Building Hybrid Systems with Boost.Python

Author: David Abrahams
Contact: dave @boost-consulting.com
Organization: Boost Consulting
Date: 2003-03-19
Author: Ralf W. Grosse-Kunstleve
Copyright: Copyright David Abrahams and Ralf W. Grosse-Kunstleve 2003. All rights reserved
Table of Contents
Abstract

Introduction

Boost.Python Design Goals
Hello Boost.Python World
Library Overview

Exposing Classes

Constructors

Data Members and Properties

Operator Overloading

Inheritance

Virtual Functions

Deeper Reflection on the Horizon?
Serialization
Object interface

Thinking hybrid
Development history
Conclusions
Citations

Footnotes

Abstract

Boost.Python is an open source C++ library which provides a concise IDL-like interface for binding C++ classes and
functions to Python. Leveraging the full power of C++ compile-time introspection and of recently developed metapro-
gramming techniques, this is achieved entirely in pure C++, without introducing a new syntax. Boost.Python’s rich set
of features and high-level interface make it possible to engineer packages from the ground up as hybrid systems, giv-
ing programmers easy and coherent access to both the efficient compile-time polymorphism of C++ and the extremely
convenient run-time polymorphism of Python.

mailto:dave@boost-consulting.com
http://www.boost-consulting.com

Introduction 2

Python and C++ are in many ways as different as two languages could be: while C++ is usually compiled to machine-
code, Python is interpreted. Python’s dynamic type system is often cited as the foundation of its flexibility, while in C++
static typing is the cornerstone of its efficiency. C++ has an intricate and difficult compile-time meta-language, while in
Python, practically everything happens at runtime.

Yet for many programmers, these very differences mean that Python and C++ complement one another perfectly. Per-
formance bottlenecks in Python programs can be rewritten in C++ for maximal speed, and authors of powerful C++
libraries choose Python as a middleware language for its flexible system integration capabilities. Furthermore, the surface
differences mask some strong similarities:

'C’-family control structures (if, while, for...)

e Support for object-orientation, functional programming, and generic programming (these aneuttdiparadigm
programming languages.)

e Comprehensive operator overloading facilities, recognizing the importance of syntactic variability for readability
and expressivity.

¢ High-level concepts such as collections and iterators.
e High-level encapsulation facilities (C++: namespaces, Python: modules) to support the design of re-usable libraries.
e Exception-handling for effective management of error conditions.

e C++ idioms in common use, such as handle/body classes and reference-counted smart pointers mirror Python
reference semantics.

Given Python's rich 'C’ interoperability API, it should in principle be possible to expose C++ type and function interfaces
to Python with an analogous interface to their C++ counterparts. However, the facilities provided by Python alone for
integration with C++ are relatively meager. Compared to C++ and Python, 'C’ has only very rudimentary abstraction
facilities, and support for exception-handling is completely missing. 'C’ extension module writers are required to manu-
ally manage Python reference counts, which is both annoyingly tedious and extremely error-prone. Traditional extension
modules also tend to contain a great deal of boilerplate code repetition which makes them difficult to maintain, especially
when wrapping an evolving API.

These limitations have lead to the development of a variety of wrapping systewits is probably the most popular
package for the integration of C/C++ and Python. A more recent developmgif,isvhich was specifically designed

for interfacing Python with th€t graphical user interface library. Both SWIG and SIP introduce their own specialized
languages for customizing inter-language bindings. This has certain advantages, but having to deal with three different
languages (Python, C/C++ and the interface language) also introduces practical and mental difficultieéX Paekage
demonstrates an interesting alternative. It shows that at least some parts of Python’s 'C’ API can be wrapped and presented
through a much more user-friendly C++ interface. However, unlike SWIG and SIP, CXX does not include support for
wrapping C++ classes as new Python types.

The features and goals Bbost.Pythoroverlap significantly with many of these other systems. That said, Boost.Python
attempts to maximize convenience and flexibility without introducing a separate wrapping language. Instead, it presents
the user with a high-level C++ interface for wrapping C++ classes and functions, managing much of the complexity
behind-the-scenes with static metaprogramming. Boost.Python also goes beyond the scope of earlier systems by provid-

ing:

e Support for C++ virtual functions that can be overridden in Python.

Comprehensive lifetime management facilities for low-level C++ pointers and references.

Support for organizing extensions as Python packages, with a central registry for inter-language type conversions.

