2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-19 16:32:16 +00:00
Files
python/src/numpy/dtype.cpp
2017-09-18 08:21:30 -04:00

221 lines
7.5 KiB
C++

// Copyright Jim Bosch 2010-2012.
// Copyright Stefan Seefeld 2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
#include <boost/cstdint.hpp>
#endif
#define BOOST_PYTHON_NUMPY_INTERNAL
#include <boost/python/numpy/internal.hpp>
#define DTYPE_FROM_CODE(code) \
dtype(python::detail::new_reference(reinterpret_cast<PyObject*>(PyArray_DescrFromType(code))))
#define BUILTIN_INT_DTYPE(bits) \
template <> struct builtin_int_dtype<bits, false> \
{ \
static dtype get() { return DTYPE_FROM_CODE(NPY_INT ## bits);} \
}; \
template <> struct builtin_int_dtype<bits, true> \
{ \
static dtype get() { return DTYPE_FROM_CODE(NPY_UINT ## bits);} \
}; \
template BOOST_NUMPY_DECL dtype get_int_dtype<bits, false>(); \
template BOOST_NUMPY_DECL dtype get_int_dtype<bits, true>()
#define BUILTIN_FLOAT_DTYPE(bits) \
template <> struct builtin_float_dtype<bits> \
{ \
static dtype get() { return DTYPE_FROM_CODE(NPY_FLOAT ## bits);} \
}; \
template BOOST_NUMPY_DECL dtype get_float_dtype<bits>()
#define BUILTIN_COMPLEX_DTYPE(bits) \
template <> struct builtin_complex_dtype<bits> \
{ \
static dtype get() { return DTYPE_FROM_CODE(NPY_COMPLEX ## bits);} \
}; \
template BOOST_NUMPY_DECL dtype get_complex_dtype<bits>()
namespace boost { namespace python { namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayDescr_Type, numpy::dtype)
} // namespace boost::python::converter
namespace numpy {
namespace detail {
dtype builtin_dtype<bool,true>::get() { return DTYPE_FROM_CODE(NPY_BOOL); }
template <int bits, bool isUnsigned> struct builtin_int_dtype;
template <int bits> struct builtin_float_dtype;
template <int bits> struct builtin_complex_dtype;
template <int bits, bool isUnsigned> dtype get_int_dtype() {
return builtin_int_dtype<bits,isUnsigned>::get();
}
template <int bits> dtype get_float_dtype() { return builtin_float_dtype<bits>::get(); }
template <int bits> dtype get_complex_dtype() { return builtin_complex_dtype<bits>::get(); }
BUILTIN_INT_DTYPE(8);
BUILTIN_INT_DTYPE(16);
BUILTIN_INT_DTYPE(32);
BUILTIN_INT_DTYPE(64);
#ifdef NPY_FLOAT16
BUILTIN_FLOAT_DTYPE(16);
#endif
BUILTIN_FLOAT_DTYPE(32);
BUILTIN_FLOAT_DTYPE(64);
BUILTIN_COMPLEX_DTYPE(64);
BUILTIN_COMPLEX_DTYPE(128);
#if NPY_BITSOF_LONGDOUBLE > NPY_BITSOF_DOUBLE
template <> struct builtin_float_dtype< NPY_BITSOF_LONGDOUBLE > {
static dtype get() { return DTYPE_FROM_CODE(NPY_LONGDOUBLE); }
};
template dtype get_float_dtype< NPY_BITSOF_LONGDOUBLE >();
template <> struct builtin_complex_dtype< 2 * NPY_BITSOF_LONGDOUBLE > {
static dtype get() { return DTYPE_FROM_CODE(NPY_CLONGDOUBLE); }
};
template dtype get_complex_dtype< 2 * NPY_BITSOF_LONGDOUBLE >();
#endif
} // namespace detail
python::detail::new_reference dtype::convert(object const & arg, bool align)
{
PyArray_Descr* obj=NULL;
if (align)
{
if (PyArray_DescrAlignConverter(arg.ptr(), &obj) < 0)
throw_error_already_set();
}
else
{
if (PyArray_DescrConverter(arg.ptr(), &obj) < 0)
throw_error_already_set();
}
return python::detail::new_reference(reinterpret_cast<PyObject*>(obj));
}
int dtype::get_itemsize() const { return reinterpret_cast<PyArray_Descr*>(ptr())->elsize;}
bool equivalent(dtype const & a, dtype const & b) {
// On Windows x64, the behaviour described on
// http://docs.scipy.org/doc/numpy/reference/c-api.array.html for
// PyArray_EquivTypes unfortunately does not extend as expected:
// "For example, on 32-bit platforms, NPY_LONG and NPY_INT are equivalent".
