2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-19 16:32:16 +00:00
Files
python/doc/tutorial/doc/html/python/exposing.html
nobody 3b5636cb33 This commit was manufactured by cvs2svn to create tag
'merged_to_RC_1_34_0'.

[SVN r37938]
2007-06-07 20:53:46 +00:00

614 lines
54 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title> Exposing Classes</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.66.1">
<link rel="start" href="../index.html" title="Chapter 1. python 1.0">
<link rel="up" href="../index.html" title="Chapter 1. python 1.0">
<link rel="prev" href="hello.html" title=" Building Hello World">
<link rel="next" href="functions.html" title="Functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%">
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../../index.htm">Home</a></td>
<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="../../../../../../../people/people.htm">People</a></td>
<td align="center"><a href="../../../../../../../more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
</table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hello.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="functions.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="python.exposing"></a> Exposing Classes</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="exposing.html#python.constructors">Constructors</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.class_data_members">Class Data Members</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.class_properties">Class Properties</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.inheritance">Inheritance</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.class_virtual_functions">Class Virtual Functions</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.virtual_functions_with_default_implementations">Virtual Functions with Default Implementations</a></span></dt>
<dt><span class="section"><a href="exposing.html#python.class_operators_special_functions">Class Operators/Special Functions</a></span></dt>
</dl></div>
<p>
Now let's expose a C++ class to Python.
</p>
<p>
Consider a C++ class/struct that we want to expose to Python:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">World</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="identifier">set</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">msg</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">msg</span> <span class="special">=</span> <span class="identifier">msg</span><span class="special">;</span> <span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">greet</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">msg</span><span class="special">;</span> <span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">msg</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
We can expose this to Python by writing a corresponding Boost.Python C++ Wrapper:
</p>
<pre class="programlisting">
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">python</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">python</span><span class="special">;</span>
<span class="identifier">BOOST_PYTHON_MODULE</span><span class="special">(</span><span class="identifier">hello</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">World</span><span class="special">&gt;(</span><span class="string">"World"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"greet"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">greet</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"set"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">set</span><span class="special">)</span>
<span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
Here, we wrote a C++ class wrapper that exposes the member functions <tt class="literal">greet</tt>
and <tt class="literal">set</tt>. Now, after building our module as a shared library,
we may use our class <tt class="literal">World</tt> in Python. Here's a sample Python
session:
</p>
<p>
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="keyword">import</span> <span class="identifier">hello</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">planet</span> <span class="special">=</span> <span class="identifier">hello</span><span class="special">.</span><span class="identifier">World</span><span class="special">()</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">planet</span><span class="special">.</span><span class="identifier">set</span><span class="special">(</span><span class="string">'howdy'</span><span class="special">)</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">planet</span><span class="special">.</span><span class="identifier">greet</span><span class="special">()</span>
<span class="string">'howdy'</span>
</pre>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.constructors"></a>Constructors</h3></div></div></div>
<p>
Our previous example didn't have any explicit constructors. Since <tt class="literal">World</tt>
is declared as a plain struct, it has an implicit default constructor. Boost.Python
exposes the default constructor by default, which is why we were able to
write
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">planet</span> <span class="special">=</span> <span class="identifier">hello</span><span class="special">.</span><span class="identifier">World</span><span class="special">()</span>
</pre>
<p>
We may wish to wrap a class with a non-default constructor. Let us build
on our previous example:
</p>
<p>
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">World</span>
<span class="special">{</span>
<span class="identifier">World</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">msg</span><span class="special">):</span> <span class="identifier">msg</span><span class="special">(</span><span class="identifier">msg</span><span class="special">)</span> <span class="special">{}</span> <span class="comment">// added constructor
</span> <span class="keyword">void</span> <span class="identifier">set</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">msg</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">msg</span> <span class="special">=</span> <span class="identifier">msg</span><span class="special">;</span> <span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">greet</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">msg</span><span class="special">;</span> <span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">msg</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
This time <tt class="literal">World</tt> has no default constructor; our previous
wrapping code would fail to compile when the library tried to expose it.
