2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-22 17:32:55 +00:00
Files
python/special.html
Dave Abrahams 0f04631513 lowercase type names
[SVN r8284]
2000-11-22 00:54:46 +00:00

840 lines
29 KiB
HTML
Raw Blame History

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">
<title>
Special Method and Operator Support
</title>
<div>
<h1>
<img width="277" height="86" id="_x0000_i1025" align="center" src=
"c++boost.gif" alt="c++boost.gif (8819 bytes)">Special Method
and Operator Support
</h1>
<h2>
Overview
</h2>
<p>
Py_cpp is able to wrap suitable C++ functions and C++ operators into Python operators.
It supports all of the standard <a href=
"http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/specialnames.html">
special method names</a> supported by real Python class instances <em>except</em>
<code>__complex__</code> (more on the reasons <a href="#reasons">below</a>).
Supported operators include <a href="#general">general</a>,
<a href="#numeric">numeric</a>, and <a href="#sequence_and_mapping">sequence and
mapping</a> operators. In addition, py_cpp provides a simple way to export member
variables and define attributes by means of <a href="#getter_setter">getters and
setters</a>.
<a name="general">
<h2>General Operators</h2>
</a>
Python provides a number of special operatos for basic customization of a class:
<dl>
<dt><b><tt class='method'>__repr__:</tt></b>
<dd>create a string representation from which the object can be reconstructed
<p>
<dt><b><tt class='method'>__str__:</tt></b>
<dd>create a string representation which is suitable for printing
<p>
<dt><b><tt class='method'>__cmp__:</tt></b>
<dd>three-way compare function, used to implement comparison operators (&lt; etc.)
<p>
<dt><b><tt class='method'>__hash__:</tt></b>
<dd>needed to use the object as a dictionary key (only allowed if __cmp__ is also defined)
<p>
<dt><b><tt class='method'>__nonzero__:</tt></b>
<dd>called if the object is used as a truth value (e.g. in an if statement)
<p>
<dt><b><tt class='method'>__call__:</tt></b>
<dd>make instances of the class callable like a function
<p>
</dl>
If we have a suitable C++ function that supports any of these features, we can
export it like any other function, using its Python special name. For example,
suppose that class <code>Foo</code> provides a string conversion function:
<pre>
std::string to_string(Foo const &amp; f)
{
std::ostringstream s;
s &lt;&lt f;
return s.str();
}
</pre>
This function would be wrapped like this:
<pre>
python::class_builder&lt:Foo&gt; foo_class(my_module, "Foo");
foo_class.def(&amp;to_string, "__str__");
</pre>
Note that py_cpp also supports <em>automatic wrapping</em> in case of __str__
and __cmp__. This is explained in the <a href="#numeric">next section</a> and
the <a href="#numeric_table">table of numeric operators</a>.
<a name="numeric">
<h2>Numeric Operators</h2>
</a>
There are two fundamental ways to define numeric operators within py_cpp: manual
wrapping (as is done with <a href="#general">general operators</a>) and
automatic wrapping. Lets start with the second possibility. Suppose, C++ defines
a class <code>Int</code> (which might represent an infinite-precision integer)
which support addition, so that we can write (in C++):
<pre>
Int a, b, c;
...
c = a + b;
</pre>
To enable the same functionality in Python, we first wrap the <code>Int</code> class as usual:
<pre>
python::class_builder&lt;Int&gt; int_class(my_module, "Int");
int_class.def(python::constructor&lt;&gt;());
...
</pre>
Then we export the addition operator like this:
<pre>
int_class.def(python::operators&lt;python::op_add&gt;());
</pre>
Since Int also supports subtraction, multiplication, adn division, we want to
export those also. This can be done in a single command by 'or'ing the operator
identifiers together (a complete list of these identifiers and the corresponding
operators can be found in the <a href="#numeric_table">table</a>):
<pre>
int_class.def(python::operators&lt;(python::op_sub | python::op_mul | python::op_div)&gt;());
</pre>
Note that the or-expression must be enclosed in parentheses. This form of
operator definition will wrap homogeneous operators, i.e. operators whose left
and right operand have the same type. Now, suppose that our C++ library also
supports addition of Ints and plain integers:
<pre>
Int a, b;
int i;
...
