mirror of
https://github.com/boostorg/random.git
synced 2026-01-19 04:22:17 +00:00
665 lines
19 KiB
C++
665 lines
19 KiB
C++
/* statistic_tests.cpp file
|
|
*
|
|
* Copyright Jens Maurer 2000, 2002
|
|
* Distributed under the Boost Software License, Version 1.0. (See
|
|
* accompanying file LICENSE_1_0.txt or copy at
|
|
* http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* $Id$
|
|
*
|
|
* Revision history
|
|
*/
|
|
|
|
/*
|
|
* NOTE: This is not part of the official boost submission. It exists
|
|
* only as a collection of ideas.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string>
|
|
#include <functional>
|
|
#include <math.h> // lgamma is not in namespace std
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#include <boost/cstdint.hpp>
|
|
#include <boost/random.hpp>
|
|
|
|
#include "statistic_tests.hpp"
|
|
#include "integrate.hpp"
|
|
|
|
|
|
namespace boost {
|
|
namespace random {
|
|
|
|
// Wikramaratna 1989 ACORN
|
|
template<class IntType, int k, IntType m, IntType val>
|
|
class additive_congruential
|
|
{
|
|
public:
|
|
typedef IntType result_type;
|
|
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
|
|
static const bool has_fixed_range = true;
|
|
static const result_type min_value = 0;
|
|
static const result_type max_value = m-1;
|
|
#else
|
|
enum {
|
|
has_fixed_range = true,
|
|
min_value = 0,
|
|
max_value = m-1
|
|
};
|
|
#endif
|
|
template<class InputIterator>
|
|
explicit additive_congruential(InputIterator start) { seed(start); }
|
|
template<class InputIterator>
|
|
void seed(InputIterator start)
|
|
{
|
|
for(int i = 0; i <= k; ++i, ++start)
|
|
values[i] = *start;
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
for(int i = 1; i <= k; ++i) {
|
|
IntType tmp = values[i-1] + values[i];
|
|
if(tmp >= m)
|
|
tmp -= m;
|
|
values[i] = tmp;
|
|
}
|
|
return values[k];
|
|
}
|
|
result_type validation() const { return val; }
|
|
private:
|
|
IntType values[k+1];
|
|
};
|
|
|
|
|
|
template<class IntType, int r, int s, IntType m, IntType val>
|
|
class lagged_fibonacci_int
|
|
{
|
|
public:
|
|
typedef IntType result_type;
|
|
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
|
|
static const bool has_fixed_range = true;
|
|
static const result_type min_value = 0;
|
|
static const result_type max_value = m-1;
|
|
#else
|
|
enum {
|
|
has_fixed_range = true,
|
|
min_value = 0,
|
|
max_value = m-1
|
|
};
|
|
#endif
|
|
explicit lagged_fibonacci_int(IntType start) { seed(start); }
|
|
template<class Generator>
|
|
explicit lagged_fibonacci_int(Generator & gen) { seed(gen); }
|
|
void seed(IntType start)
|
|
{
|
|
linear_congruential<uint32_t, 299375077, 0, 0, 0> init;
|
|
seed(init);
|
|
}
|
|
template<class Generator>
|
|
void seed(Generator & gen)
|
|
{
|
|
assert(r > s);
|
|
for(int i = 0; i < 607; ++i)
|
|
values[i] = gen();
|
|
current = 0;
|
|
lag = r-s;
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
result_type tmp = values[current] + values[lag];
|
|
if(tmp >= m)
|
|
tmp -= m;
|
|
values[current] = tmp;
|
|
++current;
|
|
if(current >= r)
|
|
current = 0;
|
|
++lag;
|
|
if(lag >= r)
|
|
lag = 0;
|
|
return tmp;
|
|
}
|
|
result_type validation() const { return val; }
|
|
private:
|
|
result_type values[r];
|
|
int current, lag;
|
|
};
|
|
|
|
} // namespace random
|
|
} // namespace boost
|
|
|
|
// distributions from Haertel's dissertation
|
|
// (additional parameterizations of the basic templates)
|
|
namespace Haertel {
