string, 1u, 1u, "world" },
};
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 17u);
BOOST_TEST_EQ(t2.get_total_msgs(), 2u);
}
// --- Move ctor ---
void test_move_ctor()
{
flat_tree t;
add_nodes(t, "*2\r\n+hello\r\n+world\r\n");
flat_tree t2{std::move(t)};
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 10u);
BOOST_TEST_EQ(t2.data_capacity(), 512u);
BOOST_TEST_EQ(t2.get_reallocs(), 1u);
BOOST_TEST_EQ(t2.get_total_msgs(), 1u);
}
// Moving an empty object doesn't cause trouble
void test_move_ctor_empty()
{
flat_tree t;
flat_tree t2{std::move(t)};
check_nodes(t2, {});
BOOST_TEST_EQ(t2.data_size(), 0u);
BOOST_TEST_EQ(t2.data_capacity(), 0u);
BOOST_TEST_EQ(t2.get_reallocs(), 0u);
BOOST_TEST_EQ(t2.get_total_msgs(), 0u);
}
// Moving an object with capacity but no data doesn't cause trouble
void test_move_ctor_with_capacity()
{
flat_tree t;
t.reserve(1000u, 10u);
flat_tree t2{std::move(t)};
check_nodes(t2, {});
BOOST_TEST_EQ(t2.data_size(), 0u);
BOOST_TEST_EQ(t2.data_capacity(), 1024u);
BOOST_TEST_EQ(t2.get_reallocs(), 1u);
BOOST_TEST_EQ(t2.get_total_msgs(), 0u);
}
// Moving an object also moves its tmp area
void test_move_ctor_tmp()
{
// Setup
flat_tree t;
parser p;
add_nodes(t, "+message\r\n");
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+hello\r\n"));
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "message"},
};
// Move. The new object has the same tmp area
flat_tree t2{std::move(t)};
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 7u);
BOOST_TEST_EQ(t2.get_total_msgs(), 1u);
// Finishing the message in the copy works
BOOST_TEST(parse_checked(t2, p, "*2\r\n+hello\r\n+world\r\n"));
expected_nodes = {
{type::simple_string, 1u, 0u, "message"},
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello" },
{type::simple_string, 1u, 1u, "world" },
};
check_nodes(t2, expected_nodes);
BOOST_TEST_EQ(t2.data_size(), 17u);
BOOST_TEST_EQ(t2.get_total_msgs(), 2u);
}
// --- Copy assignment ---
void test_copy_assign()
{
flat_tree t;
add_nodes(t, "+some_data\r\n");
auto t2 = std::make_unique<flat_tree>();
add_nodes(*t2, "*2\r\n+hello\r\n+world\r\n");
t = *t2;
// Delete the source object, to check that we copied the contents
t2.reset();
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// The lhs is empty and doesn't have any capacity
void test_copy_assign_target_empty()
{
flat_tree t;
flat_tree t2;
add_nodes(t2, "+hello\r\n");
t = t2;
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// If the target doesn't have enough capacity, a reallocation happens
void test_copy_assign_target_not_enough_capacity()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
const std::string big_node(2000u, 'a');
flat_tree t2;
add_nodes(t2, "+" + big_node + "\r\n");
t = t2;
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, big_node},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 2000u);
BOOST_TEST_EQ(t.data_capacity(), 2048u);
BOOST_TEST_EQ(t.get_reallocs(), 2u); // initial + assignment
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// If the source of the assignment is empty, nothing bad happens
void test_copy_assign_source_empty()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
t = t2;
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 512u); // capacity is kept
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// If the source of the assignment has capacity but no data, we're OK
void test_copy_assign_source_with_capacity()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
t2.reserve(1000u, 4u);
t2.reserve(4000u, 8u);
t = t2;
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 512u); // capacity is kept
BOOST_TEST_EQ(t.get_reallocs(), 1u); // not propagated
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// If the source of the assignment has data with extra capacity
// and a reallocation is needed, the minimum amount of space is allocated
void test_copy_assign_source_with_extra_capacity()
{
flat_tree t;
flat_tree t2;
add_nodes(t2, "+hello\r\n");
t2.reserve(4000u, 8u);
t = t2;