We have to tell <tt class="literal">class_&lt;World&gt;</tt> about the constructor
we want to expose instead.
</p>
<pre class="programlisting">
<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">python</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">python</span><span class="special">;</span>
<span class="identifier">BOOST_PYTHON_MODULE</span><span class="special">(</span><span class="identifier">hello</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">World</span><span class="special">&gt;(</span><span class="string">"World"</span><span class="special">,</span> <span class="identifier">init</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">&gt;())</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"greet"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">greet</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"set"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">set</span><span class="special">)</span>
<span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
<tt class="literal">init&lt;std::string&gt;()</tt> exposes the constructor taking
in a <tt class="literal">std::string</tt> (in Python, constructors are spelled
"<tt class="literal">"<span class="underline">_init</span>_"</tt>").
</p>
<p>
We can expose additional constructors by passing more <tt class="literal">init&lt;...&gt;</tt>s
to the <tt class="literal">def()</tt> member function. Say for example we have
another World constructor taking in two doubles:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">World</span><span class="special">&gt;(</span><span class="string">"World"</span><span class="special">,</span> <span class="identifier">init</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">&gt;())</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">init</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="keyword">double</span><span class="special">&gt;())</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"greet"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">greet</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"set"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">World</span><span class="special">::</span><span class="identifier">set</span><span class="special">)</span>
<span class="special">;</span>
</pre>
<p>
On the other hand, if we do not wish to expose any constructors at all, we
may use <tt class="literal">no_init</tt> instead:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Abstract</span><span class="special">&gt;(</span><span class="string">"Abstract"</span><span class="special">,</span> <span class="identifier">no_init</span><span class="special">)</span>
</pre>
<p>
This actually adds an <tt class="literal"><span class="underline">_init</span>_</tt>
method which always raises a Python RuntimeError exception.
</p>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.class_data_members"></a>Class Data Members</h3></div></div></div>
<p>
Data members may also be exposed to Python so that they can be accessed as
attributes of the corresponding Python class. Each data member that we wish
to be exposed may be regarded as <span class="bold"><b>read-only</b></span>
or <span class="bold"><b>read-write</b></span>. Consider this class <tt class="literal">Var</tt>:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Var</span>
<span class="special">{</span>
<span class="identifier">Var</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="identifier">name</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">name</span><span class="special">(</span><span class="identifier">name</span><span class="special">),</span> <span class="identifier">value</span><span class="special">()</span> <span class="special">{}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span> <span class="keyword">const</span> <span class="identifier">name</span><span class="special">;</span>
<span class="keyword">float</span> <span class="identifier">value</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
Our C++ <tt class="literal">Var</tt> class and its data members can be exposed
to Python:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Var</span><span class="special">&gt;(</span><span class="string">"Var"</span><span class="special">,</span> <span class="identifier">init</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">&gt;())</span>
<span class="special">.</span><span class="identifier">def_readonly</span><span class="special">(</span><span class="string">"name"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Var</span><span class="special">::</span><span class="identifier">name</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def_readwrite</span><span class="special">(</span><span class="string">"value"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Var</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
</pre>
<p>
Then, in Python, assuming we have placed our Var class inside the namespace
hello as we did before:
</p>
<p>
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">hello</span><span class="special">.</span><span class="identifier">Var</span><span class="special">(</span><span class="string">'pi'</span><span class="special">)</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">value</span> <span class="special">=</span> <span class="number">3.14</span>
<span class="special">&gt;&gt;&gt;</span> <span class="keyword">print</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">name</span><span class="special">,</span> <span class="string">'is around'</span><span class="special">,</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">value</span>
<span class="identifier">pi</span> <span class="keyword">is</span> <span class="identifier">around</span> <span class="number">3.14</span>
</pre>
<p>
Note that <tt class="literal">name</tt> is exposed as <span class="bold"><b>read-only</b></span>
while <tt class="literal">value</tt> is exposed as <span class="bold"><b>read-write</b></span>.