|
|
typedef boost::random::linear_congruential<boost::uint64_t, 45965, 453816691,
|
|
(boost::uint64_t(1)<<31), 0> LCG_Af2;
|
|
typedef boost::random::linear_congruential<boost::uint64_t, 211936855, 0,
|
|
(boost::uint64_t(1)<<29)-3, 0> LCG_Die1;
|
|
typedef boost::random::linear_congruential<boost::uint32_t, 2824527309u, 0,
|
|
0, 0> LCG_Fis;
|
|
typedef boost::random::linear_congruential<boost::uint64_t, 950706376u, 0,
|
|
(boost::uint64_t(1)<<31)-1, 0> LCG_FM;
|
|
typedef boost::random::linear_congruential<boost::int32_t, 51081, 0,
|
|
2147483647, 0> LCG_Hae;
|
|
typedef boost::random::linear_congruential<boost::uint32_t, 69069, 1,
|
|
0, 0> LCG_VAX;
|
|
typedef boost::random::inversive_congruential<boost::int64_t, 240318, 197,
|
|
1000081, 0> NLG_Inv1;
|
|
typedef boost::random::inversive_congruential<boost::int64_t, 15707262,
|
|
13262967, (1<<24)-17, 0> NLG_Inv2;
|
|
typedef boost::random::inversive_congruential<boost::int32_t, 1, 1,
|
|
2147483647, 0> NLG_Inv4;
|
|
typedef boost::random::inversive_congruential<boost::int32_t, 1, 2,
|
|
1<<30, 0> NLG_Inv5;
|
|
typedef boost::random::additive_congruential<boost::int32_t, 6,
|
|
(1<<30)-35, 0> MRG_Acorn7;
|
|
typedef boost::random::lagged_fibonacci_int<boost::uint32_t, 607, 273,
|
|
0, 0> MRG_Fib2;
|
|
|
|
template<class Gen, class T>
|
|
inline void check_validation(Gen & gen, T value, const std::string & name)
|
|
{
|
|
for(int i = 0; i < 100000-1; ++i)
|
|
gen();
|
|
if(value != gen())
|
|
std::cout << name << ": validation failed" << std::endl;
|
|
}
|
|
|
|
// we have validation after 100000 steps with Haertel's generators
|
|
template<class Gen, class T>
|
|
void validate(T value, const std::string & name)
|
|
{
|
|
Gen gen(1234567);
|
|
check_validation(gen, value, name);
|
|
}
|
|
|
|
void validate_all()
|
|
{
|
|
validate<LCG_Af2>(183269031u, "LCG_Af2");
|
|
validate<LCG_Die1>(522319944u, "LCG_Die1");
|
|
validate<LCG_Fis>(-2065162233u, "LCG_Fis");
|
|
validate<LCG_FM>(581815473u, "LCG_FM");
|
|
validate<LCG_Hae>(28931709, "LCG_Hae");
|
|
validate<LCG_VAX>(1508154087u, "LCG_VAX");
|
|
validate<NLG_Inv2>(6666884, "NLG_Inv2");
|
|
validate<NLG_Inv4>(1521640076, "NLG_Inv4");
|
|
validate<NLG_Inv5>(641840839, "NLG_Inv5");
|
|
static const int acorn7_init[]
|
|
= { 1234567, 7654321, 246810, 108642, 13579, 97531, 555555 };
|
|
MRG_Acorn7 acorn7(acorn7_init);
|
|
check_validation(acorn7, 874294697, "MRG_Acorn7");
|
|
validate<MRG_Fib2>(1234567u, "MRG_Fib2");
|
|
}
|
|
} // namespace Haertel
|
|
|
|
|
|
|
|
|
|
double normal_density(double x)
|
|
{
|
|
const double pi = 3.14159265358979323846;
|
|
return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
|
|
}
|
|
|
|
namespace std {
|
|
#ifdef _CXXRTCF_H__
|
|
using _CS_swamp::lgamma;
|
|
#elif defined __SGI_STL_PORT
|
|
using ::lgamma;
|
|
#endif
|
|
}
|
|
|
|
|
|
class chi_square_density : public std::unary_function<double, double>
|
|
{
|
|
public:
|
|
chi_square_density(int freedom)
|
|
: _exponent( static_cast<double>(freedom)/2-1 ),
|
|
_factor(1/(std::pow(2, _exponent+1) * std::exp(lgamma(_exponent+1))))
|
|
{ }
|
|
|
|
double operator()(double x)
|
|
{
|
|
return _factor*std::pow(x, _exponent)*std::exp(-x/2);
|
|
}
|
|
private:
|
|
double _exponent, _factor;
|
|
};
|
|
|
|
// computes F(x) or F(y) - F(x)
|
|
class chi_square_probability : public distribution_function<double>
|
|
{
|
|
public:
|
|
chi_square_probability(int freedom) : dens(freedom) {}
|
|
