2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-24 18:12:43 +00:00
Files
python/pyste/doc/pyste.txt
Bruno da Silva de Oliveira 7d5c453f59 no message
[SVN r17825]
2003-03-12 01:39:28 +00:00

371 lines
11 KiB
Plaintext

[doc Pyste Documentation]
[def GCCXML [@http://www.gccxml.org GCCXML]]
[def Boost.Python [@../../index.html Boost.Python]]
[page Introduction]
[h2 What is Pyste?]
Pyste is a Boost.Python code generator. The user specifies the classes and
functions to be exported using a simple ['interface file], which following the
Boost.Python's philosophy, is simple Python code. Pyste then uses GCCXML to
parse all the headers and extract the necessary information to automatically
generate C++ code.
[h2 Example]
Let's borrow the class [^World] from the [@../../doc/tutorial/doc/exposing_classes.html tutorial]:
struct World
{
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
Here's the interface file for it, named [^world.pyste]:
Class("World", "world.h")
and that's it!
The next step is invoke pyste in the command-line:
[pre python pyste.py --module=hello world.pyste]
this will create a file "[^hello.cpp]" in the directory where the command was
run.
Pyste supports the following features:
* Functions
* Classes
* Class Templates
* Virtual Methods
* Overloading
* Attributes
* Enums (both "free" enums and class enums)
* Nested Classes
[page Running Pyste]
To run pyste, you will need:
* Python 2.2, avaiable at [@http://www.python.org python's website].
* The great [@http://effbot.org elementtree] library, from Fredrik Lundh.
* The excellent GCCXML, from Brad King.
Installation for the tools is avaiable in their respective webpages.
[blurb
[$theme/note.gif] GCCXML must be accessible in the PATH environment variable, so
that pyste can call it. How to do this varies from platform to platform.
]
[h2 Ok, now what?]
Well, now let's fire it up:
[pre
'''
>python pyste.py
Usage:
pyste [options] --module=<name> interface-files
where options are:
-I <path> add an include path
-D <symbol> define symbol
--no-using do not declare "using namespace boost";
use explicit declarations instead
--pyste-ns=<name> set the namespace where new types will be declared;
default is "pyste"
'''
]
Options explained:
The [^-I] and [^-D] are preprocessor flags, which are needed by gccxml to parse the header files correctly and by pyste to find the header files declared in the
interface files.
[^--no-using] tells pyste to don't declare "[^using namespace boost;]" in the
generated cpp, using the namespace boost::python explicitly in all declarations.
Use only if you're having a name conflict in one of the files.
Use [^--pyste-ns] to change the namespace where new types are declared (for
instance, the virtual wrappers). Use only if one of your header files declare a
namespace named "pyste" and this is causing conflicts.
So, the usage is simple enough:
[pre >python pyste.py --module=mymodule file.pyste file2.pyste ...]
will generate a file [^mymodule.cpp] in the same dir where the command was
executed. Now you can compile the file using the same instructions of the
[@../../doc/tutorial/doc/building_hello_world.html tutorial].
[h2 Wait... how do I set those I and D flags?]
Don't worry: normally GCCXML is already configured correctly for your plataform,
so the search path to the standard libraries and the standard defines should
already be set. You only have to set the paths to other libraries that your code
needs, like Boost, for example.
Plus, Pyste automatically uses the contents of the environment variable
[^INCLUDE] if it exists. Visual C++ users should run the [^Vcvars32.bat] file,
which for Visual C++ 6 is normally located at:
C:\Program Files\Microsoft Visual Studio\VC98\bin\Vcvars32.bat
with that, you should have little trouble setting up the flags.
[page The Interface Files]
The interface files are the heart of Pyste. The user creates one or more
interface files declaring the classes and functions he wants to export, and then
invokes pyste passing the interface files to it. Pyste then generates a single
cpp file with Boost.Python code, with all the classes and functions exported.
Besides declaring the classes and functions, the user has a number of other
options, like renaming classes and methods, excluding methods and attributes,
and so on.
[h2 Basics]
Suppose we have a class and some functions that we want to expose to Python
declared in the header [^hello.h]:
struct World
{
World(std::string msg): msg(msg) {}
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
enum choice { red, blue };
namespace test {
void show(choice c) { std::cout << "value: " << (int)c << std::endl; }
}
We create a file named [^hello.pyste] and create instances of the classes
[^Function], [^Class] and [^Enum]:
Function("test::show", "hello.h")
Class("World", "hello.h")
Enum("choice", "hello.h")
That will expose the class, the free function and the enum found in [^hello.h].
