import numpy import gaussian mu = numpy.zeros(2, dtype=float) sigma = numpy.identity(2, dtype=float) sigma[0, 1] = 0.15 sigma[1, 0] = 0.15 g = gaussian.bivariate_gaussian(mu, sigma) r = numpy.linspace(-40, 40, 1001) x, y = numpy.meshgrid(r, r) z = g(x, y) s = z.sum() * (r[1] - r[0])**2 print "sum (should be ~ 1):", s xc = (z * x).sum() / z.sum() print "x centroid (should be ~ %f): %f" % (mu[0], xc) yc = (z * y).sum() / z.sum() print "y centroid (should be ~ %f): %f" % (mu[1], yc) xx = (z * (x - xc)**2).sum() / z.sum() print "xx moment (should be ~ %f): %f" % (sigma[0,0], xx) yy = (z * (y - yc)**2).sum() / z.sum() print "yy moment (should be ~ %f): %f" % (sigma[1,1], yy) xy = 0.5 * (z * (x - xc) * (y - yc)).sum() / z.sum() print "xy moment (should be ~ %f): %f" % (sigma[0,1], xy)