double operator()(double x) { return operator()(0, x); }
|
|
double operator()(double x, double y)
|
|
{ return trapezoid(dens, x, y, 1000); }
|
|
private:
|
|
chi_square_density dens;
|
|
};
|
|
|
|
class uniform_distribution : public distribution_function<double>
|
|
{
|
|
public:
|
|
uniform_distribution(double from, double to) : from(from), to(to)
|
|
{ assert(from < to); }
|
|
double operator()(double x)
|
|
{
|
|
if(x < from)
|
|
return 0;
|
|
else if(x > to)
|
|
return 1;
|
|
else
|
|
return (x-from)/(to-from);
|
|
}
|
|
double operator()(double x, double delta)
|
|
{ return operator()(x+delta) - operator()(x); }
|
|
private:
|
|
double from, to;
|
|
};
|
|
|
|
class test_environment;
|
|
|
|
class test_base
|
|
{
|
|
protected:
|
|
explicit test_base(test_environment & env) : environment(env) { }
|
|
void check(double val) const;
|
|
private:
|
|
test_environment & environment;
|
|
};
|
|
|
|
class equidistribution_test : test_base
|
|
{
|
|
public:
|
|
equidistribution_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "equidistribution: " << std::flush;
|
|
equidistribution_experiment equi(classes);
|
|
uniform_smallint<RNG> uint_linear(rng, 0, classes-1);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(equi, uint_linear, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(equi, uint_linear, n1), 2*n2));
|
|
|
|
std::cout << " 2D: " << std::flush;
|
|
equidistribution_2d_experiment equi_2d(classes);
|
|
unsigned int root = static_cast<unsigned int>(std::sqrt(double(classes)));
|
|
assert(root * root == classes);
|
|
uniform_smallint<RNG> uint_square(rng, 0, root-1);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(equi_2d, uint_square, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(equi_2d, uint_square, n1), 2*n2));
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class ks_equidistribution_test : test_base
|
|
{
|
|
public:
|
|
ks_equidistribution_test(test_environment & env, unsigned int classes)
|
|
: test_base(env),
|
|
test_distrib_chi_square(kolmogorov_smirnov_probability(5000),
|
|
classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "KS: " << std::flush;
|
|
// generator_reference_t<RNG> gen_ref(rng);
|
|
RNG& gen_ref(rng);
|
|
kolmogorov_experiment ks(n1);
|
|
uniform_distribution ud((rng.min)(), (rng.max)());
|
|
check(run_experiment(test_distrib_chi_square,
|
|
ks_experiment_generator(ks, gen_ref, ud), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
ks_experiment_generator(ks, gen_ref, ud), 2*n2));
|
|
}
|
|
private:
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class runs_test : test_base
|
|
{
|
|
public:
|
|
runs_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "runs: up: " << std::flush;
|
|
runs_experiment<true> r_up(classes);
|
|
// generator_reference_t<RNG> gen_ref(rng);
|
|
RNG& gen_ref(rng);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(r_up, gen_ref, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(r_up, gen_ref, n1), 2*n2));
|
|
|
|
std::cout << " down: " << std::flush;
|
|
runs_experiment<false> r_down(classes);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(r_down, gen_ref, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(r_down, gen_ref, n1), 2*n2));
|
|
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class gap_test : test_base
|
|
{
|
|
public:
|
|
gap_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "gaps: " << std::flush;
|
|
gap_experiment gap(classes, 0.2, 0.8);
|
|
// generator_reference_t<RNG> gen_ref(rng);