[page:1 Renaming and Excluding]
You can easily rename functions, classes, methods, attributes, etc. Just use the
function [^rename], like this:
World = Class("World", "hello.h")
rename(World, "IWorld")
show = Function("choice", "hello.h")
rename(show, "Show")
You can rename methods and attributes using this syntax:
rename(World.greet, "Greet")
rename(World.set, "Set")
choice = Enum("choice", "hello.h")
rename(choice.red, "Red")
rename(choice.blue, "Blue")
You can exclude functions, classes, methods, attributes, etc, in the same way,
with the function [^exclude]:
exclude(World.greet)
exclude(World.msg)
Easy, huh? [$theme/smiley.gif]
[page:1 Policies]
Even thought Pyste can identify various elements in the C++ code, like virtual
methods, attributes, and so on, one thing that it can't do is to guess the
semantics of functions that return pointers or references. In this case, the
user must manually specify the policy. Policies are explained in the
[@../../doc/tutorial/doc/call_policies.html tutorial].
The policies in Pyste are named exactly as in Boost.Python, only the syntax is
slightly different. For instance, this policy:
return_internal_reference<1, with_custodian_and_ward<1, 2> >()
becomes in Pyste:
return_internal_reference(1, with_custodian_and_ward(1, 2))
The user can specify policies for functions and methods with the [^set_policy]
function:
set_policy(f, return_internal_reference())
set_policy(C.foo, return_value_policy(manage_new_object))
[blurb
[$theme/note.gif] [*What if a function or method needs a policy and the user
doesn't set one?][br][br]
If a function/method needs a policy and one was not set, Pyste will issue a error.
The user should then go in the interface file and set the policy for it,
otherwise the generated cpp won't compile.
]
[page:1 Templates]
Template Classes can easily exported too, but you can't export the "Template"
itself... you have to export instantiations of it! So, if you want to export a
[^std::vector], you will have to export vectors of int, doubles, etc.
Suppose we have this code:
template <class T>
struct Point
{
T x;
T y;
};
And we want to export [^Point]s of int and double:
Point = Template("Point", "point.h")
Point("int")
Point("double")
Pyste will assign default names for each instantiation. In this example, those
would be "[^Point_int]" and "[^Point_double]", but most of the time users will want to
rename the instantiations:
Point("int", "IPoint") // renames the instantiation
double_inst = Point("double") // another way to do the same
rename(double_inst, "DPoint")
Note that you can rename, exclude, set policies, etc, in the [^Template] class
like you would do with a [^Function] or a [^Class]. This changes affect all
[*future] instantiations:
Point = Template("Point", "point.h")
Point("float", "FPoint") // will have x and y as data members
rename(Point.x, "X")
rename(Point.y, "Y")
Point("int", "IPoint") // will have X and Y as data members
Point("double", "DPoint") // also will have X and Y as data member
If you want to change a option of a particular instantiation, you can do so:
Point = Template("Point", "point.h")
Point("int", "IPoint")
d_inst = Point("double", "DPoint")
rename(d_inst.x, "X") // only DPoint is affect by this renames,
rename(d_inst.y, "Y") // IPoint stays intact
[blurb [$theme/note.gif] [*What if my template accepts more than one type?]
[br][br]
When you want to instantiate a Template with more than one type, you can pass
either a string with the types separated by whitespace, or a list of strings
'''("int double" or ["int", "double"]''' would both work).
]
[page:1 Wrappers]
Suppose you have this function:
std::vector<std::string> names();
But you don't want to export a vector<string>, you want this function to return
a python list of strings. Boost.Python has an excellent support for that:
list names_wrapper()
{
list result;
vector<string> v = names();
// put each string in the vector in the list
return result;
}
BOOST_PYTHON_MODULE(test)
{
def("names", &names_wrapper);
}
Nice heh?
Pyste supports this mechanism too. You declare the [^names_wrapper] function in a
header, like "[^test_wrappers.h]", and in the interface file:
Include("test_wrappers.h")
names = Function("names", "test.h")
set_wrapper(names, "names_wrapper")
You can optionally declare the function in the interface file itself:
names_wrapper = Wrapper("names_wrapper",
"""
list names_wrapper()
{
// call name() and convert the vector to a list...
}
""")
names = Function("names", "test.h")
set_wrapper(names, names_wrapper)
The same mechanism can be done with methods too. Just remember that the first
parameter of wrappers for methods is a pointer to the class, like in
Boost.Python:
struct C
{
std::vector<std::string> names();
}
list names_wrapper(C* c)
{
// same as before, calling c->names() and converting result to a list
}
And then in the interface file:
C = Class("C", "test.h")
set_wrapper(C.names, "names_wrapper")
[page:1 Exporting All Declarations from a Header]
Pyste also supports a mechanism to export all declarations found in a header
file. Suppose again our file, [^hello.h]:
struct World
{
World(std::string msg): msg(msg) {}
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;
};
enum choice { red, blue };
void show(choice c) { std::cout << "value: " << (int)c << std::endl; }
You can just use the [^AllFromHeader] construct:
hello = AllFromHeader("hello.h")
this will export all the declarations found in [^hello.h], which is equivalent
to write:
Class("World", "hello.h")
Enum("choice", "hello.h")
Function("show", "hello.h")
Note that you can still use the functions [^rename], [^set_policy], [^exclude], etc. Just access
the members of the header object like this:
rename(hello.World.greet, "Greet")
exclude(hello.World.set, "Set")