2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-20 04:42:28 +00:00
Files
python/extclass.cpp
nobody 6b0144ef31 This commit was manufactured by cvs2svn to create branch
'coercion_experiments'.

[SVN r8021]
2000-10-20 02:25:42 +00:00

404 lines
15 KiB
C++

// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#include "extclass.h"
#include <cstring>
namespace py {
ExtensionInstance* get_extension_instance(PyObject* p)
{
// The object's type will just be some Class<ExtensionInstance> object,
// but if its meta-type is right, then it is an ExtensionInstance.
if (p->ob_type->ob_type != extension_meta_class())
{
PyErr_SetString(PyExc_TypeError, p->ob_type->tp_name);
throw py::ArgumentError();
}
return static_cast<ExtensionInstance*>(p);
}
void
ExtensionInstance::add_implementation(std::auto_ptr<InstanceHolderBase> holder)
{
for (WrappedObjects::const_iterator p = m_wrapped_objects.begin();
p != m_wrapped_objects.end(); ++p)
{
if (typeid(*holder) == typeid(**p))
{
PyErr_SetString(PyExc_RuntimeError, "Base class already initialized");
throw ErrorAlreadySet();
}
}
m_wrapped_objects.push_back(holder.release());
}
ExtensionInstance::ExtensionInstance(PyTypeObject* class_)
: Instance(class_)
{
}
ExtensionInstance::~ExtensionInstance()
{
for (WrappedObjects::const_iterator p = m_wrapped_objects.begin(),
finish = m_wrapped_objects.end();
p != finish; ++p)
{
delete *p;
}
}
MetaClass<ExtensionInstance>* extension_meta_class()
{
static MetaClass<ExtensionInstance> result;
return &result;
}
typedef Class<ExtensionInstance> ExtClass;
bool is_subclass(const ExtClass* derived,
const PyObject* possible_base)
{
Tuple bases = derived->bases();
for (std::size_t i = 0, size = bases.size(); i < size; ++i)
{
const PyObject* base = bases[i].get();
if (base == possible_base)
return true;
if (base->ob_type == extension_meta_class())
{
const ExtClass* base_class = Downcast<const ExtClass>(base);
if (is_subclass(base_class, possible_base))
return true;
}
}
return false;
}
// Return true iff instance is an instance of target_class
bool is_instance(ExtensionInstance* instance,
Class<ExtensionInstance>* target_class)
{
if (instance->ob_type == target_class)
return true;
else
{
return is_subclass(
Downcast<Class<ExtensionInstance> >(instance->ob_type).get(),
as_object(target_class));
}
}
void two_string_error(PyObject* exception_object, const char* format, const char* s1, const char* s2)
{
char buffer[256];
std::size_t format_length = PY_CSTD_::strlen(format);
std::size_t length1 = PY_CSTD_::strlen(s1);
std::size_t length2 = PY_CSTD_::strlen(s2);
std::size_t additional_length = length1 + length2;
if (additional_length + format_length > format_length - 1)
{
std::size_t difference = sizeof(buffer) - 1 - additional_length;
length1 -= difference / 2;
additional_length -= difference / 2;
}
sprintf(buffer, format, length1, s1, length2, s2);
PyErr_SetString(exception_object, buffer);
if (exception_object == PyExc_TypeError)
throw ArgumentError();
else
throw ErrorAlreadySet();
}
// This is called when an attempt has been made to convert the given instance to
// a C++ type for which it doesn't have any instance data. In that case, either
// the instance was not derived from the target_class, or the appropriate
// __init__ function wasn't called to initialize the instance data of the target class.