a = b + i;
a = i + b;
</pre>
To wrap these heterogeneous operators (left and right hand side have different
types), we need a possibility to specify a different type for one of the
operands. This is done using the <code>right_operand</code> and
<code>left_operand</code> templates:
<pre>
int_class.def(python::operators&lt;python::op_add&gt;(), python::right_operand&lt;int&gt;());
int_class.def(python::operators&lt;python::op_add&gt;(), python::left_operand&lt;int&gt;());
</pre>
Py_cpp uses overloading to register several variants of the same operation (more
on this in the context of <a href="#coercion">coercion</a>). Again, several
operators can be exported at once:
<pre>
int_class.def(python::operators&lt;(python::op_sub | python::op_mul | python::op_div)&gt;(),
python::right_operand&lt;int&gt;());
int_class.def(python::operators&lt;(python::op_sub | python::op_mul | python::op_div)&gt;(),
python::left_operand&lt;int&gt;());
</pre>
The type of the operand not mentioned is taken from the class object. In our
example, the class object is <code>int_class</code>, and thus the other
operand's type is `<code>Int const &amp;</code>'. You can override this default
by explicitly specifying a type in the <code>operators</code> template:
<pre>
int_class.def(python::operators&lt;python::op_add, Int&gt;(), python::right_operand&lt;int&gt;());
</pre>
Here, `<code>Int</code>' would be used instead of `<code>Int const &amp;</code>'.
<p>
Note that automatic wrapping doesn't need any specific form of
<code>operator+()</code> (or one of the other operators), but rather wraps the
<em>expression</em> `<code>left + right</code>'. That is, this mechanism can be
used for any definition of <code>operator+()</code>, such as a free function
`<code>Int operator+(Int, Int)</code>' or a member function `<code>Int
Int::operator+(Int)</code>'.
<p>
For the Python operators <code>pow()</code> and <code>abs()</code>, there is no
corresponding C++ operator. Instead, automatic wrapping attempts to wrap C++
functions of the same name. This only works if those functions are known in
namespace <code>python::detail</code>. Thus it might be necessary to add a using
declaration prior to wrapping:
<pre>
namespace python {
namespace detail {
using my_namespace::pow;
using my_namespace::abs;
}}
</pre>
<p>
In some cases, automatic wrapping of operators is not possible or not
desirable. Suppose, for example, that the modulo operation for Ints is defined
by a set of functions <code>mod()</code> (for automatic wrapping, we would need
<code>operator%()</code>):
<pre>
Int mod(Int const &amp; left, Int const &amp; right);
Int mod(Int const &amp; left, int right);
Int mod(int left, Int const &amp; right);
</pre>
In order to create the Python operator "__mod__" from these functions, we have to wrap them manually:
<pre>
int_class.def((Int (*)(Int const &amp;, Int const &amp;))&amp;mod, "__mod__");
int_class.def((Int (*)(Int const &amp;, int))&amp;mod, "__mod__");
</pre>
The third form (with <code>int</code> as left operand) cannot be wrapped this
way. We must first create a function <code>rmod()</code> with the operands
reversed:
<pre>
Int rmod(Int const &amp; right, int left)
{
return mod(left, right);
}
</pre>
This function must be wrapped under the name "__rmod__":
<pre>
int_class.def(&amp;rmod, "__rmod__");
</pre>
A list of the possible operator names is also found in the <a href="#numeric_table">table</a>.
Special treatment is necessary to export the <a href="#ternary_pow">ternary pow</a> operator.
<p>
Automatic and manual wrapping can be mixed arbitrarily. Note that you cannot
overload the same operator for a given extension class on both
`<code>int</code>' and `<code>float</code>', because Python implicitly converts
these types into each other. Thus, the overloaded variant found first (be it
`<code>int</code>' or `<code>float</code>') will be used for either of the two
types.
<a name="coercion">
<h4>Coercion</h4></a>
Plain Python can only execute operators with identical types on the left and
right hand side. If it encounters an expression where the types of the left and
right operand differ, it tries to coerce these type to a common type before
invoking the actual operator. Implementing good coercion functions can be
difficult if many type combinations must be supported.
<p>
In contrast, py_cpp provides <em><a
href="overloading.html">overloading</a></em>. By means of overloading, operator
calling can be simplyfied drastically: you just register operators for all
desired type combinations, and py_cpp automatically ensures that the correct
function is called in each case. User defined coercion functions are <em>not
necessary</em>. To enable operator overloading, py_cpp provides a standard
coercion which is <em>implicitly registered</em> whenever automatic operator
wrapping is used.