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
void test_copy_assign_both_empty()
{
flat_tree t;
flat_tree t2;
t = t2;
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// Self-assignment doesn't cause trouble
void test_copy_assign_self()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
const auto& tref = t;
t = tref;
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// Copy assignment also assigns the tmp area
void test_copy_assign_tmp()
{
parser p;
flat_tree t;
add_nodes(t, "+some_data\r\n");
flat_tree t2;
add_nodes(t2, "+message\r\n");
BOOST_TEST_NOT(parse_checked(t2, p, "*2\r\n+hello\r\n"));
// Assigning also copies where the tmp area starts
t = t2;
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "message"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 7u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// The tmp area was also copied
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
expected_nodes = {
{type::simple_string, 1u, 0u, "message"},
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello" },
{type::simple_string, 1u, 1u, "world" },
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 17u);
BOOST_TEST_EQ(t.get_total_msgs(), 2u);
}
// --- Move assignment ---
void test_move_assign()
{
flat_tree t;
add_nodes(t, "+some_data\r\n");
flat_tree t2;
add_nodes(t2, "*2\r\n+hello\r\n+world\r\n");
t = std::move(t2);
std::vector<node_view> expected_nodes{
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello"},
{type::simple_string, 1u, 1u, "world"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 10u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// The lhs is empty and doesn't have any capacity
void test_move_assign_target_empty()
{
flat_tree t;
flat_tree t2;
add_nodes(t2, "+hello\r\n");
t = std::move(t2);
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "hello"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 5u);
BOOST_TEST_EQ(t.data_capacity(), 512u);
BOOST_TEST_EQ(t.get_reallocs(), 1u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
}
// If the source of the assignment is empty, nothing bad happens
void test_move_assign_source_empty()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
t = std::move(t2);
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// If both source and target are empty, nothing bad happens
void test_move_assign_both_empty()
{
flat_tree t;
flat_tree t2;
t = std::move(t2);
check_nodes(t, {});
BOOST_TEST_EQ(t.data_size(), 0u);
BOOST_TEST_EQ(t.data_capacity(), 0u);
BOOST_TEST_EQ(t.get_reallocs(), 0u);
BOOST_TEST_EQ(t.get_total_msgs(), 0u);
}
// Move assignment also propagates the tmp area
void test_move_assign_tmp()
{
parser p;
flat_tree t;
add_nodes(t, "+some_data\r\n");
flat_tree t2;
add_nodes(t2, "+message\r\n");
BOOST_TEST_NOT(parse_checked(t2, p, "*2\r\n+hello\r\n"));
// When moving, the tmp area is moved, too
t = std::move(t2);
std::vector<node_view> expected_nodes{
{type::simple_string, 1u, 0u, "message"},
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 7u);
BOOST_TEST_EQ(t.get_total_msgs(), 1u);
// Finish the message
BOOST_TEST(parse_checked(t, p, "*2\r\n+hello\r\n+world\r\n"));
expected_nodes = {
{type::simple_string, 1u, 0u, "message"},
{type::array, 2u, 0u, "" },
{type::simple_string, 1u, 1u, "hello" },
{type::simple_string, 1u, 1u, "world" },
};
check_nodes(t, expected_nodes);
BOOST_TEST_EQ(t.data_size(), 17u);
BOOST_TEST_EQ(t.get_total_msgs(), 2u);
}
// --- Comparison ---
void test_comparison_different()
{
flat_tree t;
add_nodes(t, "+some_data\r\n");
flat_tree t2;
add_nodes(t2, "*2\r\n+hello\r\n+world\r\n");
BOOST_TEST_NOT(t == t2);
BOOST_TEST(t != t2);
BOOST_TEST_NOT(t2 == t);
BOOST_TEST(t2 != t);
}
// The only difference is node types
void test_comparison_different_node_types()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
add_nodes(t2, "$5\r\nhello\r\n");
BOOST_TEST_NOT(t == t2);
BOOST_TEST(t != t2);
}
void test_comparison_equal()
{
flat_tree t;
add_nodes(t, "+some_data\r\n");
flat_tree t2;
add_nodes(t2, "+some_data\r\n");
BOOST_TEST(t == t2);