void report_missing_instance_data(
ExtensionInstance* instance, // The object being converted
Class<ExtensionInstance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid, // The typeid of the C++ type
bool target_is_ptr)
{
char buffer[256];
if (is_instance(instance, target_class))
{
if (target_is_ptr)
{
two_string_error(PyExc_RuntimeError,
"Object of extension class '%.*s' does not wrap <%.*s>.",
instance->ob_type->tp_name, target_typeid.name());
}
else
{
const char message[] = "__init__ function for extension class '%.*s' was never called.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1,
target_class->tp_name);
}
PyErr_SetString(PyExc_RuntimeError, buffer);
}
else if (target_class == 0)
{
const char message[] = "Cannot convert to <%.*s>; its Python class was never created or has been deleted.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, target_typeid.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
}
else
{
two_string_error(PyExc_TypeError, "extension class '%.*s' is not convertible into '%.*s'.",
instance->ob_type->tp_name, target_class->tp_name);
}
}
void report_missing_instance_data(
ExtensionInstance* instance, // The object being converted
Class<ExtensionInstance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid) // The typeid of the C++ type
{
report_missing_instance_data(instance, target_class, target_typeid, false);
}
void report_missing_ptr_data(
ExtensionInstance* instance, // The object being converted
Class<ExtensionInstance>* target_class, // the extension class of the C++ type
const std::type_info& target_typeid) // The typeid of the C++ type
{
report_missing_instance_data(instance, target_class, target_typeid, true);
}
void report_missing_class_object(const std::type_info& info)
{
char buffer[256];
const char message[] = "Cannot convert <%.*s> to python; its Python class was never created or has been deleted.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, info.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
throw ErrorAlreadySet();
}
void report_released_smart_pointer(const std::type_info& info)
{
char buffer[256];
const char message[] = "Converting from python, pointer or smart pointer to <%.*s> is NULL.";
sprintf(buffer, message, sizeof(buffer) - sizeof(message) - 1, info.name());
PyErr_SetString(PyExc_RuntimeError, buffer);
throw ArgumentError();
}
ReadOnlySetattrFunction::ReadOnlySetattrFunction(const char* name)
: m_name(name)
{
}
PyObject* ReadOnlySetattrFunction::do_call(PyObject* /*args*/, PyObject* /*keywords*/) const
{
PyErr_SetObject(PyExc_AttributeError, ("'" + m_name + "' attribute is read-only").get());
return 0;
}
const char* ReadOnlySetattrFunction::description() const
{
return "uncallable";
}
ExtensionClassBase::ExtensionClassBase(const char* name)
: Class<ExtensionInstance>(
extension_meta_class(), String(name), Tuple(), Dict())
{
}
// This function is used in from_python() to convert wrapped classes that are
// related by inheritance. The problem is this: although C++ provides all necessary
// conversion operators, source and target of a conversion must be known at compile
// time. However, in Python we want to convert classes at runtime. The solution is to
// generate conversion functions at compile time, register them within the appropriate
// class objects and call them when a particular runtime conversion is required.
// If functions for any possible conversion have to be stored, their number will grow
// qudratically. To reduce this number, we actually store only conversion functions
// between adjacent levels in the inheritance tree. By traversing the tree recursively,
// we can build any allowed conversion as a concatenation of simple conversions. This
// traversal is done in the functions try_base_class_conversions() and
// try_derived_class_conversions(). If a particular conversion is impossible, all
// conversion functions will return a NULL pointer.
// The function extract_object_from_holder() attempts to actually extract the pointer
// to the contained object from an InstanceHolderBase (a wrapper class). A conversion
// of the held object to 'T *' is allowed when the conversion
// 'dynamic_cast<InstanceHolder<T> *>(an_instance_holder_base)' succeeds.
void* ExtensionClassBase::try_class_conversions(InstanceHolderBase* object) const
{
void* result = try_derived_class_conversions(object);
if(result)
return result;
return try_base_class_conversions(object);
}
void* ExtensionClassBase::try_base_class_conversions(InstanceHolderBase* object) const
{
for (std::size_t i = 0; i < base_classes().size(); ++i)
{
if(base_classes()[i].convert == 0)
continue;
void* result1 = base_classes()[i].class_object->extract_object_from_holder(object);
if (result1)
return (*base_classes()[i].convert)(result1);
void* result2 = base_classes()[i].class_object->try_base_class_conversions(object);
if (result2)
return (*base_classes()[i].convert)(result2);
}
return 0;
}
void* ExtensionClassBase::try_derived_class_conversions(InstanceHolderBase* object) const
{
for (std::size_t i = 0; i < derived_classes().size(); ++i)
{
void* result1 = derived_classes()[i].class_object->extract_object_from_holder(object);
if (result1)
return (*derived_classes()[i].convert)(result1);
void* result2 = derived_classes()[i].class_object->try_derived_class_conversions(object);
if (result2)
return (*derived_classes()[i].convert)(result2);
}
return 0;
}
void ExtensionClassBase::add_method(Function* method, const char* name)
{
add_method(PyPtr<Function>(method), name);
}
void ExtensionClassBase::add_method(PyPtr<Function> method, const char* name)
{
// If we have created a special Python base class which wraps C++ classes
// derived from T, the method should really be added there. Target will be
// that Python class object.
