2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-21 05:02:17 +00:00
Files
python/newtypes.cpp
Ullrich Köthe 12a881ead5 This commit was generated by cvs2svn to compensate for changes in r315,
which included commits to RCS files with non-trunk default branches.


[SVN r7932]
2000-10-13 13:49:34 +00:00

629 lines
16 KiB
C++

// (C) Copyright David Abrahams 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of Dragon Systems, Inc., in
// producing this work.
#include "newtypes.h"
#include "pyptr.h" // for handle_exception()
#include "module.h"
#include "none.h"
#include <cstring>
#include <vector>
#include <cstddef>
#include <boost/smart_ptr.hpp>
#include "objects.h"
namespace py {
namespace detail {
UniquePodSet& UniquePodSet::instance()
{
static UniquePodSet me;
return me;
}
struct UniquePodSet::Compare
{
bool operator()(const std::pair<const char*, const char*>& x1,
const std::pair<const char*, const char*>& x2) const
{
const std::ptrdiff_t n1 = x1.second - x1.first;
const std::ptrdiff_t n2 = x2.second - x2.first;
return n1 < n2 || n1 == n2 && PY_CSTD_::memcmp(x1.first, x2.first, n1) < 0;
}
};
const void* UniquePodSet::get_element(const void* buffer, std::size_t size)
{
const Holder element(static_cast<const char*>(buffer),
static_cast<const char*>(buffer) + size);
const Storage::iterator found
= std::lower_bound(m_storage.begin(), m_storage.end(), element, Compare());
if (found != m_storage.end() && !Compare()(element, *found))
return found->first;
std::size_t length = element.second - element.first;
char* base_address = new char[length];
try {
PY_CSTD_::memcpy(base_address, element.first, length);
Holder new_element(base_address, base_address + length);
m_storage.insert(found, new_element);
}
catch(...) {
delete[] base_address;
throw;
}
return base_address;
}
UniquePodSet::~UniquePodSet()
{
for (Storage::const_iterator p = m_storage.begin(), finish = m_storage.end();
p != finish; ++p)
{
delete[] const_cast<char*>(p->first);
}
}
} // namespace detail
template <class MethodStruct, class MemberPtr, class Fn>
static MethodStruct* enable_method(const MethodStruct* base, MemberPtr p, Fn f)
{
MethodStruct new_value;
if (base != 0)
new_value = *base;
else
PY_CSTD_::memset(&new_value, 0, sizeof(PyMappingMethods));
new_value.*p = f;
return const_cast<MethodStruct*>(detail::UniquePodSet::instance().get(new_value));
}
// TODO: is there a problem with calling convention here, or can I really pass a
// pointer to a C++ linkage function as a C-linkage function pointer? The
// compilers seem to swallow it, but is it legal? Symantec C++ for Mac didn't
// behave this way, FWIW.
// Using C++ linkage allows us to keep the virtual function members of
// TypeObjectBase private and use friendship to get them called.
extern "C" {
static PyObject* do_instance_repr(PyObject* instance)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_repr(instance);
}
catch(...)
{
handle_exception();
return 0;
}
}
static int do_instance_compare(PyObject* instance, PyObject* other)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_compare(instance, other);
}
catch(...)
{
handle_exception();
return -1;
}
}
static PyObject* do_instance_str(PyObject* instance)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_str(instance);
}
catch(...)
{
handle_exception();
return 0;
}
}
static long do_instance_hash(PyObject* instance)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_hash(instance);
}
catch(...)
{
handle_exception();
return -1;
}
}
static PyObject* do_instance_call(PyObject* instance, PyObject* args, PyObject* keywords)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_call(instance, args, keywords);
}
catch(...)
{
handle_exception();
return 0;
}
}
static void do_instance_dealloc(PyObject* instance)
{
try
{
static_cast<TypeObjectBase*>(instance->ob_type)
->instance_dealloc(instance);
}
catch(...)
{
assert(!"exception during destruction!");
handle_exception();
}
}
static PyObject* do_instance_getattr(PyObject* instance, char* name)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_getattr(instance, name);
}
catch(...)
{
handle_exception();
return 0;
}
}
static int do_instance_setattr(PyObject* instance, char* name, PyObject* value)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_setattr(instance, name, value);
}
catch(...)
{
handle_exception();
return -1;
}
}
static int do_instance_mp_length(PyObject* instance)
{
try
{
const int outcome =
static_cast<TypeObjectBase*>(instance->ob_type)
->instance_mapping_length(instance);
if (outcome < 0)
{
PyErr_SetString(PyExc_ValueError, "__len__() should return >= 0");
return -1;
}
return outcome;
}
catch(...)
{
handle_exception();
return -1;
}
}
static int do_instance_sq_length(PyObject* instance)
{
try
{
const int outcome =
static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_length(instance);
if (outcome < 0)
{
PyErr_SetString(PyExc_ValueError, "__len__() should return >= 0");
return -1;
}
return outcome;
}
catch(...)