A safe and convenient mechanism for tying into Python’s powerful serialization engine (pickle).

Coherence with the rules for handling C++ Ivalues and rvalues that can only come from a deep understanding of
both the Python and C++ type systems.

http://www.swig.org/
http://www.riverbankcomputing.co.uk/sip/index.php
http://www.trolltech.com/
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc

The key insight that sparked the development of Boost.Python is that much of the boilerplate code in traditionaPextension
modules could be eliminated using C++ compile-time introspection. Each argument of a wrapped C++ function must be
extracted from a Python object using a procedure that depends on the argument type. Similarly the function’s return type
determines how the return value will be converted from C++ to Python. Of course argument and return types are part of
each function’s type, and this is exactly the source from which Boost.Python deduces most of the information required.

This approach leads toser guided wrappingas much information is extracted directly from the source code to be
wrapped as is possible within the framework of pure C++, and some additional information is supplied explicitly by the
user. Mostly the guidance is mechanical and little real intervention is required. Because the interface specification is
written in the same full-featured language as the code being exposed, the user has unprecedented power available when
she does need to take control.

Boost.Python Design Goals

The primary goal of Boost.Python is to allow users to expose C++ classes and functions to Python using nothing more
than a C++ compiler. In broad strokes, the user experience should be one of directly manipulating C++ objects from
Python.

However, it's also important not to translate all interfatesliterally: the idioms of each language must be respected.
For example, though C++ and Python both have an iterator concept, they are expressed very differently. Boost.Python has
to be able to bridge the interface gap.

It must be possible to insulate Python users from crashes resulting from trivial misuses of C++ interfaces, such as ac-
cessing already-deleted objects. By the same token the library should insulate C++ users from low-level Python 'C’
API, replacing error-prone 'C’ interfaces like manual reference-count management aiy@bject pointers with
more-robust alternatives.

Support for component-based development is crucial, so that C++ types exposed in one extension module can be passed
to functions exposed in another without loss of crucial information like C++ inheritance relationships.

Finally, all wrapping must baon-intrusive without modifying or even seeing the original C++ source code. Existing
C++ libraries have to be wrappable by third parties who only have access to header files and binaries.

Hello Boost.Python World

And now for a preview of Boost.Python, and how it improves on the raw facilities offered by Python. Here’s a function
we might want to expose:

char const* greet(unsigned x)

{
static char const* const msgs[] = { “hello”, “Boost.Python”, “world!” i
if x > 2)
throw std::range _error(“‘greet: index out of range”);
return msgs[x];
}

To wrap this function in standard C++ using the Python 'C’ API, we’'d need something like this:

extern “C” // all Python interactions use 'C’ linkage and calling convention

{

/I Wrapper to handle argument/result conversion and checking
PyObject* greet _wrap(PyObject* args, PyObject * keywords)

int x;

if (PyArg _ParseTuple(args, “i”, &x)) /I extract/check arguments
char const* result = greet(x); /I invoke wrapped function
return PyString _FromString(result); // convert result to Python

}

return O; /I error occurred 4

}

/[Table of wrapped functions to be exposed by the module

static PyMethodDef methods[] = {
{ “greet”, greet _wrap, METH _VARARGS, “return one of 3 parts of a greeting” }
, { NULL, NULL, 0, NULL 1} /I sentinel

h

/I module initialization function
DL_EXPORT init _hello()

(void) Py _InitModule(“hello”, methods); // add the methods to the module

Now here’s the wrapping code we'd use to expose it with Boost.Python:

#include <boost/python.hpp >
using namespace boost::python;
BOOSTPYTHONMODULE(hello)

}

def(“greet”, greet, “return one of 3 parts of a greeting”);

and here itis in action:

>>> import hello
>>> for x in range(3):

hello

print hello.greet(x)

Boost.Python
world!

Aside from the fact that the 'C’ API version is much more verbose, it's worth noting a few things that it doesn’t handle
correctly:

e The original function accepts an unsigned integer, and the Python 'C’ API only gives us a way of extracting

signed integers. The Boost.Python version will raise a Python exception if we try to pass a negative number to
hello.greet , but the other one will proceed to do whatever the C++ implementation does when converting an
negative integer to unsigned (usually wrapping to some very large number), and pass the incorrect translation on to
the wrapped function.

