Files
rational/include/boost/rational.hpp
Beman Dawes af8e30a7fb This commit was generated by cvs2svn to compensate for changes in r4,
which included commits to RCS files with non-trunk default branches.


[SVN r7621]
2000-07-07 16:04:40 +00:00

322 lines
8.8 KiB
C++

// Boost rational.hpp header file ------------------------------------------//
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or
// implied warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Credits:
// Thanks to the boost mailing list in general for useful comments.
// Particular contributions included:
// Andrew D Jewell, for reminding me to take care to avoid overflow
// Ed Brey, for many comments, including picking up on some dreadful typos
// Revision History
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
// affected (Beman Dawes)
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
// 14 Dec 99 Modifications based on comments from the boost list
// 09 Dec 99 Initial Version (Paul Moore)
#ifndef BOOST_RATIONAL_HPP
#define BOOST_RATIONAL_HPP
#include <iostream> // for std::istream and std::ostream
#include <stdexcept> // for std::domain_error
#include <string> // for std::string implicit constructor
#include <boost/operators.hpp> // for boost::addable etc
#include <cstdlib> // for std::abs
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
namespace boost {
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
while (m) {
IntType r = n % m;
if (r < 0)
r += m;
n = m;
m = r;
}
return n;
}
template <typename IntType>
IntType lcm(IntType n, IntType m)
{
n /= gcd(n, m);
n *= m;
return n;
}
class bad_rational : public std::domain_error
{
public:
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
};
// The following is an awful lot of code to implement a 1-line abs() function.
#ifdef BOOST_MSVC
// This is a gross hack. MS Visual C++ has utterly broken namespace reslution
// rules. Basically, the call to abs(int) in abs(rational) below will not find
// ::abs(). So the only way we have of fixing this is to reimplement std::abs
// in the boost:: namespace! In practice, this is a relatively minor bit of
// pollution, so we should be OK.
inline int abs(int n) { return ::abs(n); }
inline long abs(long n) { return ::labs(n); }
#endif
template <typename IntType>
class rational;
template <typename IntType>
rational<IntType> abs(const rational<IntType>& r);
template <typename IntType>
class rational :
less_than_comparable < rational<IntType> >,
equality_comparable < rational<IntType> >,
addable < rational<IntType> >,
subtractable < rational<IntType> >,
multipliable < rational<IntType> >,
dividable < rational<IntType> >,
incrementable < rational<IntType> >,
decrementable < rational<IntType> >
{
typedef IntType int_type;
public:
rational(IntType n = 0) : num(n), den(1) {}
rational(IntType n, IntType d) : num(n), den(d) { normalize(); }
// Default copy constructor and assignment are fine
// Assign in place
rational& assign(IntType n, IntType d);
// Access to representation
IntType numerator() const { return num; }
IntType denominator() const { return den; }
// Arithmetic assignment operators
rational& operator+= (const rational& r);
rational& operator-= (const rational& r);
rational& operator*= (const rational& r);
rational& operator/= (const rational& r);
// Increment and decrement
const rational& operator++();
const rational& operator--();
// Comparison operators
bool operator< (const rational& r) const;
bool operator== (const rational& r) const;
private:
// Implementation - numerator and denominator (normalized).
// Other possibilities - separate whole-part, or sign, fields?
IntType num;
IntType den;
// Representation note: Fractions are kept in normalized form at all
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
// In particular, note that the implementation of abs() below relies
// on den always being positive.
void normalize();
};
// Assign in place
template <typename IntType>
inline rational<IntType>& rational<IntType>::assign(IntType n, IntType d)
{
num = n;
den = d;
normalize();
return *this;
}
// Unary plus and minus
template <typename IntType>
inline rational<IntType> operator+ (const rational<IntType>& r)
{
return r;
}
template <typename IntType>
inline rational<IntType> operator- (const rational<IntType>& r)
{
return rational<IntType>(-r.numerator(), r.denominator());
}
// Arithmetic assignment operators
template <typename IntType>
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
{
// This calculation avoids overflow
IntType new_den = lcm(den, r.den);
num = num * (new_den / den) + r.num * (new_den / r.den);
den = new_den;
normalize(); // Example where this is needed: 1/2 + 1/2
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
{
// This calculation avoids overflow
IntType new_den = lcm(den, r.den);
num = num * (new_den / den) - r.num * (new_den / r.den);
den = new_den;
normalize(); // Example where this is needed: 1/2 + 1/2
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
{
// Avoid overflow and preserve normalization
IntType gcd1 = gcd<IntType>(num, r.den);
IntType gcd2 = gcd<IntType>(r.num, den);
num = (num/gcd1) * (r.num/gcd2);
den = (den/gcd2) * (r.den/gcd1);
return *this;
}
template <typename IntType>
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
{
// Avoid overflow and preserve normalization
IntType gcd1 = gcd<IntType>(num, r.num);
IntType gcd2 = gcd<IntType>(r.den, den);
num = (num/gcd1) * (r.den/gcd2);
den = (den/gcd2) * (r.num/gcd1);
return *this;
}
// Increment and decrement
template <typename IntType>
inline const rational<IntType>& rational<IntType>::operator++()
{
// This can never denormalise the fraction
num += den;
return *this;
}
template <typename IntType>
inline const rational<IntType>& rational<IntType>::operator--()
{
// This can never denormalise the fraction
num -= den;
return *this;
}
// Comparison operators
template <typename IntType>
bool rational<IntType>::operator< (const rational<IntType>& r) const
{
// Avoid overflow
IntType gcd1 = gcd<IntType>(num, r.num);
IntType gcd2 = gcd<IntType>(r.den, den);
return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
}
template <typename IntType>
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
{
return ((num == r.num) && (den == r.den));
}
// Normalisation
template <typename IntType>
void rational<IntType>::normalize()
{
if (den == 0)
throw bad_rational();
IntType g = gcd<IntType>(num, den);
num /= g;
den /= g;
if (den < 0) {
num = -num;
den = -den;
}
}
// Input and output
template <typename IntType>
std::istream& operator>> (std::istream& is, rational<IntType>& r)
{
IntType n = 0, d = 1;
char c = 0;
is >> n;
c = is.get();
if (c == '/')
is >> d;
else
is.putback(c);
if (is)
r.assign(n, d);
return is;
}
// Add manipulators for output format?
template <typename IntType>
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
{
os << r.numerator() << '/' << r.denominator();
return os;
}
// Type conversion
template <typename T, typename IntType>
inline T rational_cast(const rational<IntType>& src)
{
return static_cast<T>(src.numerator())/src.denominator();
}
#ifdef __GNUC__
// Workaround for a bug in gcc 2.95.2 - using statements at function scope are
// silently ignored - to get around this, we need to include std::abs at
// namespace scope.
using std::abs;
#endif
template <typename IntType>
inline rational<IntType> abs(const rational<IntType>& r)
{
#ifndef BOOST_NO_STDC_NAMESPACE
// We want to use abs() unadorned below, so that if IntType is a
// user-defined type, the name lookup rules will work to find an
// appropriate abs() defined for IntType.
//
// We protect this with BOOST_NO_STDC_NAMESPACE, as some compilers
// don't put abs into std:: (notably MS Visual C++) and so we can't
// "use" it from there.
using std::abs;
#endif
// Note that with normalized fractions, the denominator is always positive.
return rational<IntType>(abs(r.numerator()), r.denominator());
}
} // namespace boost
#endif // BOOST_RATIONAL_HPP