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">name</span> <span class="special">=</span> <span class="string">'e'</span> <span class="comment"># can't change name
</span><span class="identifier">Traceback</span> <span class="special">(</span><span class="identifier">most</span> <span class="identifier">recent</span> <span class="identifier">call</span> <span class="identifier">last</span><span class="special">):</span>
<span class="identifier">File</span> <span class="string">"&lt;stdin&gt;"</span><span class="special">,</span> <span class="identifier">line</span> <span class="number">1</span><span class="special">,</span> <span class="keyword">in</span> #
<span class="identifier">AttributeError</span><span class="special">:</span> <span class="identifier">can</span>#<span class="identifier">t</span> <span class="identifier">set</span> <span class="identifier">attribute</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.class_properties"></a>Class Properties</h3></div></div></div>
<p>
In C++, classes with public data members are usually frowned upon. Well designed
classes that take advantage of encapsulation hide the class' data members.
The only way to access the class' data is through access (getter/setter)
functions. Access functions expose class properties. Here's an example:
</p>
<p>
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Num</span>
<span class="special">{</span>
<span class="identifier">Num</span><span class="special">();</span>
<span class="keyword">float</span> <span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">set</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">value</span><span class="special">);</span>
<span class="special">...</span>
<span class="special">};</span>
</pre>
<p>
However, in Python attribute access is fine; it doesn't neccessarily break
encapsulation to let users handle attributes directly, because the attributes
can just be a different syntax for a method call. Wrapping our <tt class="literal">Num</tt>
class using Boost.Python:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Num</span><span class="special">&gt;(</span><span class="string">"Num"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">add_property</span><span class="special">(</span><span class="string">"rovalue"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Num</span><span class="special">::</span><span class="identifier">get</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">add_property</span><span class="special">(</span><span class="string">"value"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Num</span><span class="special">::</span><span class="identifier">get</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Num</span><span class="special">::</span><span class="identifier">set</span><span class="special">);</span>
</pre>
<p>
And at last, in Python:
</p>
<p>
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">Num</span><span class="special">()</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">value</span> <span class="special">=</span> <span class="number">3.14</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">value</span><span class="special">,</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">rovalue</span>
<span class="special">(</span><span class="number">3.14</span><span class="special">,</span> <span class="number">3.14</span><span class="special">)</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">rovalue</span> <span class="special">=</span> <span class="number">2.17</span> <span class="comment"># error!
</span></pre>
<p>
Take note that the class property <tt class="literal">rovalue</tt> is exposed as
<span class="bold"><b>read-only</b></span> since the <tt class="literal">rovalue</tt>
setter member function is not passed in:
</p>
<p>
</p>
<pre class="programlisting">
<span class="special">.</span><span class="identifier">add_property</span><span class="special">(</span><span class="string">"rovalue"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Num</span><span class="special">::</span><span class="identifier">get</span><span class="special">)</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.inheritance"></a>Inheritance</h3></div></div></div>
<p>
In the previous examples, we dealt with classes that are not polymorphic.
This is not often the case. Much of the time, we will be wrapping polymorphic
classes and class hierarchies related by inheritance. We will often have
to write Boost.Python wrappers for classes that are derived from abstract
base classes.
