2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-22 05:22:45 +00:00
Files
python/doc/v2/containers.html
Raoul Gough 9e593f1f79 Fix namespace naming issues
[SVN r20351]
2003-10-11 13:44:21 +00:00

1777 lines
50 KiB
HTML
Executable File

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content="A human being">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link rel="stylesheet" type="text/css" href="../boost.css">
<title>
Boost.Python - C++ Container Support
</title>
</head>
<body>
<table border="0" cellpadding="7" cellspacing="0" width="100%"
summary="header">
<tr>
<td valign="top" width="300">
<h3>
<a href="../../../../index.htm"><img height="86" width="277"
alt="C++ Boost" src="../../../../c++boost.gif" border=
"0"></a>
</h3>
</td>
<td valign="top">
<h1 align="center">
<a href="../index.html">Boost.Python</a><br>
C++ Container Support
</h1>
</td>
</tr>
</table>
<hr>
<h2>
Contents
</h2>
<dl class="page-index">
<dt>
<a href="#introduction">Introduction</a>
</dt>
<dt>
<a href="#design_goals">Design goals</a>
</dt>
<dt>
<a href="#interface">Interface</a>
</dt>
<dd>
<dl class="page-index">
<dt>
<a href="#container_suite">container_suite.hpp</a>
</dt>
<dt>
<a href="#policies">Using policies</a>
</dt>
<dt>
<a href="#extending">Extending and customizing</a>
</dt>
<dd>
<dl class="page-index">
<dt>
<a href="#algo_selector">algo_selector</a>
</dt>
<dt>
<a href="#ValueTraits">ValueTraits</a>
</dt>
<dt>
<a href="#ContainerTraits">ContainerTraits</a>
</dt>
<dt>
<a href="#Algorithms">Algorithms</a>
</dt>
</dl>
</dd>
<dt>
<a href="#extending">Container adapters</a>
</dt>
<dd>
<dl class="page-index">
<dt>
<a href="#container_proxy">container_proxy</a>
</dt>
<dt>
<a href="#iterator_pair">iterator_pair</a>
</dt>
</dl>
</dd>
<dt>
<a href="#workarounds">Compiler workarounds</a>
</dt>
<dt>
<a href="#limitations">Known limitations</a>
</dt>
</dl>
</dd>
<dt>
<a href="#references">References</a>
</dt>
<dt>
<a href="#acknoweldegments">Acknowledgements and Copyright</a>
</dt>
</dl>
<h2><a name="introduction">Introduction</a></h2>
The purpose of the code described here is to allow Python code to
access C++ containers using the regular Python container
interfaces. Since each C++ container is different, it is
non-trivial to decide what Python methods can be emulated, and how
to map them to C++ function calls. The library provides a
framework for representing those decisions, as well as bindings
for the standard C++ container templates.
<h2><a name="design_goals">Design goals</a></h2>
The primary design goals are as follows. The library should:
<ul>
<li>
Support instances of all useful standard container templates
</li>
<li>
Provide as much of the normal Python interface as is
reasonable for each container
</li>
<li>
Be extensible to user-defined container types
</li>
<li>
Support client-provided <a
href="CallPolicies.html">CallPolicies</a>
</li>
</ul>
Secondary design goals are as follows. The library should:
<ul>
<li>
Provide an emulation of Python reference semantics for
<i>values</i> in vector-like containers.
</li>
<li>
Provide an emulation of container semantics for iterator
pairs.
</li>
</ul>
<h2><a name="interface">Interface</a></h2>
<p>
The main iterface to the library is via an object which adds a
number of Python functions to a class via a single
<code>def</code> call. The selection of what Python functions to
add happens transparently for instances of the standard
container templates <a href="#Note1">[1]</a>, so that code like
the following should compile and "just work".
</p>
<pre>
class_&lt; std::vector&lt;int&gt; &gt; ("vector_int")
.def (indexing::container_suite&lt; std::vector&lt;int&gt; &gt;());
</pre>
<p>
The <code>container_suite</code> object achieves this using the
<code>def_visitor</code> interface, which provides a hook for
the <code>def</code> function to install multiple Python methods
in one call. If the container element type (<code>int</code> in
the example above) is a user-defined type, you will have to
expose this type to Python via a separate <code>class_</code>
instance.
</p>
<p>
<a name="Note1">[1]</a> if your compiler does not support
partial template specializations, you will have to explicitly
select the right algorithms and traits information, as described
in the <a href="#workarounds">compiler workarounds</a> section.