That brings us to the second problem: if the Cgreet() function is called with a number greater than 2, it

will throw an exception. Typically, if a C++ exception propagates across the boundary with code generated by a
'C’ compiler, it will cause a crash. As you can see in the first version, there’s no C++ scaffolding there to prevent
this from happening. Functions wrapped by Boost.Python automatically include an exception-handling layer which
protects Python users by translating unhandled C++ exceptions into a corresponding Python exception.

A slightly more-subtle limitation is that the argument conversion used in the Python 'C’ API case can only get that
integerx in one way PyArg ParseTuple can't convert Pythdong objects (arbitrary-precision integers) which
happen to fitin amnsigned int butnotin asigned long , nor will it ever handle a wrapped C++ class with

a user-defined implicibperator unsigned int() conversion. Boost.Python’s dynamic type conversion
registry allows users to add arbitrary conversion methods.

Library Overview

This section outlines some of the library’s major features. Except as neccessary to avoid confusion, details of library
implementation are omitted.

Exposing Classes S
C++ classes and structs are exposed with a similarly-terse interface. Given:

struct World

{
void set(std::string msg) { this- >msg = msg; }
std::string greet() { return msg; }
std::string msg;

h

The following code will expose it in our extension module:

#include <boost/python.hpp >
BOOSTPYTHONMODULE(hello)

{
class _<World >(*World”)
.def("*greet”, &World::greet)
.def(“set”, &World::set)
}

Although this code has a certain pythonic familiarity, people sometimes find the syntax bit confusing because it doesn’t
look like most of the C++ code they're used to. All the same, this is just standard C++. Because of their flexible syntax
and operator overloading, C++ and Python are great for defining domain-specific (sub)languages (DSLs), and that’s what
we've done in Boost.Python. To break it down:

class _<World >(“World”)

constructs an unnamed object of typass _<World > and passe$wWorld” to its constructor. This creates a hew-
style Python class calledVorld in the extension module, and associates it with the C++Wpdd in the Boost.Python
type conversion registry. We might have also written:

class _<World > w(“World");
but that would've been more verbose, since we'd have to naagain to invoke itglef() member function:
w.def(“greet”, &World::greet)

There’s nothing special about the location of the dot for member access in the original example: C++ allows any amount
of whitespace on either side of a token, and placing the dot at the beginning of each line allows us to chain as many
successive calls to member functions as we like with a uniform syntax. The other key fact that allows chaining is that
class _<> member functions all return a referencetiois

So the example is equivalent to:

class _<World > w(*World”);
w.def(“greet”, &World::greet);
w.def(“set”, &World::set);

It's occasionally useful to be able to break down the components of a Boost.Python class wrapper in this way, but the rest
of this article will stick to the terse syntax.

For completeness, here’s the wrapped class in use:

>>> import hello

>>> planet = hello.World()
>>> planet.set(howdy’)
>>> planet.greet()

'howdy’

Constructors 6

Since ouWorld class isjusta plaistruct , it has an implicit no-argument (nullary) constructor. Boost.Python exposes
the nullary constructor by default, which is why we were able to write:

>>> planet = hello.World()

However, well-designed classes in any language may require constructor arguments in order to establish their invariants.
Unlike Python, where_init __is just a specially-named method, In C++ constructors cannot be handled like ordinary
member functions. In particular, we can't take their addréd@/orld::World is an error. The library provides a
different interface for specifying constructors. Given:

struct World

World(std::string msg); // added constructor

we can modify our wrapping code as follows:

class _<World >(“World”, init <std::string >()

of course, a C++ class may have additional constructors, and we can expose those as well by passing more instances of
init <... >todef()

class _<World >(“World”, init <std::string >())
.def(init <double, double >())

Boost.Python allows wrapped functions, member functions, and constructors to be overloaded to mirror C++ overloading.

Data Members and Properties

Any publicly-accessible data members in a C++ class can be easily exposed asesitioerly or readwrite at-
tributes:

class _<World >(“World”, init <std::string >())
.def _readonly(“*msg”, &World::msg)

and can be used directly in Python:

>>> planet = hello.World(’howdy’)
>>> planet.msg
'howdy’

This doesotresult in adding attributes to thWorld instance _dict __, which can result in substantial memory savings
when wrapping large data structures. In fact, no instandiet __ will be created at all unless attributes are explicitly
added from Python. Boost.Python owes this capability to the new Python 2.2 type system, in particular the descriptor
interface angbroperty type.