</p>
<p>
Consider this trivial inheritance structure:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Base</span> <span class="special">{</span> <span class="keyword">virtual</span> <span class="special">~</span><span class="identifier">Base</span><span class="special">();</span> <span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">Derived</span> <span class="special">:</span> <span class="identifier">Base</span> <span class="special">{};</span>
</pre>
<p>
And a set of C++ functions operating on <tt class="literal">Base</tt> and <tt class="literal">Derived</tt>
object instances:
</p>
<pre class="programlisting">
<span class="keyword">void</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">Base</span><span class="special">*);</span>
<span class="keyword">void</span> <span class="identifier">d</span><span class="special">(</span><span class="identifier">Derived</span><span class="special">*);</span>
<span class="identifier">Base</span><span class="special">*</span> <span class="identifier">factory</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="keyword">new</span> <span class="identifier">Derived</span><span class="special">;</span> <span class="special">}</span>
</pre>
<p>
We've seen how we can wrap the base class <tt class="literal">Base</tt>:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Base</span><span class="special">&gt;(</span><span class="string">"Base"</span><span class="special">)</span>
<span class="comment">/*...*/</span>
<span class="special">;</span>
</pre>
<p>
Now we can inform Boost.Python of the inheritance relationship between <tt class="literal">Derived</tt>
and its base class <tt class="literal">Base</tt>. Thus:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Derived</span><span class="special">,</span> <span class="identifier">bases</span><span class="special">&lt;</span><span class="identifier">Base</span><span class="special">&gt;</span> <span class="special">&gt;(</span><span class="string">"Derived"</span><span class="special">)</span>
<span class="comment">/*...*/</span>
<span class="special">;</span>
</pre>
<p>
Doing so, we get some things for free:
</p>
<div class="orderedlist"><ol type="1">
<li>
Derived automatically inherits all of Base's Python methods (wrapped C++
member functions)
</li>
<li>
<span class="bold"><b>If</b></span> Base is polymorphic, <tt class="literal">Derived</tt>
objects which have been passed to Python via a pointer or reference to
<tt class="literal">Base</tt> can be passed where a pointer or reference to
<tt class="literal">Derived</tt> is expected.
</li>
</ol></div>
<p>
Now, we shall expose the C++ free functions <tt class="literal">b</tt> and <tt class="literal">d</tt>
and <tt class="literal">factory</tt>:
</p>
<pre class="programlisting">
<span class="identifier">def</span><span class="special">(</span><span class="string">"b"</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
<span class="identifier">def</span><span class="special">(</span><span class="string">"d"</span><span class="special">,</span> <span class="identifier">d</span><span class="special">);</span>
<span class="identifier">def</span><span class="special">(</span><span class="string">"factory"</span><span class="special">,</span> <span class="identifier">factory</span><span class="special">);</span>
</pre>
<p>
Note that free function <tt class="literal">factory</tt> is being used to generate
new instances of class <tt class="literal">Derived</tt>. In such cases, we use
<tt class="literal">return_value_policy&lt;manage_new_object&gt;</tt> to instruct
Python to adopt the pointer to <tt class="literal">Base</tt> and hold the instance
in a new Python <tt class="literal">Base</tt> object until the the Python object
is destroyed. We shall see more of Boost.Python <a href="functions.html#python.call_policies" title="Call Policies">call
policies</a> later.