</p>
<h2><a name="container_suite">container_suite.hpp</a></h2>
<p>
The normal interface to the container suite is via the
<code>container_suite.hpp</code> header, which is summarized
below:
</p>
<p>
<pre>
#include &lt;boost/python/return_by_value.hpp&gt;
#include &lt;boost/python/return_value_policy.hpp&gt;
#include "algo_selector.hpp"
#include "visitor.hpp"
namespace boost { namespace python { namespace indexing {
typedef return_value_policy&lt;return_by_value&gt; default_container_policies;
template&lt;class Container, class Algorithms = algo_selector&lt;Container&gt; &gt;
struct container_suite
: public visitor&lt;Algorithms, default_container_policies&gt;
{
template&lt;typename Policy&gt;
static visitor&lt;Algorithms, Policy&gt; with_policies (Policy const &amp;policy);
};
} } }
</pre>
</p>
<p>
Some important points to note about <code>container_suite</code>:
<ol>
<li>
It relies on the <code>indexing::algo_selector</code>
template, which uses partial template specialization, to
select what functionality to provide for the container.
</li>
<li>
It derives from the <code>indexing::visitor</code>
template, using a <code>return_by_value</code> return
policy. This is a reasonable default, and follows the
Boost.Python idiom of passing a default-constructed object
to the <code>def</code> function.
</li>
<li>
The <code>with_policies</code> static function template
generates different instances of the
<code>indexing::visitor</code> template, with
client-provided policies.
</li>
</ol>
</p>
<h2><a name="policies">Using policies</a></h2>
You can select call policies using the
<code>container_suite</code> static member function
<code>with_policies</code> as in the following example:
<pre>
class_&lt; std::list&lt;heavy_class&gt; &gt; ("list_heavy_class")
.def (indexing::container_suite&lt; std::list&lt;heavy_class&gt; &gt;
::with_policies (my_policies));
</pre>
<h3>Caution with policies</h3>
<p>
It can be tempting to use <code>return_internal_reference</code>
if the container elements are expensive to copy. However, this
can be quite dangerous, since references to the elements can
easily become invalid (e.g. if the element is deleted or
moved). The Boost.Python code for
<code>return_internal_reference</code> can only manage the
lifetime of the entire container object, and not those of the
elements actually being referenced. Various alternatives exist,
the best of which is to store the container elements indirectly,
using <code>boost::shared_ptr</code> or an equivalent. If this
is not possible, <code><a
href="#container_proxy">container_proxy</a></code> may provide a
solution, at least for vector-like containers.
</p>
<h3>Internal policies detail</h3>
<p>
The <code>container_suite</code> object typically adds more than
one function to the Python class, and not all of those functions
can, or should, use exactly the same policies. For instance, the
Python <code>len</code> method, if provided, should always
return its result by value. The library actually uses up to
three different sets of policies derived from the one provided
to the <code>with_policies</code> function. These are:
<ol>
<li>
The supplied policies, unchanged
</li>
<li>
The supplied precall policy only, using <code>default_call_policies</code> for result conversion.
</li>
<li>
The supplied precall policies, and the supplied result
conversion policies applied to <i>each element</i> of a
returned list.
</li>
</ol>
Roughly speaking, methods returning a single container element
use the first option, while methods returning an integer value
(or <code>void</code>) use the second option. The third option
applies only to the slice version of <code>__getitem__</code>,
which generates a Python list by applying the return conversion
policies to each element in the list.
</p>
<h2><a name="extending">Extending and customizing</a></h2>
<p>
The <code>container_suite</code> template relies on six main
support templates, four of which are suitable for specialization
or replacement by client code. The following diagram shows the
templates <a href="#Note2">[2]</a> and their dependencies, with
the replaceable ones highlighted in grey.
</p>
<table>
<tr>
<td>
<img src="./overview.png" width="592" height="200"
alt="Dependencies between main templates">
</td>
</tr>
<tr>
<td><font size="-1">
Diagram 1. Overview of class dependencies
</font></td>
</tr>
</table>
<p>
<a name="Note2">[2]</a> Actually, <code>Algorithms</code> and
<code>ContainerTraits</code> don't represent individual
templates in the diagram, but <i>groups</i> of related
templates. For instance, there are templates called
<code>list_algorithms</code> and <code>assoc_algorithms</code>,
among others. The <code>algo_selector</code> template selects
which algorithms and container traits to use on the basis of
partial template specializations for the known container types.
</p>
<h2><a name="ValueTraits">ValueTraits</a></h2>
<p>
A <code>ValueTraits</code> class provides simple information
about the type of value stored within a container that will be
exposed to Python via the <code>container_suite</code>
interface. It controls the provision of some operations that are
dependant on the operations supported by container elements (for
instance, <code>find</code> requires a comparison operator for
the elements). A <code>ValueTraits</code> class also provides a
hook called during initialization of the Python class, which can
be used for custom processing at this point.
</p>
<p>
The following table lists the static constants required in a
<code>ValueTraits</code> class:
</p>
<p>
<table border=1>
<tr>
<th align="left">
Static constant
</th>
<th align="center">
Type
</th>
<th align="left">
Meaning
</th>
</tr>
<tr>
<td>
<code>equality_comparable</code>
</td>
<td>
bool
</td>
<td>
Whether the value supports comparison via
<code>operator==</code>.