{
handle_exception();
return -1;
}
}
static PyObject* do_instance_mp_subscript(PyObject* instance, PyObject* index)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_mapping_subscript(instance, index);
}
catch(...)
{
handle_exception();
return 0;
}
}
static PyObject* do_instance_sq_item(PyObject* instance, int index)
{
try
{
const PyTypeObject* const type = instance->ob_type;
// This is an extension to standard class behavior. If sequence_length
// is implemented and n >= sequence_length(), raise an IndexError. That
// keeps users from having to worry about raising it themselves
if (type->tp_as_sequence != 0 && type->tp_as_sequence->sq_length != 0
&& index >= type->tp_as_sequence->sq_length(instance))
{
PyErr_SetString(PyExc_IndexError, type->tp_name);
return 0;
}
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_item(instance, index);
}
catch(...)
{
handle_exception();
return 0;
}
}
static int do_instance_mp_ass_subscript(PyObject* instance, PyObject* index, PyObject* value)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_mapping_ass_subscript(instance, index, value);
}
catch(...)
{
handle_exception();
return -1;
}
}
static int do_instance_sq_ass_item(PyObject* instance, int index, PyObject* value)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_ass_item(instance, index, value);
}
catch(...)
{
handle_exception();
return -1;
}
}
static PyObject* do_instance_sq_concat(PyObject* instance, PyObject* other)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_concat(instance, other);
}
catch(...)
{
handle_exception();
return 0;
}
}
static PyObject* do_instance_sq_repeat(PyObject* instance, int n)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_repeat(instance, n);
}
catch(...)
{
handle_exception();
return 0;
}
}
static PyObject* do_instance_sq_slice(
PyObject* instance, int start, int finish)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_slice(instance, start, finish);
}
catch(...)
{
handle_exception();
return 0;
}
}
static int do_instance_sq_ass_slice(
PyObject* instance, int start, int finish, PyObject* value)
{
try
{
return static_cast<TypeObjectBase*>(instance->ob_type)
->instance_sequence_ass_slice(instance, start, finish, value);
}
catch(...)
{
handle_exception();
return -1;
}
}
}
namespace detail {
template <std::size_t> struct category_type;
#define DECLARE_CAPABILITY_TYPE(field, sub_structure) \
template <> \
struct category_type<(offsetof(PyTypeObject, tp_as_##field))> \
{ \
typedef sub_structure type; \
}
#define CAPABILITY(field) \
{ offsetof(PyTypeObject, tp_##field), 0, Dispatch(do_instance_##field), 0, -1 }
#define CAPABILITY2(category, field) \
{ offsetof(PyTypeObject, tp_as_##category), \
offsetof(category_type<offsetof(PyTypeObject, tp_as_##category)>::type, field), \
Dispatch(do_instance_##field), \
sizeof(category_type<offsetof(PyTypeObject, tp_as_##category)>::type), \
offsetof(AllMethods, category) \
}
DECLARE_CAPABILITY_TYPE(mapping, PyMappingMethods);
DECLARE_CAPABILITY_TYPE(sequence, PySequenceMethods);
const CapabilityEntry capabilities[] = {
CAPABILITY(hash),
CAPABILITY(call),
CAPABILITY(str),
CAPABILITY(getattr),
CAPABILITY(setattr),
CAPABILITY(compare),
CAPABILITY(repr),
CAPABILITY2(mapping, mp_length),
CAPABILITY2(mapping, mp_subscript),
CAPABILITY2(mapping, mp_ass_subscript),
CAPABILITY2(sequence, sq_length),
CAPABILITY2(sequence, sq_item),
CAPABILITY2(sequence, sq_ass_item),
CAPABILITY2(sequence, sq_concat),
CAPABILITY2(sequence, sq_repeat),
CAPABILITY2(sequence, sq_slice),
CAPABILITY2(sequence, sq_ass_slice)
};
const std::size_t num_capabilities = PY_ARRAY_LENGTH(capabilities);
void add_capability(
std::size_t n,
PyTypeObject* dest_,
AllMethods& all_methods,
const PyTypeObject* src_)
{
assert(n < PY_ARRAY_LENGTH(capabilities));
const CapabilityEntry& c = capabilities[n];
const char* const* src = src_ ? reinterpret_cast<const char* const*>(
reinterpret_cast<const char*>(src_) + c.offset1) : 0;
char** const dest = reinterpret_cast<char**>(
reinterpret_cast<char*>(dest_) + c.offset1);
if (c.substructure_size == 0)
{
if (src == 0 ||
#if defined(__MWERKS__) && __MWERKS__ <= 0x4000
((const Dispatch*)src)
#else
reinterpret_cast<const Dispatch*>(src)
#endif
!= 0) {
*reinterpret_cast<Dispatch*>(dest) = c.dispatch;