</p>
<pre class="programlisting">
<span class="comment">// Tell Python to take ownership of factory's result
</span><span class="identifier">def</span><span class="special">(</span><span class="string">"factory"</span><span class="special">,</span> <span class="identifier">factory</span><span class="special">,</span>
<span class="identifier">return_value_policy</span><span class="special">&lt;</span><span class="identifier">manage_new_object</span><span class="special">&gt;());</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.class_virtual_functions"></a>Class Virtual Functions</h3></div></div></div>
<p>
In this section, we shall learn how to make functions behave polymorphically
through virtual functions. Continuing our example, let us add a virtual function
to our <tt class="literal">Base</tt> class:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Base</span>
<span class="special">{</span>
<span class="keyword">virtual</span> <span class="special">~</span><span class="identifier">Base</span><span class="special">()</span> <span class="special">{}</span>
<span class="keyword">virtual</span> <span class="keyword">int</span> <span class="identifier">f</span><span class="special">()</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
One of the goals of Boost.Python is to be minimally intrusive on an existing
C++ design. In principle, it should be possible to expose the interface for
a 3rd party library without changing it. It is not ideal to add anything
to our class <tt class="computeroutput"><span class="identifier">Base</span></tt>. Yet, when
you have a virtual function that's going to be overridden in Python and called
polymorphically <span class="bold"><b>from C++</b></span>, we'll need to
add some scaffoldings to make things work properly. What we'll do is write
a class wrapper that derives from <tt class="computeroutput"><span class="identifier">Base</span></tt>
that will unintrusively hook into the virtual functions so that a Python
override may be called:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">BaseWrap</span> <span class="special">:</span> <span class="identifier">Base</span><span class="special">,</span> <span class="identifier">wrapper</span><span class="special">&lt;</span><span class="identifier">Base</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">int</span> <span class="identifier">f</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">get_override</span><span class="special">(</span><span class="string">"f"</span><span class="special">)();</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Notice too that in addition to inheriting from <tt class="computeroutput"><span class="identifier">Base</span></tt>,
we also multiply- inherited <tt class="computeroutput"><span class="identifier">wrapper</span><span class="special">&lt;</span><span class="identifier">Base</span><span class="special">&gt;</span></tt> (See <a href="../../../../v2/wrapper.html" target="_top">Wrapper</a>).
The <tt class="computeroutput"><span class="identifier">wrapper</span></tt> template makes
the job of wrapping classes that are meant to overridden in Python, easier.
</p>
<div class="informaltable"><table class="table">
<colgroup><col></colgroup>
<tbody><tr><td class="blurb"> <span class="inlinemediaobject"><img src="../images/alert.png" alt="alert"></span> <span class="bold"><b>MSVC6/7 Workaround</b></span><br>
<br> If you are using Microsoft Visual C++ 6 or 7, you have to write
<tt class="computeroutput"><span class="identifier">f</span></tt> as:<br> <br>
<tt class="computeroutput"><span class="keyword">return</span> <span class="identifier">call</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">get_override</span><span class="special">(</span><span class="string">"f"</span><span class="special">).</span><span class="identifier">ptr</span><span class="special">());</span></tt>.</td></tr></tbody>
</table></div>
<p>
BaseWrap's overridden virtual member function <tt class="computeroutput"><span class="identifier">f</span></tt>
in effect calls the corresponding method of the Python object through <tt class="computeroutput"><span class="identifier">get_override</span></tt>.
</p>
<p>
Finally, exposing <tt class="computeroutput"><span class="identifier">Base</span></tt>:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">BaseWrap</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">noncopyable</span><span class="special">&gt;(</span><span class="string">"Base"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"f"</span><span class="special">,</span> <span class="identifier">pure_virtual</span><span class="special">(&amp;</span><span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span><span class="special">))</span>
<span class="special">;</span>
</pre>
<p>
<tt class="computeroutput"><span class="identifier">pure_virtual</span></tt> signals Boost.Python
that the function <tt class="computeroutput"><span class="identifier">f</span></tt> is a
pure virtual function.
</p>
<div class="informaltable"><table class="table">
<colgroup><col></colgroup>
<tbody><tr><td class="blurb"> <span class="inlinemediaobject"><img src="../images/note.png" alt="note"></span> <span class="bold"><b>member function and
methods</b></span><br> <br> Python, like many object oriented languages
uses the term <span class="bold"><b>methods</b></span>. Methods correspond
roughly to C++'s <span class="bold"><b>member functions</b></span>
</td></tr></tbody>
</table></div>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.virtual_functions_with_default_implementations"></a>Virtual Functions with Default Implementations</h3></div></div></div>
<p>
We've seen in the previous section how classes with pure virtual functions
are wrapped using Boost.Python's <a href="../../../../v2/wrapper.html" target="_top">class
wrapper</a> facilities. If we wish to wrap <span class="bold"><b>non</b></span>-pure-virtual
functions instead, the mechanism is a bit different.