BOOST_TEST_NOT(t != t2);
}
// Allocations are not taken into account when comparing
void test_comparison_equal_reallocations()
{
const std::string big_node(2000u, 'a');
flat_tree t;
t.reserve(100u, 5u);
add_nodes(t, "+" + big_node + "\r\n");
BOOST_TEST_EQ(t.get_reallocs(), 2u);
flat_tree t2;
t2.reserve(2048u, 5u);
add_nodes(t2, "+" + big_node + "\r\n");
BOOST_TEST_EQ(t2.get_reallocs(), 1u);
BOOST_TEST(t == t2);
BOOST_TEST_NOT(t != t2);
}
// Capacity is not taken into account when comparing
void test_comparison_equal_capacity()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
t2.reserve(2048u, 5u);
add_nodes(t2, "+hello\r\n");
BOOST_TEST(t == t2);
BOOST_TEST_NOT(t != t2);
}
// Empty containers don't cause trouble
void test_comparison_empty()
{
flat_tree t;
add_nodes(t, "$5\r\nhello\r\n");
flat_tree tempty, tempty2;
BOOST_TEST_NOT(t == tempty);
BOOST_TEST(t != tempty);
BOOST_TEST_NOT(tempty == t);
BOOST_TEST(tempty != t);
BOOST_TEST(tempty == tempty2);
BOOST_TEST_NOT(tempty != tempty2);
}
// Self comparisons don't cause trouble
void test_comparison_self()
{
flat_tree t;
add_nodes(t, "$5\r\nhello\r\n");
flat_tree tempty;
BOOST_TEST(t == t);
BOOST_TEST_NOT(t != t);
BOOST_TEST(tempty == tempty);
BOOST_TEST_NOT(tempty != tempty);
}
// The tmp area is not taken into account when comparing
void test_comparison_tmp()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
add_nodes(t2, "+hello\r\n");
parser p;
BOOST_TEST_NOT(parse_checked(t2, p, "*2\r\n+more data\r\n"));
BOOST_TEST(t == t2);
BOOST_TEST_NOT(t != t2);
}
void test_comparison_tmp_different()
{
flat_tree t;
add_nodes(t, "+hello\r\n");
flat_tree t2;
add_nodes(t2, "+world\r\n");
parser p;
BOOST_TEST_NOT(parse_checked(t2, p, "*2\r\n+more data\r\n"));
BOOST_TEST_NOT(t == t2);
BOOST_TEST(t != t2);
}
// Comparing object with only tmp area doesn't cause trouble
void test_comparison_only_tmp()
{
flat_tree t;
parser p;
BOOST_TEST_NOT(parse_checked(t, p, "*2\r\n+more data\r\n"));
flat_tree t2;
parser p2;
BOOST_TEST_NOT(parse_checked(t2, p2, "*2\r\n+random\r\n"));
BOOST_TEST(t == t2);
BOOST_TEST_NOT(t != t2);
}
// --- Capacity ---
// Delegates to the underlying vector function
void test_capacity()
{
flat_tree t;
BOOST_TEST_EQ(t.capacity(), 0u);
// Inserting a node increases capacity.
// It is not specified how capacity grows, though.
add_nodes(t, "+hello\r\n");
BOOST_TEST_GE(t.capacity(), 1u);
// Reserve also affects capacity
t.reserve(1000u, 8u);
BOOST_TEST_GE(t.capacity(), 8u);
}
} // namespace
int main()
{
test_add_nodes();
test_add_nodes_copies();
test_add_nodes_capacity_limit();
test_add_nodes_big_node();
test_add_nodes_tmp();
test_add_nodes_existing_tmp();
test_add_nodes_existing_data_and_tmp();
test_reserve();
test_reserve_not_power_of_2();
test_reserve_below_current_capacity();
test_reserve_with_data();
test_reserve_with_tmp();
test_clear();
test_clear_empty();
test_clear_reuse();
test_clear_tmp();
test_clear_only_tmp();
test_clear_only_tmp_nodes();
test_default_constructor();
test_copy_ctor();
test_copy_ctor_empty();
test_copy_ctor_empty_with_capacity();
test_copy_ctor_adjust_capacity();
test_copy_ctor_tmp();
test_move_ctor();
test_move_ctor_empty();
test_move_ctor_with_capacity();
test_move_ctor_tmp();
test_copy_assign();
test_copy_assign_target_empty();
test_copy_assign_target_not_enough_capacity();
test_copy_assign_source_empty();
test_copy_assign_source_with_capacity();
test_copy_assign_source_with_extra_capacity();
test_copy_assign_both_empty();
test_copy_assign_self();
test_copy_assign_tmp();
test_move_assign();
test_move_assign_target_empty();
test_move_assign_source_empty();
test_move_assign_both_empty();
test_move_assign_tmp();
test_comparison_different();
test_comparison_different_node_types();
test_comparison_equal();
test_comparison_equal_reallocations();
test_comparison_equal_capacity();
test_comparison_empty();
test_comparison_self();
test_comparison_tmp();
test_comparison_tmp_different();
test_comparison_only_tmp();
test_capacity();
return boost::report_errors();
}