<p>
If you wrap all operator functions manually, but still want to use operator
overloading, you have to register the standard coercion function explicitly:
<pre>
// this is not necessary if automatic operator wrapping is used
int_class.def_standard_coerce();
</pre>
In case you encounter a situation where you absolutely need a customized
coercion, you can overload the "__coerce__" operator itself. The signature of a
coercion function must look like this:
<pre>
python::tuple custom_coerce(PyObject * left, PyObject * right);
</pre>
The resulting <code>tuple</code> must contain two elements which represent the
values of <code>left</code> and <code>right</code> converted to the same
type. Such a function is wrapped as usual:
<pre>
some_class.def(&amp;custom_coerce, "__coerce__");
</pre>
Note that the custom coercion function is only used if it is defined
<em>before</em> any automatic operator wrapping on the given class or a call to
`<code>some_class.def_standard_coerce()</code>'.
<a name="ternary_pow">
<h4>The Ternary <code>pow()</code> Operator</h4></a>
In addition to the usual binary <code>pow()</code>-operator (meaning
<code>x^y</code>), Python also provides a ternary variant that implements
<code>(x^y) % z</code> (presumably using a more efficient algorithm than
concatenation of power and modulo operators). Automatic operator wrapping can
only be used with the binary variant. Ternary <code>pow()</code> must always be
wrapped manually. For a homgeneous ternary <code>pow()</code>, this is done as
usual:
<pre>
Int power(Int const &amp; first, Int const &amp; second, Int const &amp; module);
typedef Int (ternary_function1)(const Int&amp;, const Int&amp;, const Int&amp;);
...
int_class.def((ternary_function1)&amp;power, "__pow__");
</pre>
In case you want to support this function with non-uniform argument types,
wrapping is a little more involved. Suppose, you have to wrap:
<pre>
Int power(Int const &amp; first, int second, int module);
Int power(int first, Int const &amp; second, int module);
Int power(int first, int second, Int const &amp; module);
</pre>
The first variant can be wrapped as usual:
<pre>
typedef Int (ternary_function2)(const Int&amp;, int, int);
int_class.def((ternary_function2)&amp;power, "__pow__");
</pre>
In the second variant, however, <code>Int</code> appears only as second
argument, and in the last one it is the third argument. Therefor we must first
provide functions where the argumant order is changed so that <code>Int</code>
appears in first place:
<pre>
Int rpower(Int const &amp; second, int first, int module)
{
return power(first, second, third);
}
Int rrpower(Int const &amp; third, int first, int second)
{
return power(first, second, third);
}
</pre>
These functions must be wrapped under the names "__rpow__" and "__rrpow__" respectively:
<pre>
int_class.def((ternary_function2)&amp;rpower, "__rpow__");
int_class.def((ternary_function2)&amp;rrpower, "__rrpow__");
</pre>
Note that "__rrpow__" is an extension not present in plain Python.
<a name="numeric_table">
<h4>Table of Numeric Operators</h4></a>
<p>
Py_cpp supports the <a href=
"http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/numeric-types.html">
Python operators</a> listed in the following table. Note that comparison (__cmp__) and
string conversion (__str__) operators are included
in the list, although they are not strictly "numeric".
<p>
<table summary="special numeric methods" cellpadding="5" border="1" width="100%">
<tr>
<td align=center>
<b>Python Operator Name</b>
<td align=center>
<b>Python Expression</b>
<td align=center>
<b>C++ Operator Id</b>
<td align=center>
<b>C++ Expression Used For Automatic Wrapping</b><br>
with <code>cpp_left = from_python(left, type&lt;Left&gt;())</code>,<br>
<code>cpp_right = from_python(right, type&lt;Right&gt;())</code>,<br>
and <code>cpp_oper = from_python(oper, type&lt;Oper&gt;())</code>
<tr>
<td>
<code>__add__, __radd__</code>
<td>
<code>left + right</code>
<td>
<code>python::op_add</code>
<td>
<code>cpp_left + cpp_right</code>
<tr>
<td>
<code>__sub__, __rsub__</code>
<td>
<code>left - right</code>
<td>
<code>python::op_sub</code>
<td>
<code>cpp_left - cpp_right</code>
<tr>
<td>
<code>__mul__, __rmul__</code>
<td>
<code>left * right</code>
<td>
<code>python::op_mul</code>
<td>
<code>cpp_left * cpp_right</code>
<tr>
<td>
<code>__div__, __rdiv__</code>
<td>
<code>left / right</code>
<td>
<code>python::op_div</code>
<td>
<code>cpp_left / cpp_right</code>
<tr>
<td>