</td>
</tr>
<tr>
<td>
<code>lessthan_comparable</code>
</td>
<td>
bool
</td>
<td>
Whether the value supports comparison via
<code>operator&lt;</code>.
</td>
</tr>
</table>
</p>
<p>
A <code>ValueTraits</code> class should provide the following
member function template, which will be called during execution
of the <code>def</code> call for the container suite:
</p>
<p>
<pre>
template &lt;typename PythonClass, typename Policy&gt;
static void visitor_helper (PythonClass &amp;, Policy const &amp;);
</pre>
</p>
<h3>Usage notes for ValueTraits</h3>
<p>
In order to include a custom <code>ValueTraits</code> class into
the container suite, it is easiest to supply it as a
specialization of the template
<code>indexing::value_traits</code> for the container's
element type. The existing <code>ContainerTraits</code> classes
all make use of
<code>value_traits&lt;container::value_type&gt;</code>, and so
will use a specialization for the value type if available. The
default, unspecialized, version of <code>value_traits</code>
defines <code>equality_comparable</code> as <code>true</code>
and has an empty implementation of <code>visitor_helper</code>.
</p>
<p>
As an example, if a user defined type does not have any
comparison operations, then there will probably be compile-time
errors caused by an attempt to provide the Python
<code>find</code> or <code>sort</code> methods. The solution is
to write a specialized version of
<code>indexing::value_traits</code> that disables the
appropriate features. For example:
</p>
<p>
<pre>
namespace boost { namespace python { namespace indexing {
template<>
struct value_traits&lt;my_type&gt; : public value_traits&lt;int&gt;
{
static bool const equality_comparable = false;
static bool const lessthan_comparable = false;
};
} } }
</pre>
</p>
<p>
In this example, there is no need to perform any processing in
the <code>visitor_helper</code> function, and deriving from an
unspecialized version of the template (e.g.
<code>value_traits&lt;int&gt;</code>) exposes an empty
<code>visitor_helper</code>.
</p>
<h3>value_traits.hpp header</h3>
<p>
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;typename T&gt;
struct value_traits {
static bool const equality_comparable = true;
static bool const lessthan_comparable = true;
template&lt;typename PythonClass, typename Policy&gt;
static void visitor_helper (PythonClass &amp;, Policy const &amp;)
{ }
};
} } }
</pre>
</p>
<h2><a name="ContainerTraits">ContainerTraits</a></h2>
<p>
A <code>ContainerTraits</code> class serves three
purposes. Firstly, it identifies what facilities the container
supports in principle (i.e. either directly or via some support
code). Secondly, it identifies the types used to pass values
into and out of the supported operations. Thirdly, it provides a
hook for additional code to run during initialization of the
Python class (i.e. during the <code>def</code> call for the
suite).
</p>
<p>
Note that a <code>ContainerTraits</code> class can be any class,
derived from the existing implementations or not, as long as it
meets the requirements listed in the following sections.
</p>
<h3>Static constants for ContainerTraits</h3>
The following table lists the static constants that a
<code>ContainerTraits</code> class should define. Note that these
must be <i>compile-time constants</i>, since parts of the library
use these constants to select between template specializations.
The constants must at least be convertible to the type shown in
the second column.
<p>
<table border=1>
<tr>
<th align="left">
Static constant
</th>
<th align="center">
Type
</th>
<th align="left">
Meaning
</th>
<th align="left">
Influence
</th>
</tr>
<tr>
<td>
<code>has_copyable_iter</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether copies of an iterator are independant <a
href="#Note3">[3]</a>
</td>
<td>
Required for <code>len</code> and <code>__iter__</code>
</td>
</tr>
<tr>
<td>
<code>is_reorderable</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether it is possible to re-order the contents of the
container.
</td>
<td>
Required for <code>reverse</code> and <code>sort</code>
</td>
</tr>
<tr>
<td>
<code>has_mutable_ref</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether container elements can be altered via a reference
</td>
<td>
Determines <code>is_reorderable</code> for most containers.
</td>
</tr>
<tr>
<td>
<code>has_find</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether find is possible in principle (via member function
or otherwise)
</td>
<td>
<code>__contains__</code>,
<code>index</code>,
<code>count</code>,
<code>has_key</code>
</td>
</tr>
<tr>
<td>
<code>has_insert</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether it is possible to insert new elements into the container.
</td>
<td>
<code>insert</code>,
<code>extend</code>,
slice version of <code>__setitem__</code>
</td>
</tr>
<tr>
<td>
<code>has_erase</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether it is possible to erase elements from the container.
</td>
<td>
<code>__delitem__</code>,
slice version of <code>__setitem__</code>
</td>
</tr>
<tr>
<td>
<code>has_push_back</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether container supports insertion at the end.