</p>
<p>
Recall that in the <a href="exposing.html#python.class_virtual_functions" title="Class Virtual Functions">previous
section</a>, we wrapped a class with a pure virtual function that we then
implemented in C++, or Python classes derived from it. Our base class:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Base</span>
<span class="special">{</span>
<span class="keyword">virtual</span> <span class="keyword">int</span> <span class="identifier">f</span><span class="special">()</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
had a pure virtual function <tt class="literal">f</tt>. If, however, its member
function <tt class="literal">f</tt> was not declared as pure virtual:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">Base</span>
<span class="special">{</span>
<span class="keyword">virtual</span> <span class="special">~</span><span class="identifier">Base</span><span class="special">()</span> <span class="special">{}</span>
<span class="keyword">virtual</span> <span class="keyword">int</span> <span class="identifier">f</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">0</span><span class="special">;</span> <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
We wrap it this way:
</p>
<pre class="programlisting">
<span class="keyword">struct</span> <span class="identifier">BaseWrap</span> <span class="special">:</span> <span class="identifier">Base</span><span class="special">,</span> <span class="identifier">wrapper</span><span class="special">&lt;</span><span class="identifier">Base</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">int</span> <span class="identifier">f</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">if</span> <span class="special">(</span><span class="identifier">override</span> <span class="identifier">f</span> <span class="special">=</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">get_override</span><span class="special">(</span><span class="string">"f"</span><span class="special">))</span>
<span class="keyword">return</span> <span class="identifier">f</span><span class="special">();</span> <span class="comment">// *note*
</span> <span class="keyword">return</span> <span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span><span class="special">();</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">default_f</span><span class="special">()</span> <span class="special">{</span> <span class="keyword">return</span> <span class="keyword">this</span><span class="special">-&gt;</span><span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span><span class="special">();</span> <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Notice how we implemented <tt class="computeroutput"><span class="identifier">BaseWrap</span><span class="special">::</span><span class="identifier">f</span></tt>. Now,
we have to check if there is an override for <tt class="computeroutput"><span class="identifier">f</span></tt>.
If none, then we call <tt class="computeroutput"><span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span><span class="special">()</span></tt>.
</p>
<div class="informaltable"><table class="table">
<colgroup><col></colgroup>
<tbody><tr><td class="blurb"> <span class="inlinemediaobject"><img src="../images/alert.png" alt="alert"></span> <span class="bold"><b>MSVC6/7 Workaround</b></span><br>
<br> If you are using Microsoft Visual C++ 6 or 7, you have to rewrite
the line with the <tt class="computeroutput"><span class="special">*</span><span class="identifier">note</span><span class="special">*</span></tt> as:<br> <br> <tt class="computeroutput"><span class="keyword">return</span> <span class="identifier">call</span><span class="special">&lt;</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">*&gt;(</span><span class="identifier">f</span><span class="special">.</span><span class="identifier">ptr</span><span class="special">());</span></tt>.</td></tr></tbody>
</table></div>
<p>
Finally, exposing:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">BaseWrap</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">noncopyable</span><span class="special">&gt;(</span><span class="string">"Base"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="string">"f"</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">BaseWrap</span><span class="special">::</span><span class="identifier">default_f</span><span class="special">)</span>
<span class="special">;</span>
</pre>
<p>
Take note that we expose both <tt class="computeroutput"><span class="special">&amp;</span><span class="identifier">Base</span><span class="special">::</span><span class="identifier">f</span></tt> and <tt class="computeroutput"><span class="special">&amp;</span><span class="identifier">BaseWrap</span><span class="special">::</span><span class="identifier">default_f</span></tt>. Boost.Python needs to keep track
of 1) the dispatch function <tt class="literal">f</tt> and 2) the forwarding function
to its default implementation <tt class="literal">default_f</tt>. There's a special
<tt class="literal">def</tt> function for this purpose.