<code>__mod__, __rmod__</code>
<td>
<code>left % right</code>
<td>
<code>python::op_mod</code>
<td>
<code>cpp_left % cpp_right</code>
<tr>
<td>
<code>__divmod__, __rdivmod__</code>
<td>
<code>(quotient, remainder) <br>= divmod(left, right)</code>
<td>
<code>python::op_divmod</code>
<td>
<code>cpp_left / cpp_right&nbsp;</code> and
<code>&nbsp;cpp_left % cpp_right</code>
<tr>
<td>
<code>__pow__, __rpow__</code>
<td>
<code>pow(left, right)</code><br>
(binary power)
<td>
<code>python::op_pow</code>
<td>
<code>pow(cpp_left, cpp_right)</code>
<tr>
<td>
<code>__pow__</code>
<td>
<code>pow(left, right, modulo)</code><br>
(ternary power modulo)
<td colspan=2>
no automatic wrapping, <a href="#ternary_pow">special treatment</a> required
<tr>
<td>
<code>__lshift__, __rlshift__</code>
<td>
<code>left &lt;&lt; right</code>
<td>
<code>python::op_lshift</code>
<td>
<code>cpp_left &lt;&lt; cpp_right</code>
<tr>
<td>
<code>__rshift__, __rrshift__</code>
<td>
<code>left &gt;&gt; right</code>
<td>
<code>python::op_rshift</code>
<td>
<code>cpp_left &gt;&gt; cpp_right</code>
<tr>
<td>
<code>__and__, __rand__</code>
<td>
<code>left &amp; right</code>
<td>
<code>python::op_and</code>
<td>
<code>cpp_left &amp; cpp_right</code>
<tr>
<td>
<code>__xor__, __rxor__</code>
<td>
<code>left ^ right</code>
<td>
<code>python::op_xor</code>
<td>
<code>cpp_left ^ cpp_right</code>
<tr>
<td>
<code>__or__, __ror__</code>
<td>
<code>left | right</code>
<td>
<code>python::op_or</code>
<td>
<code>cpp_left | cpp_right</code>
<tr>
<td>
<code>__cmp__, __rcmp__</code>
<td>
<code>cmp(left, right)</code> (3-way compare) <br>
<code>left &lt; right</code><br>
<code>left &lt;= right</code><br>
<code>left &gt; right</code><br>
<code>left &gt;= right</code><br>
<code>left == right</code>
<td>
<code>python::op_cmp</code>
<td>
<code>cpp_left &lt; cpp_right&nbsp</code> and <code>&nbsp;cpp_right &lt; cpp_left</code>
<tr>
<td>
<code>__neg__</code>
<td>
<code>-oper&nbsp</code> (unary negation)
<td>
<code>python::op_neg</code>
<td>
<code>-cpp_oper</code>
<tr>
<td>
<code>__pos__</code>
<td>
<code>+oper&nbsp</code> (identity)
<td>
<code>python::op_pos</code>
<td>
<code>+cpp_oper</code>
<tr>
<td>
<code>__abs__</code>
<td>
<code>abs(oper)&nbsp</code> (absolute value)
<td>
<code>python::op_abs</code>
<td>
<code>abs(cpp_oper)</code>
<tr>
<td>
<code>__invert__</code>
<td>
<code>~oper&nbsp</code> (bitwise inversion)
<td>
<code>python::op_invert</code>
<td>
<code>~cpp_oper</code>
<tr>
<td>
<code>__int__</code>
<td>
<code>int(oper)&nbsp</code> (integer conversion)
<td>
<code>python::op_int</code>
<td>
<code>long(cpp_oper)</code>
<tr>
<td>
<code>__long__</code>
<td>
<code>long(oper)&nbsp</code><br> (infinite precision integer conversion)
<td>
<code>python::op_long</code>
<td>
<code>PyLong_FromLong(cpp_oper)</code>
<tr>
<td>
<code>__float__</code>
<td>
<code>float(oper)&nbsp</code> (float conversion)
<td>
<code>python::op_float</code>
<td>
<code>double(cpp_oper)</code>
<tr>
<td>
<code>__oct__</code>
<td>
<code>oct(oper)&nbsp</code> (octal conversion)
<td colspan=2>
must be wrapped manually (wrapped function should return a string)
<tr>
<td>
<code>__hex__</code>
<td>
<code>hex(oper)&nbsp</code> (hex conversion)
<td colspan=2>
must be wrapped manually (wrapped function should return a string)
<tr>
<td>
<code>__str__</code>
<td>
<code>str(oper)&nbsp</code> (string conversion)
<td>
<code>python::op_str</code>
<td>
<code>std::ostringstream s; s &lt;&lt; oper;</code>
<tr>
<td>
<code>__coerce__</code>
<td>
<code>coerce(left, right)</code>
<td colspan=2>
usually defined automatically, otherwise <a href="#coercion">special
treatment</a> required
</table>
<a name="sequence_and_mapping">
<h2>Sequence and Mapping Operators</h2>
</a>
Sequence and mapping operators let wrapped objects behave in accordance to
Python's iteration and access protocols. These protocols differ considerably
from the ones found in C++. For example, Python's typically iteration idiom
looks like &nbsp;"<code>for i in S:</code>"&nbsp;, while in C++ one uses
&nbsp;"<code>for(iterator i = S.begin(); i != S.end(); ++i)</code>". One could
try to wrap C++ iterators in order to carry the C++ idiom into Python. However,
this does not work very well because (1) it leads to non-uniform Python code
(wrapped types must be used in a different way than Python built-in types) and
(2) iterators are often implemented as plain C++ pointers which cannot be
wrapped easily because py_cpp is designed to handle objects only.