}
}
else
{
if (src == 0 ||
*src != 0 && *reinterpret_cast<const Dispatch*>(*src + c.offset2) != 0)
{
*dest = reinterpret_cast<char*>(&all_methods) + c.allmethods_offset;
*reinterpret_cast<Dispatch*>(*dest + c.offset2) = c.dispatch;
}
}
}
} // namespace detail
namespace {
union SubStructures {
PyMappingMethods mapping;
PySequenceMethods sequence;
PyNumberMethods number;
PyBufferProcs buffer;
};
}
void TypeObjectBase::enable(TypeObjectBase::Capability capability)
{
using detail::capabilities;
using detail::CapabilityEntry;
using detail::Dispatch;
assert((std::size_t)capability < PY_ARRAY_LENGTH(capabilities));
const CapabilityEntry& c = capabilities[capability];
PyTypeObject* const me = this;
char* const base_address = reinterpret_cast<char*>(me);
if (c.substructure_size == 0)
{
// Stuff the dispatch function directly into the PyTypeObject
*reinterpret_cast<Dispatch*>(base_address + c.offset1) = c.dispatch;
return;
}
const char*& sub_structure = *reinterpret_cast<const char**>(base_address + c.offset1);
// Initialize this POD union with the current state-of-the-world
SubStructures sub;
if (sub_structure == 0)
PY_CSTD_::memset(&sub, 0, c.substructure_size);
else
PY_CSTD_::memcpy(&sub, sub_structure, c.substructure_size);
// Stuff the dispatch function into the sub-structure
*reinterpret_cast<Dispatch*>(reinterpret_cast<char*>(&sub) + c.offset2) = c.dispatch;
// Retrieve the unique dynamically-allocated substructure and stuff it into
// the PyTypeObject.
sub_structure = static_cast<const char*>(
detail::UniquePodSet::instance().get_element(&sub, c.substructure_size));
}
TypeObjectBase::TypeObjectBase(PyTypeObject* t)
: PythonType(t)
{
this->tp_dealloc = do_instance_dealloc;
}
namespace {
struct ErrorType {
operator PyObject*() const { return 0; }
operator int() const { return -1; }
};
ErrorType unimplemented(const char* name)
{
assert(!"Control should never reach here");
String s("Unimplemented ");
s += String(name);
PyErr_SetObject(PyExc_RuntimeError, s.get());
return ErrorType();
}
}
PyObject* TypeObjectBase::instance_repr(PyObject*) const
{
return unimplemented("instance_repr");
}
int TypeObjectBase::instance_compare(PyObject*, PyObject*) const
{
return unimplemented("instance_compare");
}
PyObject* TypeObjectBase::instance_str(PyObject*) const
{
return unimplemented("instance_str");
}
long TypeObjectBase::instance_hash(PyObject* /* instance */) const
{
return unimplemented("instance_hash");
}
PyObject* TypeObjectBase::instance_call(PyObject* /*instance*/, PyObject* /*args*/, PyObject* /*kw*/) const
{
return unimplemented("instance_call");
}
PyObject* TypeObjectBase::instance_getattr(PyObject* /*instance*/, const char* /*name*/) const
{
return unimplemented("instance_getattr");
}
int TypeObjectBase::instance_setattr(PyObject* /*instance*/, const char* /*name*/, PyObject* /*value*/) const
{
return unimplemented("instance_setattr");
}
int TypeObjectBase::instance_mapping_length(PyObject*) const
{
return unimplemented("instance_mapping_length");
}
int TypeObjectBase::instance_sequence_length(PyObject*) const
{
return unimplemented("instance_sequence_length");
}
PyObject* TypeObjectBase::instance_mapping_subscript(PyObject*, PyObject*) const
{
return unimplemented("instance_mapping_subscript");
}
PyObject* TypeObjectBase::instance_sequence_item(PyObject*, int) const
{
return unimplemented("instance_sequence_item");
}
int TypeObjectBase::instance_mapping_ass_subscript(PyObject*, PyObject*, PyObject*) const
{
return unimplemented("instance_mapping_ass_subscript");
}
int TypeObjectBase::instance_sequence_ass_item(PyObject*, int, PyObject*) const
{
return unimplemented("instance_sequence_ass_item");
}
PyObject* TypeObjectBase::instance_sequence_concat(PyObject*, PyObject*) const
{
return unimplemented("instance_sequence_concat");
}
PyObject* TypeObjectBase::instance_sequence_repeat(PyObject*, int) const
{
return unimplemented("instance_sequence_repeat");
}
PyObject* TypeObjectBase::instance_sequence_slice(PyObject*, int, int) const
{
return unimplemented("instance_sequence_slice");
}
int TypeObjectBase::instance_sequence_ass_slice(PyObject*, int, int, PyObject*) const
{
return unimplemented("instance_sequence_ass_slice");
}
TypeObjectBase::~TypeObjectBase()
{
}
}