|
|
RNG& gen_ref(rng);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(gap, gen_ref, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(gap, gen_ref, n1), 2*n2));
|
|
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class poker_test : test_base
|
|
{
|
|
public:
|
|
poker_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "poker: " << std::flush;
|
|
poker_experiment poker(8, classes);
|
|
uniform_smallint<RNG> usmall(rng, 0, 7);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(poker, usmall, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(poker, usmall, n1), 2*n2));
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class coupon_collector_test : test_base
|
|
{
|
|
public:
|
|
coupon_collector_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "coupon collector: " << std::flush;
|
|
coupon_collector_experiment coupon(5, classes);
|
|
|
|
uniform_smallint<RNG> usmall(rng, 0, 4);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(coupon, usmall, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(coupon, usmall, n1), 2*n2));
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class permutation_test : test_base
|
|
{
|
|
public:
|
|
permutation_test(test_environment & env, unsigned int classes,
|
|
unsigned int high_classes)
|
|
: test_base(env), classes(classes),
|
|
test_distrib_chi_square(chi_square_probability(fac<int>(classes)-1),
|
|
high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "permutation: " << std::flush;
|
|
permutation_experiment perm(classes);
|
|
|
|
// generator_reference_t<RNG> gen_ref(rng);
|
|
RNG& gen_ref(rng);
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(perm, gen_ref, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(perm, gen_ref, n1), 2*n2));
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
unsigned int classes;
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class maximum_test : test_base
|
|
{
|
|
public:
|
|
maximum_test(test_environment & env, unsigned int high_classes)
|
|
: test_base(env),
|
|
test_distrib_chi_square(kolmogorov_smirnov_probability(1000),
|
|
high_classes)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "maximum-of-t: " << std::flush;
|
|
maximum_experiment<RNG> mx(rng, n1, 5);
|
|
check(run_experiment(test_distrib_chi_square, mx, n2));
|
|
check(run_experiment(test_distrib_chi_square, mx, 2*n2));
|
|
std::cout << std::endl;
|
|
}
|
|
private:
|
|
distribution_experiment test_distrib_chi_square;
|
|
};
|
|
|
|
class birthday_test : test_base
|
|
{
|
|
public:
|
|
birthday_test(test_environment & env)
|
|
: test_base(env)
|
|
{ }
|
|
|
|
template<class RNG>
|
|
void run(RNG & rng, int n1, int n2)
|
|
{
|
|
using namespace boost;
|
|
std::cout << "birthday spacing: " << std::flush;
|
|
uniform_int<RNG> uni(rng, 0, (1<<25)-1);
|
|
birthday_spacing_experiment bsp(4, 512, (1<<25));
|
|
std::cout << run_experiment(bsp, uni, n1);
|
|
#if 0
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(perm, gen_ref, n1), n2));
|
|
check(run_experiment(test_distrib_chi_square,
|
|
experiment_generator(perm, gen_ref, n1), 2*n2));
|
|
#endif
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
class test_environment
|
|
{
|
|
public:
|
|
static const int classes = 20;
|
|
explicit test_environment(double confid)
|
|
: confidence(confid),
|
|
confidence_chi_square_quantil(quantil(chi_square_density(classes-1), 0, confidence, 1e-4)),
|
|
test_distrib_chi_square6(chi_square_probability(7-1), classes),