Class<ExtensionInstance>* target = (bases().size() == 0)
? this
: Downcast<Class<ExtensionInstance> >(bases()[0].get()).get();
// Add the attribute to the computed target
Function::add_to_namespace(method, name, target->dict().get());
// If it is a special member function it should be enabled both here and there.
enable_named_method(this, name);
}
void ExtensionClassBase::add_default_method(Function* method, const char* name)
{
add_default_method(PyPtr<Function>(method), name);
}
// A rather complicated thing is going on here in order to make a very specific
// class of cases work. When wrapping the following C++:
//
// struct Base {
// Base(); // will be constructed from Python
// virtual int f() const // might be called from C++
// { return 1; } // default implementation
// };
//
// struct Derived : Base {
// int f() const { return 0; } // overridden in C++
// };
//
// boost::shared_ptr<Base> factory(bool selector) {
// return boost::shared_ptr<Base>(selector ? new Base : new Derived);
// }
//
// Normally we would use the same Python ExtensionClass object to represent both
// Base and boost::shared_ptr<Base>, since they have essentially the same
// operations (see the comment on InstanceHolder in extclass_pygen.h for
// details). If there was no need to override Base::f() in Python, that would
// work fine. In this case, since f() is virtual, the programmer must provide a
// subclass of Base which calls back into Python:
//
// struct BaseCallback : Base {
// BaseCallback(PyObject* self) : m_self(self) {}
// int f() const { return py::Callback<int>::call_method(m_self, "f"); }
// static int default_f(const Base* self) const { self->Base::f(); }
// };
//
// default_f() is what gets registered under the name "f" in the "Base"
// ExtensionClass' attribute dict. When C++ calls f() on a wrapped instance of
// Base, we call back into Python to find the "f" attribute, which calls
// default_f() (unless it has been overridden in Python) and in turn the default
// implementation (Base::f()) is called.
//
// Now consider what happens when the Python programmer writes
// >>> factory(0).f()
//
// The shared_ptr<Derived> which is created on the C++ side is converted by
// to_python() into a Python instance of the "Base" ExtensionClass. Then Python
// looks up the "f" attribute, and finds the wrapper for default_f(), which it
// calls. That calls Base::f(), returning 1. What we really wanted was a call to
// Derived::f(), returning 0.
//
// In this case we actually need a different Python ExtensionClass to represent
// C++ subclasses of Base. When the first default method implementation is added
// to an ExtensionClass, we "push" all of the non-default methods up into a
// newly-created base class of the "Base" ExtensionClass, called
// "Base_base". "Base's" attribute dict contains only default method
// implementations.
//
// A Python call to factory() then results in an object of class "Base_base",
// whose "f" method is bound to Base::f() - since this is a virtual function
// pointer, the member function actually called is determined by the
// most-derived class that implements f().
//
// A Python call to Base() results in an object of class "Base" wrapping a
// BaseCallback object, whose "f" method is bound to BaseCallback::default_f()
// ...which calls Base::f() explicitly.
void ExtensionClassBase::add_default_method(PyPtr<Function> method, const char* name)
{
if (bases().size() == 0)
{
Class<ExtensionInstance>* new_base
= new Class<ExtensionInstance>(
extension_meta_class(), this->name() + String("_base"), Tuple(),
dict());
add_base(Ptr(as_object(new_base)));
// We have transferred everything in our dict into the base class, so
// clear our dict now. It will henceforth contain only default method
// implementations.
dict() = Dict();
}
Function::add_to_namespace(method, name, dict().get());
}
void ExtensionClassBase::add_constructor_object(Function* init_function)
{
add_method(init_function, "__init__");
}
void ExtensionClassBase::add_setter_method(Function* setter_, const char* name)
{
PyPtr<Function> setter(setter_);
add_method(setter, (detail::setattr_string() + name + "__").c_str());
}
void ExtensionClassBase::add_getter_method(Function* getter_, const char* name)
{
PyPtr<Function> getter(getter_);
add_method(getter, (detail::getattr_string() + name + "__").c_str());
}
} // namespace py