</td>
<td>
<code>append</code>
</td>
</tr>
<tr>
<td>
<code>has_pop_back</code>
</td>
<td align="center">
<code>bool</code>
</td>
<td>
Whether container supports element deletion at the end.
</td>
<td>
Currently unused
</td>
</tr>
<tr>
<td>
<code>index_style</code>
</td>
<td align="center">
<code>enum IndexStyle</code>
</td>
<td>
Type of indexing the container supports <a
href="#Note4">[4]</a>
</td>
<td>
<code>__getitem__</code>,
<code>__setitem__</code>,
<code>__delitem__</code>,
<code>__iter__</code>,
<code>extend</code>,
<code>index</code>,
<code>count</code>,
<code>has_key</code>
</td>
</tr>
</table>
</p>
<p>
<h3>Notes</h3>
<table>
<tr>
<td valign="top">
<a name="Note3">[3]</a>
</td>
<td>
For example, copies of stream iterators are <i>not</i>
independant. All iterator copies refer to the same stream,
which has only one read and one write position.
</td>
</tr>
<tr>
<td valign="top">
<a name="Note4">[4]</a>
</td>
<td>
<code>index_style_none</code>, no indexing at all
(e.g. <code>list</code>)<br>
<code>index_style_linear</code>, continuous integer-like
index type (e.g. <code>vector</code>)<br>
<code>index_style_nonlinear</code>, indexing via other
types (e.g. <code>map</code>).
</td>
</tr>
</table>
</p>
<h3>Member types for ContainerTraits</h3>
<p>
The following table lists the type names that must be defined in
a compatible implementation of <code>ContainerTraits</code>.
The large number of types is supposed to provide flexibility for
containers with differing interfaces. For example,
<code>map</code> uses the same type for searching and "indexing"
(i.e. <code>find</code> and <code>operator[]</code>) so
<code>key_type</code> and <code>index_type</code> would have to
be the same. In contrast, searching a <code>vector</code> would
typically use a different type to that used for indexing into a
vector.
</p>
<p>
<table border=1>
<tr>
<th align="left">
Type name
</th>
<th align="left">
Meaning
</th>
</tr>
<tr>
<td>
<code>container</code>
</td>
<td>
The type of the C++ container.
</td>
</tr>
<tr>
<td>
<code>size_type</code>
</td>
<td>
The type used to represent the number of elements in the
container.
</td>
</tr>
<tr>
<td>
<code>iterator</code>
</td>
<td>
The container's iterator type. This should be a non-const
iterator unless the container itself is const.
</td>
</tr>
<tr>
<td>
<code>index_type</code>
</td>
<td>
The type used to represent indexes extracted from a
<code>__getitem__</code> call (and others). For
<code>index_style_linear</code>, this <i>should be a
signed type</i>, so that negative indices can be
processed. For <code>index_style_nonlinear</code>, this
will most likely be the same type as
<code>key_type</code>.
</td>
</tr>
<tr>
<td>
<code>index_param</code>
</td>
<td>
The type to use when passing <code>index_type</code> into
a function.
</td>
</tr>
<tr>
<td>
<code>value_type</code>
</td>
<td>
The type to use when copying a value into or out of the
container.
</td>
</tr>
<tr>
<td>
<code>value_param</code>
</td>
<td>
The type to use when passing <code>value_type</code> into
a function.
</td>
</tr>
<tr>
<td>
<code>key_type</code>
</td>
<td>
The type used for search operations like <code>find</code>
and <code>count</code>.
</td>
</tr>
<tr>
<td>
<code>key_param</code>
</td>
<td>
The type to use when passing <code>key_type</code> into a
function.
</td>
</tr>
<tr>
<td>
<code>reference</code>
</td>
<td>
The type to use when returning a reference to a container
element.
</td>
</tr>
<tr>
<td>
<code>value_traits_</code>
</td>
<td>
Traits for the container elements. See <a
href="#ValueTraits">the ValueTraits section</a> for
information about the requirements on this type.
</td>
</tr>
</table>
</p>
<h3>Member functions for ContainerTraits</h3>
In order to support additional initialization code to run, a
<code>ContainerTraits</code> class should provide a static member
function template as follows:
<p>
<pre>
template &lt;typename PythonClass, typename Policy&gt;
static void visitor_helper (PythonClass &amp;, Policy const &amp;);
</pre>
</p>
<p>
Typically, the implementation would just forward the call to the
equivalent function in the <code>value_traits_</code> class.
</p>
<h3>Usage notes for ContainerTraits</h3>
<p>
It may be possible to mix your own <code>ContainerTraits</code>
class with one of the existing <code>Algorithms</code>
implementations, thus saving yourself a fair bit of work. The
easiest way to do this would be to specialize the
<code>algo_selector</code> template for your container type,
using public deriviation to get the implementation from one of
the existing <code>Algorithms</code> templates. For example,
assuming that <code>default_algorithms</code> is suitable for
your container:
</p>
<p>
<pre>
namespace boost { namespace python { namespace indexing {
template<>
struct algo_selector&lt;my_container&gt;
: public default_algorithms&lt;my_container_traits&gt;
{
};
} } }
</pre>
</p>
<p>
Alternatively, you could select the algorithms and traits using
the <code>visitor</code> template directly, as described in the
<a href="#workarounds">compiler workarounds</a> section.