<p>
Thus, it is a good idea to provide sequence and mapping operators for your
wrapped containers. These operators have to be wrapped manually because there
are no corresponding C++ operators that could be used for automatic
wrapping. The Python documentation lists the relevant <a
href="http://www.pythonlabs.com/pub/www.python.org/doc/current/ref/sequence-types.html">container
operators</a>. In particular, expose __getitem__, __setitem__ and remember to
throw the <code>PyExc_IndexError</code> when the index is out-of-range in order
to enable the &nbsp;"<code>for i in S:</code>"&nbsp; idiom.
<p>
Here is an example. Suppose you, we want to wrap a
<code>std::map&lt;std::size_t,std::string&gt;</code>. This is done as follows as
follows:
<blockquote>
<pre>
typedef std::map&lt;std::size_t, std::string&gt; StringMap;
// A helper function for dealing with errors. Throw a Python exception
// if p == m.end().
void throw_key_error_if_end(
const StringMap&amp; m,
StringMap::const_iterator p,
std::size_t key)
{
if (p == m.end())
{
PyErr_SetObject(PyExc_KeyError, python::converters::to_python(key));
throw python::error_already_set();
}
}
// Define some simple wrapper functions which match the Python protocol
// for __getitem__, __setitem__, and __delitem__. Just as in Python, a
// free function with a "self" first parameter makes a fine class method.
const std::string&amp; get_item(const StringMap&amp; self, std::size_t key)
{
const StringMap::const_iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
return p-&gt;second;
}
// Sets the item corresponding to key in the map.
void StringMapPythonClass::set_item(StringMap&amp; self, std::size_t key, const std::string&amp; value)
{
self[key] = value;
}
// Deletes the item corresponding to key from the map.
void StringMapPythonClass::del_item(StringMap&amp; self, std::size_t key)
{
const StringMap::iterator p = self.find(key);
throw_key_error_if_end(self, p, key);
self.erase(p);
}
class_builder&lt;StringMap&gt; string_map(my_module, "StringMap");
string_map.def(python::constructor&lt;&gt;());
string_map.def(&amp;StringMap::size, "__len__");
string_map.def(get_item, "__getitem__");
string_map.def(set_item, "__setitem__");
string_map.def(del_item, "__delitem__");
</pre>
</blockquote>
<p>
Then in Python:
<blockquote>
<pre>
&gt;&gt;&gt; m = StringMap()
&gt;&gt;&gt; m[1]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; m[1] = 'hello'
&gt;&gt;&gt; m[1]
'hello'
&gt;&gt;&gt; del m[1]
&gt;&gt;&gt; m[1] # prove that it's gone
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 1
&gt;&gt;&gt; del m[2]
Traceback (innermost last):
File "&lt;stdin&gt;", line 1, in ?