|
|
ksequi_test(*this, classes),
|
|
equi_test(*this, 100, classes),
|
|
rns_test(*this, 7, classes),
|
|
gp_test(*this, 7, classes),
|
|
pk_test(*this, 5, classes),
|
|
cpn_test(*this, 15, classes),
|
|
perm_test(*this, 5, classes),
|
|
max_test(*this, classes),
|
|
bday_test(*this)
|
|
{
|
|
std::cout << "Confidence level: " << confid
|
|
<< "; 1-alpha = " << (1-confid)
|
|
<< "; chi_square(" << (classes-1)
|
|
<< ", " << confidence_chi_square_quantil
|
|
<< ") = "
|
|
<< chi_square_probability(classes-1)(0, confidence_chi_square_quantil)
|
|
<< std::endl;
|
|
}
|
|
|
|
bool check_confidence(double val, double chi_square_conf) const
|
|
{
|
|
std::cout << val;
|
|
bool result = (val <= chi_square_conf);
|
|
if(!result) {
|
|
std::cout << "* [";
|
|
double prob = (val > 10*chi_square_conf ? 1 :
|
|
chi_square_probability(classes-1)(0, val));
|
|
std::cout << (1-prob) << "]";
|
|
}
|
|
std::cout << " " << std::flush;
|
|
return result;
|
|
}
|
|
|
|
bool check(double chi_square_value) const
|
|
{
|
|
return check_confidence(chi_square_value, confidence_chi_square_quantil);
|
|
}
|
|
|
|
template<class RNG>
|
|
void run_test(const std::string & name)
|
|
{
|
|
using namespace boost;
|
|
|
|
std::cout << "Running tests on " << name << std::endl;
|
|
|
|
RNG rng(1234567);
|
|
typedef boost::uniform_01<RNG> UGen;
|
|
|
|
#if 1
|
|
ksequi_test.run(rng, 5000, 250);
|
|
equi_test.run(rng, 5000, 250);
|
|
rns_test.run(rng, 100000, 250);
|
|
gp_test.run(rng, 10000, 250);
|
|
pk_test.run(rng, 5000, 250);
|
|
cpn_test.run(rng, 500, 250);
|
|
perm_test.run(rng, 1200, 250);
|
|
max_test.run(rng, 1000, 250);
|
|
#endif
|
|
bday_test.run(rng, 1000, 150);
|
|
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
private:
|
|
double confidence;
|
|
double confidence_chi_square_quantil;
|
|
distribution_experiment test_distrib_chi_square6;
|
|
ks_equidistribution_test ksequi_test;
|
|
equidistribution_test equi_test;
|
|
runs_test rns_test;
|
|
gap_test gp_test;
|
|
poker_test pk_test;
|
|
coupon_collector_test cpn_test;
|
|
permutation_test perm_test;
|
|
maximum_test max_test;
|
|
birthday_test bday_test;
|
|
};
|
|
|
|
void test_base::check(double val) const
|
|
{
|
|
environment.check(val);
|
|
}
|
|
|
|
void print_ks_table()
|
|
{
|
|
std::cout.setf(std::ios::fixed);
|
|
std::cout.precision(5);
|
|
static const double all_p[] = { 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 };
|
|
for(int n = 0; n <= 10000; (n < 55 ? ++n : n *= 10)) {
|
|
std::cout << std::setw(4) << n << " ";
|
|
for(unsigned int i = 0; i < sizeof(all_p)/sizeof(all_p[0]); ++i) {
|
|
std::cout << std::setw(8)
|
|
<< (n == 0 ? all_p[i] :
|
|
invert_monotone_inc(kolmogorov_smirnov_probability(n), all_p[i], 0, 10))
|
|
<< " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
// Haertel::validate_all();
|
|
test_environment env(0.99);
|
|
env.run_test<boost::minstd_rand>("minstd_rand");
|
|
env.run_test<boost::mt19937>("mt19937");
|
|
env.run_test<Haertel::LCG_Af2>("LCG_Af2");
|
|
env.run_test<Haertel::LCG_Die1>("LCG_Die1");
|
|
env.run_test<Haertel::LCG_Fis>("LCG_Fis");
|
|
env.run_test<Haertel::LCG_FM>("LCG_FM");
|
|
env.run_test<Haertel::LCG_Hae>("LCG_Hae");
|
|
env.run_test<Haertel::LCG_VAX>("LCG_VAX");
|
|
env.run_test<Haertel::NLG_Inv1>("NLG_Inv1");
|
|
env.run_test<Haertel::NLG_Inv2>("NLG_Inv2");
|
|
env.run_test<Haertel::NLG_Inv4>("NLG_Inv4");
|
|
env.run_test<Haertel::NLG_Inv5>("NLG_Inv5");
|
|
}
|