</p>
<h3><a name="simple_ctraits">Simplistic ContainerTraits example</a></h3>
<p>
The following block of code shows a simplistic implementation of
<code>ContainerTraits</code> for the container
<code>std::set&lt;std::string, int&gt;</code>. The actual
implementation used by the suite relies on template
metaprogramming techniques, whereas this example is designed to
show only the essential elements of a
<code>ContainerTraits</code> implementation.
</p>
<p>
<pre>
#include &lt;map&gt;
#include &lt;string&gt;
#include &lt;boost/python/suite/indexing/iterator_traits.hpp&gt;
// Include iterator_traits to get IndexStyle
struct simple_map_traits {
// Traits information for std::map&lt;std::string, int&gt;
typedef std::map&lt;std::string, int&gt; container;
typedef container::size_type size_type;
typedef container::iterator iterator;
typedef int value_type;
typedef int &amp; reference;
typedef std::string key_type;
typedef std::string index_type;
typedef int value_param;
typedef std::string const &amp; key_param;
typedef std::string const &amp; index_param;
static bool const has_copyable_iter = true;
static bool const has_mutable_ref = true;
static bool const has_find = true;
static bool const has_insert = true;
static bool const has_erase = true;
static bool const has_pop_back = false;
static bool const has_push_back = false;
static bool const is_reorderable = false;
static boost::python::indexing::IndexStyle const index_style
= boost::python::indexing::index_style_nonlinear;
struct value_traits_ {
// Traits information for our value_type
static bool const equality_comparable = true;
static bool const lessthan_comparable = true;
};
template&lt;typename PythonClass, typename Policy&gt;
static void visitor_helper (PythonClass &amp;, Policy const &amp;)
{
// Empty
}
};
</pre>
</p>
<p>
Example usage of the <code>simple_map_traits</code>:
</p>
<p>
<pre>
#include "simple_map_traits.hpp"
#include &lt;boost/python/suite/indexing/container_suite.hpp&gt;
#include &lt;boost/python/module.hpp&gt;
#include &lt;boost/python/class.hpp&gt;
BOOST_PYTHON_MODULE(test_simple) {
using namespace boost::python;
typedef std::map&lt;std::string, int&gt; Container;
typedef indexing::map_algorithms&lt;simple_map_traits&gt; Algorithms;
class_&lt;Container&gt; ("map")
.def (indexing::container_suite&lt;Container, Algorithms&gt;());
}
</pre>
</p>
<h2><a name="Algorithms">Algorithms</a></h2>
<p>
The <code>Algorithms</code> requirements are designed to provide
a predictable interface to any container, so that the same
<code>visitor</code> code can expose any supported container to
Python. An implemention of <code>Algorithms</code> does this by
providing functions and typedefs with fixed names. The exact
interfaces to the functions can vary to some extent, since the
<code>def</code> function calls used internally by the
<code>visitor</code> deduce the function type
automatically. However, certain points must be confomed to:
<ol>
<li>
The functions should be static, with <code>container
&</code> as first parameter.
</li>
<li>
The functions should <i>not</i> be overloaded &ndash; this
avoids problems with type deduction.
</li>
<li>
Generally, not all of the possible functions need to be
implemented, dependant on the static constants in the
<code>ContainerTraits</code>.
</li>
</ol>
</p>
<p>
The block of code below shows the definition of the
<code>default_algorithms</code> class template, which is the
basis for all current implementations of
<code>Algorithms</code>. The typedefs that it defines are
primarily for convenience within the implementation itself,
however they are also required by the <code>slice_handler</code>
template, if slices are supported. Note that
<code>default_algorithms</code> derives all of the type
information from the <code>container_traits</code> template
argument, which allows the same implementation to be used for
various container types.