</p>
<p>
In Python, the results would be as expected:
</p>
<p>
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">base</span> <span class="special">=</span> <span class="identifier">Base</span><span class="special">()</span>
<span class="special">&gt;&gt;&gt;</span> <span class="keyword">class</span> <span class="identifier">Derived</span><span class="special">(</span><span class="identifier">Base</span><span class="special">):</span>
<span class="special">...</span> <span class="keyword">def</span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">self</span><span class="special">):</span>
<span class="special">...</span> <span class="keyword">return</span> <span class="number">42</span>
<span class="special">...</span>
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">derived</span> <span class="special">=</span> <span class="identifier">Derived</span><span class="special">()</span>
</pre>
<p>
Calling <tt class="literal">base.f()</tt>:
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">base</span><span class="special">.</span><span class="identifier">f</span><span class="special">()</span>
<span class="number">0</span>
</pre>
<p>
Calling <tt class="literal">derived.f()</tt>:
</p>
<pre class="programlisting">
<span class="special">&gt;&gt;&gt;</span> <span class="identifier">derived</span><span class="special">.</span><span class="identifier">f</span><span class="special">()</span>
<span class="number">42</span>
</pre>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="python.class_operators_special_functions"></a>Class Operators/Special Functions</h3></div></div></div>
<a name="class_operators_special_functions.python_operators"></a><h2>
<a name="id448928"></a>
Python Operators
</h2>
<p>
C is well known for the abundance of operators. C++ extends this to the extremes
by allowing operator overloading. Boost.Python takes advantage of this and
makes it easy to wrap C++ operator-powered classes.
</p>
<p>
Consider a file position class <tt class="literal">FilePos</tt> and a set of operators
that take on FilePos instances:
</p>
<p>
</p>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">FilePos</span> <span class="special">{</span> <span class="comment">/*...*/</span> <span class="special">};</span>
<span class="identifier">FilePos</span> <span class="keyword">operator</span><span class="special">+(</span><span class="identifier">FilePos</span><span class="special">,</span> <span class="keyword">int</span><span class="special">);</span>
<span class="identifier">FilePos</span> <span class="keyword">operator</span><span class="special">+(</span><span class="keyword">int</span><span class="special">,</span> <span class="identifier">FilePos</span><span class="special">);</span>
<span class="keyword">int</span> <span class="keyword">operator</span><span class="special">-(</span><span class="identifier">FilePos</span><span class="special">,</span> <span class="identifier">FilePos</span><span class="special">);</span>
<span class="identifier">FilePos</span> <span class="keyword">operator</span><span class="special">-(</span><span class="identifier">FilePos</span><span class="special">,</span> <span class="keyword">int</span><span class="special">);</span>
<span class="identifier">FilePos</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">+=(</span><span class="identifier">FilePos</span><span class="special">&amp;,</span> <span class="keyword">int</span><span class="special">);</span>
<span class="identifier">FilePos</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">-=(</span><span class="identifier">FilePos</span><span class="special">&amp;,</span> <span class="keyword">int</span><span class="special">);</span>
<span class="keyword">bool</span> <span class="keyword">operator</span><span class="special">&lt;(</span><span class="identifier">FilePos</span><span class="special">,</span> <span class="identifier">FilePos</span><span class="special">);</span>
</pre>
<p>
The class and the various operators can be mapped to Python rather easily
and intuitively:
</p>
<pre class="programlisting">
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">FilePos</span><span class="special">&gt;(</span><span class="string">"FilePos"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">+</span> <span class="keyword">int</span><span class="special">())</span> <span class="comment">// __add__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="keyword">int</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">self</span><span class="special">)</span> <span class="comment">// __radd__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">-</span> <span class="identifier">self</span><span class="special">)</span> <span class="comment">// __sub__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">-</span> <span class="keyword">int</span><span class="special">())</span> <span class="comment">// __sub__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">+=</span> <span class="keyword">int</span><span class="special">())</span> <span class="comment">// __iadd__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">-=</span> <span class="identifier">other</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;())</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">self</span> <span class="special">&lt;</span> <span class="identifier">self</span><span class="special">);</span> <span class="comment">// __lt__
</span></pre>
<p>
The code snippet above is very clear and needs almost no explanation at all.