// This should also hold for 64-bit platforms (and does on Linux), but not
// on Windows. Implement an alternative:
#ifdef _MSC_VER
if (sizeof(long) == sizeof(int) &&
// Manually take care of the type equivalence.
((a == dtype::get_builtin<long>() || a == dtype::get_builtin<int>()) &&
(b == dtype::get_builtin<long>() || b == dtype::get_builtin<int>()) ||
(a == dtype::get_builtin<unsigned int>() || a == dtype::get_builtin<unsigned long>()) &&
(b == dtype::get_builtin<unsigned int>() || b == dtype::get_builtin<unsigned long>()))) {
return true;
} else {
return PyArray_EquivTypes(
reinterpret_cast<PyArray_Descr*>(a.ptr()),
reinterpret_cast<PyArray_Descr*>(b.ptr())
);
}
#else
return PyArray_EquivTypes(
reinterpret_cast<PyArray_Descr*>(a.ptr()),
reinterpret_cast<PyArray_Descr*>(b.ptr())
);
#endif
}
namespace
{
namespace pyconv = boost::python::converter;
template <typename T>
class array_scalar_converter
{
public:
static PyTypeObject const * get_pytype()
{
// This implementation depends on the fact that get_builtin returns pointers to objects
// NumPy has declared statically, and that the typeobj member also refers to a static
// object. That means we don't need to do any reference counting.
// In fact, I'm somewhat concerned that increasing the reference count of any of these
// might cause leaks, because I don't think Boost.Python ever decrements it, but it's
// probably a moot point if everything is actually static.
return reinterpret_cast<PyArray_Descr*>(dtype::get_builtin<T>().ptr())->typeobj;
}
static void * convertible(PyObject * obj)
{
if (obj->ob_type == get_pytype())
{
return obj;
}
else
{
dtype dt(python::detail::borrowed_reference(obj->ob_type));
if (equivalent(dt, dtype::get_builtin<T>()))
{
return obj;
}
}
return 0;
}
static void convert(PyObject * obj, pyconv::rvalue_from_python_stage1_data* data)
{
void * storage = reinterpret_cast<pyconv::rvalue_from_python_storage<T>*>(data)->storage.bytes;
// We assume std::complex is a "standard layout" here and elsewhere; not guaranteed by
// C++03 standard, but true in every known implementation (and guaranteed by C++11).
PyArray_ScalarAsCtype(obj, reinterpret_cast<T*>(storage));
data->convertible = storage;
}
static void declare()
{
pyconv::registry::push_back(&convertible, &convert, python::type_id<T>()
#ifndef BOOST_PYTHON_NO_PY_SIGNATURES
, &get_pytype
#endif
);
}
};
} // anonymous
void dtype::register_scalar_converters()
{
array_scalar_converter<bool>::declare();
array_scalar_converter<npy_uint8>::declare();
array_scalar_converter<npy_int8>::declare();
array_scalar_converter<npy_uint16>::declare();
array_scalar_converter<npy_int16>::declare();
array_scalar_converter<npy_uint32>::declare();
array_scalar_converter<npy_int32>::declare();
#ifdef _MSC_VER
// Since the npy_(u)int32 types are defined as long types and treated
// as being different from the int32 types, these converters must be declared
// explicitely.
array_scalar_converter<boost::uint32_t>::declare();
array_scalar_converter<boost::int32_t>::declare();
#endif
array_scalar_converter<npy_uint64>::declare();
array_scalar_converter<npy_int64>::declare();
array_scalar_converter<float>::declare();
array_scalar_converter<double>::declare();
array_scalar_converter< std::complex<float> >::declare();
array_scalar_converter< std::complex<double> >::declare();
#if NPY_BITSOF_LONGDOUBLE > NPY_BITSOF_DOUBLE
array_scalar_converter<long double>::declare();
array_scalar_converter< std::complex<long double> >::declare();
#endif
}
}}} // namespace boost::python::numpy