</p>
<p>
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;typename ContainerTraits&gt;
struct default_algorithms
{
typedef ContainerTraits container_traits;
typedef typename ContainerTraits::container container;
typedef typename ContainerTraits::iterator iterator;
typedef typename ContainerTraits::reference reference;
typedef typename ContainerTraits::size_type size_type;
typedef typename ContainerTraits::value_type value_type;
typedef typename ContainerTraits::value_param value_param;
typedef typename ContainerTraits::index_param index_param;
typedef typename ContainerTraits::key_param key_param;
static size_type size (container &amp;);
static iterator find (container &amp;, key_param);
static size_type get_index (container &amp;, key_param);
static size_type count (container &amp;, key_param);
static bool contains (container &amp;, key_param);
static void reverse (container &amp;);
static reference get (container &amp;, index_param);
static void assign (container &amp;, index_param, value_param);
static void insert (container &amp;, index_param, value_param);
static void erase_one (container &amp;, index_param);
static void erase_range(container &amp;, index_param, index_param);
static void push_back (container &amp;, value_param);
static void sort (container &amp;);
template&lt;typename PythonClass, typename Policy&gt;
static void visitor_helper (PythonClass &amp;, Policy const &amp;);
};
} } }
</pre>
</p>
<h3>Usage notes for Algorithms</h3>
<p>
The existing <code>indexing::algo_selector</code> template
uses partial specializations and public derivation to select an
<code>Algorithms</code> implementation suitable for any of the
standard container types. Exactly how it does this should be
considered an implementation detail, and uses some tricks to
reuse various existing <code>Algorithms</code>
implementations. In any case, client code can specialize (or
partially specialize) the <code>algo_selector</code> template
for new container types, as long as the specialized instances
conform to the requirements for <code>Algorithms</code> as
already given.
</p>
<p>
A new implementation of <code>Algorithms</code> could derive
from any one of the existing implementation templates, or be
completely independant. The existing implementation templates
are listed in the following table. They each take one template
parameter, which should be a valid <code>ContainerTraits</code>
class, as specified in a <a href="#ContainerTraits">previous
section</a>.
</p>
<p>
<table border="1">
<tr>
<th>
Template name
</th>
<th>
Description
</th>
</tr>
<tr>
<td>
<code>default_algorithms</code>
</td>
<td>
Uses standard iterator-based algorithms wherever
possible. Assumes that the container provides
<code>begin</code> and end <code>end</code> member
functions that return iterators, and some or all of
<code>size</code>, <code>insert</code>, <code>erase</code>
and <code>push_back</code>, depending on what functions get
instantiated.
</td>
</tr>
<tr>
<td>
<code>list_algorithms</code>
</td>
<td>
Similar to the above (in fact, it derives from
<code>default_algorithms</code>) except that it uses
container member functions <code>reverse</code> and
<code>sort</code> instead of the iterator-based versions.
</td>
</tr>
<tr>
<td>
<code>assoc_algorithms</code>
</td>
<td>
Also derived from <code>default_algorithms</code>, for use
with associative containers. Uses the container member
function <code>find</code> for indexing, and member
function <code>count</code> instead of iterator-based
implementations.
</td>
</tr>
<tr>
<td>
<code>set_algorithms</code>
</td>
<td>
Derived from <code>assoc_algorithms</code> to handle
<code>set</code> insertion operations, which are slightly
different to the <code>map</code> versions.
</td>
</tr>
<tr>
<td>
<code>map_algorithms</code>
</td>
<td>
Derived from <code>assoc_algorithms</code> to handle
<code>map</code> insertion and lookup, which are slightly
different to the <code>set</code> versions.
</td>
</tr>
</table>
</p>
<h2><a name="container_proxy">container_proxy</a></h2>
<p>
The <code>container_proxy</code> template provides an emulation
of Python reference semantics for objects held by value in a
vector-like container. The primary application of this template
is in situations where all of the following apply:
<ol>
<li>
It is not practical to switch to a container of shared
pointers
</li>
<li>
Python code requires reference semantics for the objects
within the container
</li>
<li>
Element insertion, deletion or assignment are common, so
that using <code>return_internal_reference</code> would be
dangerous.
</li>
</ol>
</p>
<p>
The <code>container_proxy</code> template wraps a vector-like
container and presents an interface that is similar to that of a
normal vector, but which returns <code>element_proxy</code>
objects instead of plain references to values stored in the
wrapped container. During an operation that alters the position
of an element within the container (e.g. <code>insert</code>)
the <code>container_proxy</code> code updates the relevant proxy
objects, so that they still refer to the original elements of
the container. Any operation that would delete or overwrite a
value in the container (e.g. <code>erase</code>) copies the
to-be-deleted value into its corresponding proxy object. This
means that a proxy's "reference" to an element is robust in the
face of changes to the element's position in the container, and
even that element's removal.
</p>
<h3>container_proxy interface</h3>
<p>
The <code>container_proxy</code> interface is designed to be
convenient to use from C++, and to inter-operate with the
<code>default_algorithms</code> template. It is important that
<i>any</i> code that changes element positions within the
container (at least while proxies for the container exist) uses
the <code>container_proxy</code> interface, to ensure that the
proxies get updated. Of course, the interface introduces some
performance penalties, both in terms of memory usage and run
time.
</p>
<p>
The <code>Holder</code> template parameter determines how the
<code>container_proxy</code> stores the raw container object.
There are currently two types of holder implemented, the default
<code>identity</code> template which stores it's argument by
value, and the <code>deref</code> template which stores a
(plain) pointer to an external object. It would be possible, for
instance, to create a holder that uses a
<code>shared_pointer</code> instead.