In C++, publicly-accessible data members are considered a sign of poor design because they break encapsulation, and style
guides usually dictate the use of “getter” and “setter” functions instead. In Python, howgetaiftr __, __setattr __,

and since 2.property mean that attribute access is just one more well-encapsulated syntactic tool at the programmer’s
disposal. Boost.Python bridges this idiomatic gap by making Pypinoperty creation directly available to users. If

msg were private, we could still expose it as attribute in Python as follows:

class _<World >(“World”, init <std::string >())
.add _property(“msg”, &World::greet, &World::set)

The example above mirrors the familiar usage of properties in Python 2.2+: 7

>>> class World(object):
_iinit __(self, msg):

self. _msg = msg
def greet(self):

return self. __msg
def set(self, msg):

self. _msg = msg

msg = property(greet, set)

Operator Overloading

The ability to write arithmetic operators for user-defined types has been a major factor in the success of both languages for
numerical computation, and the success of packagesllikePyattests to the power of exposing operators in extension
modules. Boost.Python provides a concise mechanism for wrapping operator overloads. The example below shows a
fragment from a wrapper for the Boost rational number library:

class _<rational <int > >(“rational _int”)
.def(init <int, int >()) // constructor, e.g. rational _int(3,4)
.def(*numerator”, &rational <int >:numerator)
.def(*denominator”, &rational <int >::denominator)
.def(-self) 1" __neg__ (unary minus)
def(self + self) /I _.add __ (homogeneous)
def(self * self) // _mul __
.def(self + int()) // _.add __ (heterogenous)

def(int() + self) // _radd __

The magic is performed using a simplified application of “expression templa#s”[)1995, a technique originally
developed for optimization of high-performance matrix algebra expressions. The essence is that instead of performing the
computation immediately, operators are overloaded to construct adppEsentinghe computation. In matrix algebra,
dramatic optimizations are often available when the structure of an entire expression can be taken into account, rather
than evaluating each operation “greedily”. Boost.Python uses the same technique to build an appropriate Python method
object based on expressions involvisef

Inheritance

C++ inheritance relationships can be represented to Boost.Python by adding an dgesk... > argument to the
class _<... > template parameter list as follows:

class _<Derived, bases <Basel,Base2 > >(“Derived”)

This has two effects:

1 When theclass _<... > is created, Python type objects correspondinBasel andBase2 are looked
up in Boost.Python’s registry, and are used as bases for the new Hythived type object, so methods
exposed for the PythdBasel andBase?2 types are automatically members of iberived type. Because
the registry is global, this works correctly everDérived is exposed in a different module from either of
its bases.

2 C++ conversions fronDerived to its bases are added to the Boost.Python registry. Thus wrapped C++
methods expecting (a pointer or reference to) an object of either base type can be called with an object
wrapping aDerived instance. Wrapped member functions of cl@sare treated as though they have an
implicit first argument ofT&, so these conversions are neccessary to allow the base class methods to be called
for derived objects.

Of course it's possible to derive new Python classes from wrapped C++ class instances. Because Boost.Python uses the
new-style class system, that works very much as for the Python built-in types. There is one significant detail in which it
differs: the built-in types generally establish their invariants in th&iew__ function, so that derived classes do not need

to call __init __on the base class before invoking its methods :

http://www.pfdubois.com/numpy/

>>> class L(list):
def _init __(self):
pass

>>> L().reverse()
>>>

Because C++ object construction is a one-step operation, C++ instance data cannot be constructed until the arguments are
available, in the_init __function:

>>> class D(SomeBoostPythonClass):
def _init __(self):
pass

>>> D().some _boost _python _method()
Traceback (most recent call last):

File * <stdin >", line 1, in ?
TypeError: bad argument type for built-in operation

This happened because Boost.Python couldn't find instance data oStypeBoostPythonClass within the D
instance;D's __init __ function masked construction of the base class. It could be corrected by either rerbving
_init __function or having it calSomeBoostPythonClass. __init _(...) explicitly.

