2
0
mirror of https://github.com/boostorg/random.git synced 2026-01-21 17:12:22 +00:00
Files
random/python/random.cpp
Daniel Wallin 106f1daa61 *** empty log message ***
[SVN r2897]
2006-03-21 10:41:56 +00:00

264 lines
8.3 KiB
C++
Executable File

// Copyright Daniel Wallin 2006. Use, modification and distribution is
// subject to the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/preprocessor/iteration/local.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
#include <boost/preprocessor/seq/for_each.hpp>
#include <boost/preprocessor/stringize.hpp>
#include <boost/python.hpp>
#include <boost/bind/apply.hpp>
#include <boost/random/sprng.hpp>
#include <boost/random/buffered_uniform_01.hpp>
#include <boost/random/buffered_generator.hpp>
#include <boost/random/parallel/lcg64.hpp>
// Generators
#include <boost/random/linear_congruential.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random.hpp>
#include <boost/parameter/python.hpp>
#include <boost/utility/base_from_member.hpp>
using namespace boost::python;
namespace mpl = boost::mpl;
struct seed_fwd
{
#define BOOST_PP_LOCAL_MACRO(n) \
template <class R, class T BOOST_PP_ENUM_TRAILING_PARAMS(n, class A)> \
R operator()(boost::type<R>, T& self BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(n, A, const& a)) \
{ \
return self.seed(BOOST_PP_ENUM_PARAMS(n, a)); \
}
#define BOOST_PP_LOCAL_LIMITS (0, 4)
#include BOOST_PP_LOCAL_ITERATE()
};
struct sprng_visitor : def_visitor<sprng_visitor>
{
typedef mpl::vector4<
boost::random::tag::stream_number*
, boost::random::tag::total_streams*
, boost::random::tag::global_seed*
, boost::random::tag::parameter*
> keywords;
template <class C>
void visit(C& cl) const
{
typedef typename C::wrapped_type rng;
namespace py = boost::parameter::python;
cl
.def(
py::init<
keywords
, mpl::vector4<int,int,int,int>
>()
)
.def("seed",
py::function<
seed_fwd
, keywords
, mpl::vector5<void,int,int,int,int>
>()
);
}
};
template <class Distribution>
struct variate_generator_class
: class_<
boost::variate_generator<
boost::buffered_uniform_01<>&, Distribution
>
>
{
typedef boost::variate_generator<
boost::buffered_uniform_01<>&, Distribution
> generator;
typedef class_<generator> base;
variate_generator_class(char const* name)
: base(name, init<boost::buffered_uniform_01<>&, Distribution&>())
{
converter::registration const* r = converter::registry::query(type_id<Distribution>());
assert(r);
object distribution_class(handle<>(r->get_class_object()));
dict current(scope().attr("__dict__"));
if (!current.has_key("distribution_variate_map"))
scope().attr("distribution_variate_map") = dict();
scope().attr("distribution_variate_map")[distribution_class] = *this;
this->def("__call__",
make_function(
boost::apply<typename generator::result_type>()
, default_call_policies()
, mpl::vector2<typename generator::result_type, generator&>()
)
);
}
};
template <class Engine>
struct rng_wrapper
: boost::base_from_member<Engine>
, boost::basic_buffered_uniform_01<Engine&>
{
typedef boost::base_from_member<Engine> member_base;
typedef boost::basic_buffered_uniform_01<Engine&> buffered_base;
rng_wrapper()
: buffered_base(this->member)
{}
#define BOOST_PP_LOCAL_MACRO(n) \
template <BOOST_PP_ENUM_PARAMS(n, class A)> \
rng_wrapper(BOOST_PP_ENUM_BINARY_PARAMS(n, A, a)) \
: member_base(BOOST_PP_ENUM_PARAMS(n, a)) \
, buffered_base(this->member) \
{}
#define BOOST_PP_LOCAL_LIMITS (1, 5)
#include BOOST_PP_LOCAL_ITERATE()
void seed()
{
this->member.seed();
this->reset();
}
#define BOOST_PP_LOCAL_MACRO(n) \
template <BOOST_PP_ENUM_PARAMS(n, class A)> \
void seed(BOOST_PP_ENUM_BINARY_PARAMS(n, A, a)) \