</p>
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;class Container
, class Holder = identity&lt;Container&gt; &gt;
class container_proxy
{
public:
typedef typename Container::size_type size_type;
typedef typename Container::difference_type difference_type;
typedef typename Container::value_type raw_value_type;
typedef typename Holder::held_type held_type;
typedef <i>implementation defined</i> value_type;
typedef <i>implementation defined</i> const_value_type;
typedef value_type reference; // Has reference semantics
typedef const_value_type const_reference; // Has reference semantics
struct iterator { <i>implementation defined</i> }
container_proxy ();
explicit container_proxy (held_type const &amp;);
template&lt;typename Iter&gt; container_proxy (Iter, Iter);
container_proxy (container_proxy const &amp;);
container_proxy &amp;operator= (container_proxy const &amp;);
~container_proxy ();
Container const &amp;raw_container() const; // OK to expose const reference
reference at (size_type);
const_reference at (size_type) const;
reference operator[] (size_type);
const_reference operator[] (size_type) const;
size_type size() const;
size_type capacity() const;
void reserve(size_type);
iterator begin();
iterator end();
iterator erase (iterator);
iterator erase (iterator, iterator);
iterator insert (iterator, raw_value_type const &amp;);
template&lt;typename Iter&gt; void insert (iterator, Iter, Iter);
void push_back (raw_value_type const &amp;);
value_type pop_back ();
};
} } }
</pre>
<p>
The <code>identity</code> template.
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;typename T&gt; struct identity {
typedef T held_type;
static T &amp; get(T &amp; obj) { return obj; }
static T const &amp; get(T const &amp; obj) { return obj; }
static T create () { return T(); }
static T copy (T const &amp;copy) { return copy; }
static void assign (T &amp;to, T const &amp;from) { to = from; }
static void pre_destruction (T &amp;) { }
};
} } }
</pre>
</p>
</p>
The <code>deref</code> template.
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;typename P&gt; struct deref {
typedef P held_type;
typedef typename boost::iterator_value&lt;P&gt;::type value;
static value &amp; get (P &amp; ptr) { return *ptr; }
static value const &amp; get (P const &amp; ptr) { return *ptr; }
static P create () { return P(); }
static P copy (P const &amp;copy) { return copy; }
static void assign (P &amp;to, P const &amp;from) { to = from; }
static void pre_destruction (P &amp;) { }
};
} } }
</pre>
</p>
<h3>container_proxy implementation notes</h3>
<p>
An <code>element_proxy</code> refers to an element of the
container via two levels of indirection &ndash; it holds a
pointer to a so-called <code>shared_proxy</code> object, which
has a pointer back to the <code>container_proxy</code> object
and an element index within the wrapped container. This can be
seen in the following diagram, which shows a
<code><nobr>container_proxy&lt; vector&lt;int&gt;
&gt;</nobr></code> containing the three elements 111, 222 and
333.
<p>
<table>
<tr>
<td>
<img src="proxy.png" height="308" width="663"
alt="Interrelations between container_proxy, its container
and its element proxies">
</td>
</tr>
<tr>
<td><font size="-1">
Diagram 2. Example of <code>container_proxy</code> with some
element proxies
</font></td>
</tr>
</table>
</p>
In the example above, the shown <code>element_proxy</code>
object refers (indirectly) to the container element with the
value 222. An insertion before this element would increment the
element numbers in the <code>shared_proxy</code> objects so that
the given <code>element_proxy</code> continues to refer to the
same value at its new location. Similary, a deletion before the
element would decrement the affected <code>shared_proxy</code>
element numbers. If the referenced element itself gets deleted
or overwritten, the <code>shared_proxy</code> first takes a
<i>copy</i> of the original value, and is then considered to be
<i>detached</i> from the <code>container_proxy</code>. This
situation is shown below in diagram 3.
</p>
<table>
<tr>
<td>
<img src="proxy_detached.png" height="105" width="403"
alt="Element proxy when detached from its container">
</td>
</tr>
<tr>
<td><font size="-1">
Diagram 3. Example of <code>element_proxy</code> with
detached <code>shared_proxy</code>
</font></td>
</tr>
</table>
<h2><a name="iterator_pair">iterator_pair</a></h2>
<p>
The <code>iterator_pair</code> template provides a
container-like interface to a range defined by two iterators.
The interface is complete enough to allow the container suite to
expose an iterator-defined range as a Python sequence type, with
support for operations that do not require insertion or
deletion. This can be used to expose a C++ array to Python, or
with the result of an <code>equal_range</code> function, or any
other source of two iterators marking out a range of values. See
the <code>getArray</code> function in
libs/python/test/testarray.cpp for an example usage.
</p>
<p>
<code>iterator_pair</code> should work with any
<code>ForwardIterator</code> type.