Virtual Functions

Deriving new types in Python from extension classes is not very interesting unless they can be used polymorphically
from C++. In other words, Python method implementations should appear to override the implementation of C++ virtual
functions when callethrough base class pointers/references from C4Since the only way to alter the behavior of a
virtual function is to override it in a derived class, the user must build a special derived class to dispatch a polymorphic
class’ virtual functions:

I

/I interface to wrap:

I

class Base

{

public:
virtual int f(std::string x) { return 42; }
virtual ~ Base();

h
int calls _f(Base const& b, std:string X) { return b.f(x); }

I
/I Wrapping Code
1

/I Dispatcher class

struct BaseWrap : Base

{
/I Store a pointer to the Python object
BaseWrap(PyObject* self) : self(self) A}
PyObject* self;

/I Default implementation, for when f is not overridden

int f _default(std::string x) { return this- >Base::f(x); }
/I Dispatch implementation
int f(std::string x) { return call _method <int >(self, “f’, Xx); }

def(“calls _f”, calls f);
class _<Base, BaseWrap >(“Base”)
def("f", &Base:f, &BaseWrap::f _default)

Now here’s some Python code which demonstrates:

>>> class Derived(Base):
def f(self, s):
return len(s)

>>> calls _f(Base(), 'foo’)

42

>>> calls _f(Derived(), 'forty-two’)
9

Things to notice about the dispatcher class:

e The key element which allows overriding in Python is tadl _method invocation, which uses the same global
type conversion registry as the C++ function wrapping does to convert its arguments from C++ to Python and its
return type from Python to C++.

e Any constructor signatures you wish to wrap must be replicated with an iRgi@bject* argument
e The dispatcher must store this argument so that it can be used to icetbkemethod

e Thef _default member function is needed when the function being exposed is not pure virtual; there's no other
way Base::f can be called on an object of tyBaseWrap, since it override$.

Deeper Reflection on the Horizon?

Admittedly, this formula is tedious to repeat, especially on a project with many polymorphic classes. That it is neccessary
reflects some limitations in C++'s compile-time introspection capabilities: there's no way to enumerate the members of
a class and find out which are virtual functions. At least one very promising project has been started to write a front-end
which can generate these dispatchers (and other wrapping code) automatically from C++ headers.

Pysteis being developed by Bruno da Silva de Oliveira. It builds@BGC XML, which generates an XML version of

GCC's internal program representation. Since GCC is a highly-conformant C++ compiler, this ensures correct handling
of the most-sophisticated template code and full access to the underlying type system. In keeping with the Boost.Python
philosophy, a Pyste interface description is neither intrusive on the code being wrapped, nor expressed in some unfamiliar
language: instead it is a 100% pure Python script. If Pyste is successful it will mark a move away from wrapping
everything directly in C++ for many of our users. It will also allow us the choice to shift some of the metaprogram
code from C++ to Python. We expect that soon, not only our users but the Boost.Python developers themselves will be
“thinking hybrid” about their own code.

Serialization

Serializationis the process of converting objects in memory to a form that can be stored on disk or sent over a network
connection. The serialized object (most often a plain string) can be retrieved and converted back to the original object.
A good serialization system will automatically convert entire object hierarchies. Python's stamickded module is

just such a system. It leverages the language’s strong runtime introspection facilities for serializing practically arbitrary
user-defined objects. With a few simple and unintrusive provisions this powerful machinery can be extended to also work
for wrapped C++ objects. Here is an example:

#include <string >

struct World

{
World(std::string a _msg) : msg(a -msg) {}

std::string greet() const { return msg; }

http://www.boost.org/libs/python/pyste
http://www.gccxml.org/HTML/Index.html

std::string msg; 10

+

#include <boost/python.hpp >
using namespace boost::python;

struct World _picklers : pickle _suite
{
static tuple
getinitargs(World const& w) { return make _tuple(w.greet()); }

BOOSTPYTHONVIODULE(hello)

{
class _<World >(“World”, init <std::string >())
.def("greet”, &World::greet)
.def _pickle(World _picklers())
}

Now let's create &Vorld object and put it to rest on disk:

>>> import hello

>>> import pickle

>>> a_world = hello.World(*“howdy")

>>> pickle.dump(a _world, open(“my _world”, “w"))

In a potentiallydifferent scripton a potentiallydifferent computewith a potentiallydifferent operating system

>>> import pickle

>>> resurrected _world = pickle.load(open(*my _world”, “r))
>>> resurrected _world.greet()
"howdy’

Of course thePickle module can also be used for faster processing.

Boost.Python'pickle _suite fully supports thepickle protocol defined in the standard Python documentation. Like
a__getinitargs_ function in Python, the picklsuite’s getinitargs() is responsible for creating the argument tuple that will

be use to reconstruct the pickled object. The other elements of the Python pickling proigetsitate. and__setstate.

can be optionally provided via C++ getstate and setstate functions. C++’s static type system allows the library to ensure
at compile-time that nonsensical combinations of functions (e.g. getstate without setstate) are not used.