{ \
this->member.seed(BOOST_PP_ENUM_PARAMS(n, a)); \
this->reset(); \
}
#define BOOST_PP_LOCAL_LIMITS (1, 5)
#include BOOST_PP_LOCAL_ITERATE()
};
template <class Rng>
struct buffered_uniform_01_class
: class_<
rng_wrapper<Rng>, bases<boost::buffered_uniform_01<> >
>
{
typedef class_<
rng_wrapper<Rng>, bases<boost::buffered_uniform_01<> >
> base;
buffered_uniform_01_class(char const* name)
: base(name)
{
this->def("seed", (void(rng_wrapper<Rng>::*)())&rng_wrapper<Rng>::seed);
}
};
BOOST_PYTHON_MODULE(_boost_random)
{
typedef boost::buffered_uniform_01<boost::mt11213b> rng;
class_<boost::buffered_generator<double>, boost::noncopyable>("buffered_generator", no_init)
.def("__call__",
make_function(
boost::apply<boost::buffered_generator<double>::result_type>()
, default_call_policies()
, mpl::vector2<boost::buffered_generator<double>::result_type, boost::buffered_generator<double>&>()
)
);
class_<
boost::buffered_uniform_01<>, bases<boost::buffered_generator<double> >, boost::noncopyable
>("buffered_uniform_01", no_init);
#define RNG_CLASSES \
(minstd_rand0)(minstd_rand) \
(rand48) \
(ecuyer1988) \
(kreutzer1986) \
(hellekalek1995) \
(mt11213b)(mt19937) \
(lagged_fibonacci607)(lagged_fibonacci1279)(lagged_fibonacci2281) \
(lagged_fibonacci3217)(lagged_fibonacci4423)(lagged_fibonacci9689) \
(lagged_fibonacci19937)(lagged_fibonacci23209)(lagged_fibonacci44497)
#define MAKE_PYTHON_CLASS(r, _, rng) \
buffered_uniform_01_class<boost::rng>(BOOST_PP_STRINGIZE(rng) "_01");
BOOST_PP_SEQ_FOR_EACH(MAKE_PYTHON_CLASS, ~, RNG_CLASSES)
#undef MAKE_PYTHON_CLASS
#undef RNG_CLASSES
class_<boost::uniform_int<> >("uniform_int", init<optional<int,int> >());
class_<boost::bernoulli_distribution<> >("bernoulli_distribution", init<optional<double> >());
class_<boost::geometric_distribution<> >("geometric_distribution", init<optional<double> >());
class_<boost::triangle_distribution<> >("triangle_distribution", init<optional<double,double,double> >());
class_<boost::exponential_distribution<> >("exponential_distribution", init<optional<double> >());
class_<boost::normal_distribution<> >("normal_distribution", init<optional<double,double> >());
class_<boost::lognormal_distribution<> >("lognormal_distribution", init<optional<double,double> >());
variate_generator_class<boost::uniform_int<> >("uniform_int_variate");
variate_generator_class<boost::bernoulli_distribution<> >("bernoulli_distribution_variate");
variate_generator_class<boost::geometric_distribution<> >("geometric_distribution_variate");
variate_generator_class<boost::triangle_distribution<> >("triangle_distribution_variate");
variate_generator_class<boost::exponential_distribution<> >("exponential_distribution_variate");
variate_generator_class<boost::normal_distribution<> >("normal_distribution_variate");
variate_generator_class<boost::lognormal_distribution<> >("lognormal_distribution_variate");
#define SPRNG_CLASSES \
(cmrg)(lcg)(lcg64)(lfg)(mlfg)
//(pmlcg)
#define MAKE_PYTHON_CLASS(r, _, rng) \
buffered_uniform_01_class<boost::random::sprng::rng>(BOOST_PP_STRINGIZE(rng) "_01") \
.def(sprng_visitor());
BOOST_PP_SEQ_FOR_EACH(MAKE_PYTHON_CLASS, ~, SPRNG_CLASSES)
#undef MAKE_PYTHON_CLASS
#undef SPRNG_CLASSES
typedef mpl::vector3<
boost::random::tag::stream_number*
, boost::random::tag::total_streams*
, boost::random::tag::global_seed*
> lcg64_keywords;
buffered_uniform_01_class<boost::lcg64>("lcg64_01")
.def(
boost::parameter::python::init<
lcg64_keywords
, mpl::vector3<int,int,int>
>()
)
.def("seed",
boost::parameter::python::function<
seed_fwd
, lcg64_keywords
, mpl::vector4<void,int,int,int>
>()
);
}