It is virtually the same as the operators' signatures. Just take note that
<tt class="literal">self</tt> refers to FilePos object. Also, not every class
<tt class="literal">T</tt> that you might need to interact with in an operator
expression is (cheaply) default-constructible. You can use <tt class="literal">other&lt;T&gt;()</tt>
in place of an actual <tt class="literal">T</tt> instance when writing "self
expressions".
</p>
<a name="class_operators_special_functions.special_methods"></a><h2>
<a name="id449680"></a>
Special Methods
</h2>
<p>
Python has a few more <span class="emphasis"><em>Special Methods</em></span>. Boost.Python
supports all of the standard special method names supported by real Python
class instances. A similar set of intuitive interfaces can also be used to
wrap C++ functions that correspond to these Python <span class="emphasis"><em>special functions</em></span>.
Example:
</p>
<pre class="programlisting">
<span class="keyword">class</span> <span class="identifier">Rational</span>
<span class="special">{</span> <span class="keyword">public</span><span class="special">:</span> <span class="keyword">operator</span> <span class="keyword">double</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span> <span class="special">};</span>
<span class="identifier">Rational</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">Rational</span><span class="special">,</span> <span class="identifier">Rational</span><span class="special">);</span>
<span class="identifier">Rational</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">Rational</span><span class="special">);</span>
<span class="identifier">ostream</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">&lt;&lt;(</span><span class="identifier">ostream</span><span class="special">&amp;,</span><span class="identifier">Rational</span><span class="special">);</span>
<span class="identifier">class_</span><span class="special">&lt;</span><span class="identifier">Rational</span><span class="special">&gt;(</span><span class="string">"Rational"</span><span class="special">)</span>
<span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">float_</span><span class="special">(</span><span class="identifier">self</span><span class="special">))</span> <span class="comment">// __float__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">self</span><span class="special">,</span> <span class="identifier">other</span><span class="special">&lt;</span><span class="identifier">Rational</span><span class="special">&gt;))</span> <span class="comment">// __pow__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">self</span><span class="special">))</span> <span class="comment">// __abs__
</span> <span class="special">.</span><span class="identifier">def</span><span class="special">(</span><span class="identifier">str</span><span class="special">(</span><span class="identifier">self</span><span class="special">))</span> <span class="comment">// __str__
</span> <span class="special">;</span>
</pre>
<p>
Need we say more?
</p>
<div class="informaltable"><table class="table">
<colgroup><col></colgroup>
<tbody><tr><td class="blurb"> <span class="inlinemediaobject"><img src="../images/note.png" alt="note"></span> What is the business of <tt class="computeroutput"><span class="keyword">operator</span><span class="special">&lt;&lt;</span></tt>? Well, the method <tt class="computeroutput"><span class="identifier">str</span></tt> requires the <tt class="computeroutput"><span class="keyword">operator</span><span class="special">&lt;&lt;</span></tt> to do its work (i.e. <tt class="computeroutput"><span class="keyword">operator</span><span class="special">&lt;&lt;</span></tt>
is used by the method defined by <tt class="computeroutput"><span class="identifier">def</span><span class="special">(</span><span class="identifier">str</span><span class="special">(</span><span class="identifier">self</span><span class="special">))</span></tt>.</td></tr></tbody>
</table></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><small>Copyright © 2002-2005 Joel
de Guzman, David Abrahams</small></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hello.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="functions.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>