Enabling serialization of more complex C++ objects requires a little more work than is shown in the example above.
Fortunately theobject interface (see next section) greatly helps in keeping the code manageable.

Object interface

Experienced 'C’ language extension module authors will be familiar with the ubiquitpDsject* , manual reference-
counting, and the need to remember which API calls return “new” (owned) references or “borrowed” (raw) references.
These constraints are not just cumbersome but also a major source of errors, especially in the presence of exceptions.

Boost.Python provides a clasbject which automates reference counting and provides conversion to Python from C++
objects of arbitrary type. This significantly reduces the learning effort for prospective extension module writers.

Creating arobject from any other type is extremely simple:
object s(“hello, world”); // s manages a Python string

object has templated interactions with all other types, with automatic to-python conversions. It happens so naturally
that it's easily overlooked:

object ten _Os = 10 * s[4]; /I - > “0000000000"

In the example abovel and 10 are converted to Python objects before the indexing and multiplication opera]tﬁbns are
invoked.

Theextract <T> class template can be used to convert Python objects to C++ types:
double x = extract <double >(0);

If a conversion in either direction cannot be performed, an appropriate exception is thrown at runtime.

Theobject type is accompanied by a set of derived types that mirror the Python built-in types slisth asdict ,
tuple , etc. as much as possible. This enables convenient manipulation of these high-level types from C++:

dict d;

d[*some™] = “thing”;
d[“lucky _number”] = 13;
list | = d.keys();

This almost looks and works like regular Python code, but it is pure C++. Of course we can wrap C++ functions which
accept or returiobject instances.

Thinking hybrid

Because of the practical and mental difficulties of combining programming languages, it is common to settle a single
language at the outset of any development effort. For many applications, performance considerations dictate the use of
a compiled language for the core algorithms. Unfortunately, due to the complexity of the static type system, the price
we pay for runtime performance is often a significant increase in development time. Experience shows that writing
maintainable C++ code usually takes longer and requdaesnore hard-earned working experience than developing
comparable Python code. Even when developers are comfortable working exclusively in compiled languages, they often
augment their systems by some type of ad hoc scripting layer for the benefit of their users without ever availing themselves
of the same advantages.

Boost.Python enables usttank hybrid Python can be used for rapidly prototyping a new application; its ease of use and
the large pool of standard libraries give us a head start on the way to a working system. If necessary, the working code
can be used to discover rate-limiting hotspots. To maximize performance these can be reimplemented in C++, together
with the Boost.Python bindings needed to tie them back into the existing higher-level procedure.

Of course, thigop-downapproach is less attractive if it is clear from the start that many algorithms will eventually have

to be implemented in C++. Fortunately Boost.Python also enables us to pursttera-upapproach. We have used this
approach very successfully in the development of a toolbox for scientific applications. The toolbox started out mainly as a
library of C++ classes with Boost.Python bindings, and for a while the growth was mainly concentrated on the C++ parts.
However, as the toolbox is becoming more complete, more and more newly added functionality can be implemented in
Python.

12
Pure Python 4

0% —

60% —
40% —

20% —

Pure C++ >

algorithms implemented

This figure shows the estimated ratio of newly added C++ and Python code over time as new algorithms are implemented.
We expect this ratio to level out near 70% Python. Being able to solve new problems mostly in Python rather than a more
difficult statically typed language is the return on our investment in Boost.Python. The ability to access all of our code
from Python allows a broader group of developers to use it in the rapid development of new applications.

Development history

The first version of Boost.Python was developed in 2000 by Dave Abrahams at Dragon Systems, where he was privileged
to have Tim Peters as a guide to “The Zen of Python”. One of Dave’s jobs was to develop a Python-based natural
language processing system. Since it was eventually going to be targeting embedded hardware, it was always assumed
that the compute-intensive core would be rewritten in C++ to optimize speed and memory fodfjpriitd project also

wanted to test all of its C++ code using Python test scripks The only tool we knew of for binding C++ and Python
wasSWIG, and at the time its handling of C++ was weak. It would be false to claim any deep insight into the possible
advantages of Boost.Python’s approach at this point. Dave’s interest and expertise in fancy C++ template tricks had just
reached the point where he could do some real damage, and Boost.Python emerged as it did because it filled a need and
because it seemed like a cool thing to try.