KeyError: 2
&gt;&gt;&gt; len(m)
0
&gt;&gt;&gt; m[0] = 'zero'
&gt;&gt;&gt; m[1] = 'one'
&gt;&gt;&gt; m[2] = 'two'
&gt;&gt;&gt; m[3] = 'three'
&gt;&gt;&gt; len(m)
4
&gt;&gt;&gt; for i in m:
... print i
...
zero
one
two
three
</pre>
</blockquote>
<h2>
<a name="getter_setter">Getters and Setters</a>
</h2>
<p>
Py_cpp extension classes support some additional "special method"
protocols not supported by built-in Python classes. Because writing
<code>__getattr__</code>, <code> __setattr__</code>, and
<code>__delattr__</code> functions can be tedious in the common case
where the attributes being accessed are known statically, py_cpp checks
the special names
<ul>
<li>
<code>__getattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__setattr__<em>&lt;name&gt;</em>__</code>
<li>
<code>__delattr__<em>&lt;name&gt;</em>__</code>
</ul>
to provide functional access to the attribute <em>&lt;name&gt;</em>. This
facility can be used from C++ or entirely from Python. For example, the
following shows how we can implement a "computed attribute" in Python:
<blockquote>
<pre>
&gt;&gt;&gt; class Range(AnyPy_cppExtensionClass):
... def __init__(self, start, end):
... self.start = start
... self.end = end
... def __getattr__length__(self):
... return self.end - self.start
...
&gt;&gt;&gt; x = Range(3, 9)
&gt;&gt;&gt; x.length
6
</pre>
</blockquote>
<h4>
Direct Access to Data Members
</h4>
<p>
Py_cpp uses the special <code>
__xxxattr__<em>&lt;name&gt;</em>__</code> functionality described above
to allow direct access to data members through the following special
functions on <code>class_builder&lt;&gt;</code> and <code>
extension_class&lt;&gt;</code>:
<ul>
<li>
<code>def_getter(<em>pointer-to-member</em>, <em>name</em>)</code> //
read access to the member via attribute <em>name</em>
<li>
<code>def_setter(<em>pointer-to-member</em>, <em>name</em>)</code> //
write access to the member via attribute <em>name</em>
<li>
<code>def_readonly(<em>pointer-to-member</em>, <em>name</em>)</code>
// read-only access to the member via attribute <em>name</em>
<li>
<code>def_read_write(<em>pointer-to-member</em>, <em>
name</em>)</code> // read/write access to the member via attribute
<em>name</em>
</ul>
<p>
Note that the first two functions, used alone, may produce surprising
behavior. For example, when <code>def_getter()</code> is used, the
default functionality for <code>setattr()</code> and <code>
delattr()</code> remains in effect, operating on items in the extension
obj's name-space (i.e., its <code>__dict__</code>). For that
reason, you'll usually want to stick with <code>def_readonly</code> and
<code>def_read_write</code>.
<p>
For example, to expose a <code>std::pair&lt;int,long&gt;</code> we
might write:
<blockquote>
<pre>
typedef std::pair&lt;int,long&gt; Pil;
int first(const Pil&amp; x) { return x.first; }
long second(const Pil&amp; x) { return x.second; }
...
my_module.def(first, "first");
my_module.def(second, "second");
class_builder&lt;Pil&gt; pair_int_long(my_module, "Pair");
pair_int_long.def(python::constructor&lt;&gt;());
pair_int_long.def(python::constructor&lt;int,long&gt;());
pair_int_long.def_read_write(&amp;Pil::first, "first");
pair_int_long.def_read_write(&amp;Pil::second, "second");
</pre>
</blockquote>
<p>
Now your Python class has attributes <code>first</code> and <code>
second</code> which, when accessed, actually modify or reflect the
values of corresponding data members of the underlying C++ object. Now
in Python:
<blockquote>
<pre>
&gt;&gt;&gt; x = Pair(3,5)
&gt;&gt;&gt; x.first
3
&gt;&gt;&gt; x.second
5
&gt;&gt;&gt; x.second = 8
&gt;&gt;&gt; x.second
8
&gt;&gt;&gt; second(x) # Prove that we're not just changing the obj __dict__
8
</pre>
</blockquote>
<h2><a name="reasons">And what about <code>__complex__</code>?</a></h2>
<p>That, dear reader, is one problem we don't know how to solve. The Python
source contains the following fragment, indicating the special-case code really
is hardwired:
<blockquote>
<pre>
/* XXX Hack to support classes with __complex__ method */
if (PyInstance_Check(r)) { ...
</pre>
</blockquote>
<p>
Previous: <a href="inheritance.html">Inheritance</a> Next: <a
href="under-the-hood.html">A Peek Under the Hood</a> Up: <a href=
"py_cpp.html">Top</a>
<p>
&copy; Copyright David Abrahams and Ullrich K<>the 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided "as is" without
express or implied warranty, and with no claim as to its suitability
for any purpose.
<p>
Updated: Nov 21, 2000
</div>