</p>
<p>
<pre>
namespace boost { namespace python { namespace indexing {
template&lt;typename Iterator&gt;
class iterator_pair
{
private:
typedef typename boost::call_traits&lt;Iterator&gt;::param_type iterator_param;
typedef std::iterator_traits&lt;Iterator&gt; std_traits;
public:
typedef typename std_traits::reference reference;
typedef Iterator iterator;
typedef typename std_traits::difference_type size_type;
typedef typename std_traits::difference_type difference_type;
typedef typename std_traits::value_type value_type;
typedef typename std_traits::pointer pointer;
iterator_pair (iterator_param, iterator_param);
iterator_pair (std::pair&lt;iterator, iterator&gt; const &amp;);
iterator begin() const;
iterator end() const;
size_type size () const;
reference operator[] (size_type) const;
reference at (size_type) const;
private:
// Member variables
};
template&lt;typename T, std::size_t N&gt; T *begin (T (&amp;array)[N]);
template&lt;typename T, std::size_t N&gt; T *end (T (&amp;array)[N]);
} } }
</pre>
</p>
<h2><a name="workarounds">Compiler workarounds</a></h2>
<p>
<b>Note:</b> the suite hasn't yet been tested on a compiler
without partial template specialization support. If you have any
results with such a compiler (good or bad) please report them on
the mailing list for the <a
href="http://www.python.org/sigs/c++-sig/">Python C++-SIG</a>.
</p>
<p>
It should be possible to use the suite without partial template
specialization support. However, the <code>algo_selector</code>
template will not work, which also means that the default
template parameter for <code>container_suite</code> won't
work. To avoid this problem, the client code must explicitly
select the <code>Algorithms</code> and
<code>ContainerTraits</code> instances to be used. It is
probably easiest to use the <code>visitor</code> template
directly, as in the following example:
<pre>
using namespace boost::python;
using namespace boost::python::indexing;
class_&lt;std::vector&lt;int&gt; &gt; ("vector_int")
.def (visitor &lt;
default_algorithms &lt;
default_sequence_traits &lt;
std::vector &lt;int&gt; &gt; &gt;,
return_value_policy &ltreturn_by_value&gt;
&gt;());
</pre>
</p>
<h2><a name="limitations">Known limitations</a></h2>
<p>
This section lists known limitations of the container
interfaces. These may or may not get fixed in the future, so
check the latest release of Boost and/or the Boost CVS
repository. Feel free to submit your own improvements to the
mailing list for the <a
href="http://www.python.org/sigs/c++-sig/">Python C++-SIG</a>.
</p>
<p>
The following Python sequence and mapping functions are not
currently implemented for any containers: <code>keys, values,
items, clear, copy, update, pop, __add__, __radd__, __iadd__,
__mul__, __rmul__ and __imul__</code>. Most of the methods
mentioned (except for <code>pop</code>) present no particular
difficulty to implement. The problem with <code>pop</code> is
that it is incompatible with some return value policies (for
instance, <code>return_internal_reference</code>) since it must
return a copy of an element that has already been removed from
the container. This probably requires an extension to the
<code>container_suite</code> interface, to allow the client code
the option of specifying a different return policy for this
method in particular.
</p>
<p>
The suite currently restricts itself to the normal Python
container interface methods, which do not expose all of the
interfaces available with the C++ containers. For example,
vector <code>reserve</code> has no equivalent in Python and is
not exposed by the suite. Of course, user code can still add a
<code>def</code> call for this manually.
</p>
<p>
The <code>map</code> iterator should return only the key part of
the values, but currently returns the whole
<code>std::pair</code>.
</p>
<p>
The <code>sort</code> method (where provided) should allow an
optional comparison function from Python.
</p>
<p>
The existing <code>Algorithms</code> should allow a derived
class to replace any of the static member functions without
having to reimplement all of them. For instance, it would be
nice to be able to replace the low-level <code>begin</code> and
<code>end</code> functions in <code>default_algorithms</code>
and have all of the other functions use the replacements
automatically. This would be fairly easy using static
polymorphism, such as the <i>Curiously Recurring Template
Pattern</i>.
</p>
<h2><a name="references">References</a></h2>
<p>
The Python Library Reference section on <a href=
"http://www.python.org/doc/current/lib/typesseq.html">Sequence
Types</a> and the Python Reference Manual section on <a href=
"http://www.python.org/doc/current/ref/sequence-types.html">Emulating
container types</a>. The <a href=
"http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+14882%2D1998">C++
Standard</a>.
</p>
<h2><a name="acknoweldegments">Acknowledgements and Copyright</a></h2>
<p>
Thanks to Joel de Guzman and David Abrahams for input and
encouragement during the development of the container
suite. Joel wrote the original implementation of the indexing
support, which provided many of the ideas embodied in the new
implementation.
</p>
<p>
The container suite code and documentation are Copyright (c)
2003 by Raoul Gough, and licensed under the current Boost
license.
</p>
</body>
</html>