This early version was aimed at many of the same basic goals we've described in this paper, differing most-noticeably
by having a slightly more cumbersome syntax and by lack of special support for operator overloading, pickling, and
component-based development. These last three features were quickly added by Ullrich Koethe and Ralf Grosse-
Kunstleve B], and other enthusiastic contributors arrived on the scene to contribute enhancements like support for nested
modules and static member functions.

By early 2001 development had stabilized and few new features were being added, however a disturbing new fact came
to light: Ralf had begun testing Boost.Python on pre-release versions of a compiler usiag@eont-end, and the
mechanism at the core of Boost.Python responsible for handling conversions between Python and C++ types was failing
to compile. As it turned out, we had been exploiting a very common bug in the implementation of all the C++ compilers
we had tested. We knew that as C++ compilers rapidly became more standards-compliant, the library would begin failing
on more platforms. Unfortunately, because the mechanism was so central to the functioning of the library, fixing the
problem looked very difficult.

Fortunately, later that year Lawrence Berkeley and later Lawrence Livermore National labs contractedositiCon-

sulting for support and development of Boost.Python, and there was a new opportunity to address fundamental issues
and ensure a future for the library. A redesign effort began with the low level type conversion architecture, building in
standards-compliance and support for component-based development (in contrast to version 1 where conversions had to
be explicitly imported and exported across module boundaries). A new analysis of the relationship between the Python
and C++ objects was done, resulting in more intuitive handling for C++ Ivalues and rvalues.

http://www.swig.org/
http://www.edg.com
http://www.boost-consulting.com
http://www.boost-consulting.com

The emergence of a powerful new type system in Python 2.2 made the choice of whether to maintain compét?bility with
Python 1.5.2 easy: the opportunity to throw away a great deal of elaborate code for emulating classic Python classes
alone was too good to pass up. In addition, Python iterators and descriptors provided crucial and elegant tools for repre-
senting similar C++ constructs. The development of the generadiagdt interface allowed us to further shield C++
programmers from the dangers and syntactic burdens of the Python 'C’ API. A great number of other features including
C++ exception translation, improved support for overloaded functions, and most significantly, CallPolicies for handling
pointers and references, were added during this period.

In October 2002, version 2 of Boost.Python was released. Development since then has concentrated on improved support
for C++ runtime polymorphism and smart pointers. Peter Dimov’s ingerioast::shared _ptr design in particular

has allowed us to give the hybrid developer a consistent interface for moving objects back and forth across the language
barrier without loss of information. At first, we were concerned that the sophistication and complexity of the Boost.Python
v2 implementation might discourage contributors, but the emergeriégestéand several other significant feature contri-
butions have laid those fears to rest. Daily questions on the Python C++-sig and a backlog of desired improvements show
that the library is getting used. To us, the future looks bright.

Conclusions

Boost.Python achieves seamless interoperability between two rich and complimentary language environments. Because
it leverages template metaprogramming to introspect about types and functions, the user never has to learn a third syntax:
the interface definitions are written in concise and maintainable C++. Also, the wrapping system doesn’t have to parse
C++ headers or represent the type system: the compiler does that work for us.

Computationally intensive tasks play to the strengths of C++ and are often impossible to implement efficiently in pure
Python, while jobs like serialization that are trivial in Python can be very difficult in pure C++. Given the luxury of
building a hybrid software system from the ground up, we can approach design with new confidence and power.

Citations

Footnotes

[VELD1995] T. Veldhuizen, “Expression Templates,” C++ Report, Vol. 7 No. 5 June 1995, pp. 26-31.
http://osl.iu.edu/"tveldhui/papers/Expression-Templates/exprtmpl.html

[1] In retrospect, it seems that “thinking hybrid” from the ground up might have been better for the NLP system: the
natural component boundaries defined by the pure python prototype turned out to be inappropriate for getting the desired
performance and memory footprint out of the C++ core, which eventually caused some redesign overhead on the Python
side when the core was moved to C++.

[2] We also have some reservations about driving all C++ testing through a Python interface, unless that’s the only way it
will be ultimately used. Any transition across language boundaries with such different object models can inevitably mask
bugs.

[3] These features were expressed very differently in v1 of Boost.Python

http://www.boost.org/libs/python/pyste
http://osl.iu.edu/~tveldhui/papers/Expression-Templates/exprtmpl.html

