2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-27 07:02:15 +00:00

initial sandbox import for numpy utilities in boost.python

This commit is contained in:
Jim Bosch
2010-03-08 21:50:13 +00:00
parent 189915bc8b
commit eef2eef7dd
14 changed files with 1247 additions and 0 deletions

32
boost/python/numpy.hpp Normal file
View File

@@ -0,0 +1,32 @@
#ifndef BOOST_PYTHON_NUMPY_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_HPP_INCLUDED
/**
* @file boost/python/numpy.hpp
* @brief Main public header file for boost.python.numpy.
*/
#include <boost/python/numpy/dtype.hpp>
#include <boost/python/numpy/ndarray.hpp>
#include <boost/python/numpy/scalars.hpp>
#include <boost/python/numpy/matrix.hpp>
#include <boost/python/numpy/ufunc.hpp>
namespace boost { namespace python {
namespace numpy {
/**
* @brief Initialize the Numpy C-API
*
* This must be called before using anything in boost.python.numpy;
* It should probably be the first line inside BOOST_PYTHON_MODULE.
*
* @internal This just calls the Numpy C-API functions "import_array()"
* and "import_ufunc()".
*/
void initialize();
} // namespace boost::python::numpy
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_HPP_INCLUDED

View File

@@ -0,0 +1,56 @@
#ifndef BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
/**
* @file boost/python/numpy/dtype.hpp
* @brief Object manager for Python's numpy.dtype class.
*/
#include <boost/python.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
namespace boost { namespace python {
namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for numpy.dtype.
*
* @todo This could have a lot more interesting accessors.
*/
class dtype : public object {
static python::detail::new_reference convert(object_cref arg, bool align);
public:
/// @brief Convert an arbitrary Python object to a data-type descriptor object.
template <typename T>
explicit dtype(T arg, bool align=false) : object(convert(arg, align)) {}
/**
* @brief Get the built-in numpy dtype associated with the given scalar template type.
*
* This is perhaps the most useful part of the numpy API: it returns the dtype object
* corresponding to a built-in C++ type. This should work for any integer or floating point
* type supported by numpy, and will also work for std::complex if
* sizeof(std::complex<T>) == 2*sizeof(T).
*
* It can also be useful for users to add explicit specializations for POD structs
* that return field-based dtypes.
*/
template <typename T> static dtype get_builtin();
/// @brief Return the size of the data type in bytes.
int get_itemsize() const;
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(dtype, object);
};
} // namespace boost::python::numpy
namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::dtype);
} // namespace boost::python::converter
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED

View File

@@ -0,0 +1,29 @@
#ifndef BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
/**
* @file boost/python/numpy/internal.hpp
* @brief Internal header file to include the Numpy C-API headers.
*
* This should only be included by source files in the boost.python.numpy library itself.
*/
#include <boost/python.hpp>
#ifdef BOOST_PYTHON_NUMPY_INTERNAL
#define NO_IMPORT_ARRAY
#define NO_IMPORT_UFUNC
#else
#ifndef BOOST_PYTHON_NUMPY_INTERNAL_MAIN
ERROR_internal_hpp_is_for_internal_use_only
#endif
#endif
#define PY_ARRAY_UNIQUE_SYMBOL BOOST_NUMPY_ARRAY_API
#define PY_UFUNC_UNIQUE_SYMBOL BOOST_UFUNC_ARRAY_API
#include <numpy/arrayobject.h>
#include <numpy/ufuncobject.h>
#include <boost/python/numpy.hpp>
#define NUMPY_OBJECT_MANAGER_TRAITS_IMPL(pytype,manager) \
PyTypeObject const * object_manager_traits<manager>::get_pytype() { return &pytype; }
#endif // !BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED

View File

@@ -0,0 +1,62 @@
#ifndef BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
/**
* @file boost/python/numpy/matrix.hpp
* @brief Object manager for numpy.matrix.
*/
#include <boost/python.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
#include <boost/python/numpy/ndarray.hpp>
namespace boost { namespace python {
namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for numpy.matrix.
*
* @internal numpy.matrix is defined in Python, so object_manager_traits<matrix>::get_pytype()
* is implemented by importing numpy and getting the "matrix" attribute of the module.
* We then just hope that doesn't get destroyed while we need it, because if we put
* a dynamic python object in a static-allocated boost::python::object or handle<>,
* bad things happen when Python shuts down. I think this solution is safe, but I'd
* love to get that confirmed.
*/
class matrix : public ndarray {
static object construct(object_cref obj, dtype const & dt, bool copy);
static object construct(object_cref obj, bool copy);
public:
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(matrix, ndarray);
/// @brief Equivalent to "numpy.matrix(obj,dt,copy)" in Python.
explicit matrix(object const & obj, dtype const & dt, bool copy=true) :
ndarray(extract<ndarray>(construct(obj, dt, copy))) {}
/// @brief Equivalent to "numpy.matrix(obj,copy=copy)" in Python.
explicit matrix(object const & obj, bool copy=true) :
ndarray(extract<ndarray>(construct(obj, copy))) {}
/// \brief Return a view of the matrix with the given dtype.
matrix view(dtype const & dt) const;
/// \brief Copy the scalar (deep for all non-object fields).
matrix copy() const;
/// \brief Transpose the matrix.
matrix transpose() const;
};
} // namespace boost::python::numpy
namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::matrix);
} // namespace boost::python::converter
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED

View File

@@ -0,0 +1,285 @@
#ifndef BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
/**
* @file boost/python/numpy/ndarray.hpp
* @brief Object manager and various utilities for numpy.ndarray.
*/
#include <boost/python.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
#include <boost/python/numpy/dtype.hpp>
#include <vector>
namespace boost { namespace python {
namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
*
* @todo This could have a lot more functionality (like boost::python::numeric::array).
* Right now all that exists is what was needed to move raw data between C++ and Python.
*/
class ndarray : public object {
/**
* @brief An internal struct that's byte-compatible with PyArrayObject.
*
* This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
* from the user.
*/
struct array_struct {
PyObject_HEAD
char * data;
int nd;
Py_intptr_t * shape;
Py_intptr_t * strides;
PyObject * base;
PyObject * descr;
int flags;
PyObject * weakreflist;
};
/// @brief Return the held Python object as an array_struct.
array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
public:
/**
* @brief Enum to represent (some) of Numpy's internal flags.
*
* These don't match the actual Numpy flag values; we can't get those without including
* numpy/arrayobject.h or copying them directly. That's very unfortunate.
*
* @todo I'm torn about whether this should be an enum. It's very convenient to not
* make these simple integer values for overloading purposes, but the need to
* define every possible combination and custom bitwise operators is ugly.
*/
enum bitflag {
NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
};
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
/// @brief Return a view of the scalar with the given dtype.
ndarray view(dtype const & dt) const;
/// @brief Copy the scalar (deep for all non-object fields).
ndarray copy() const;
/// @brief Return the size of the nth dimension.
int const shape(int n) const { return get_shape()[n]; }
/// @brief Return the stride of the nth dimension.
int const strides(int n) const { return get_strides()[n]; }
/**
* @brief Return the array's raw data pointer.
*
* This returns char so stride math works properly on it. It's pretty much
* expected that the user will have to reinterpret_cast it.
*/
char * get_data() const { return get_struct()->data; }
/// @brief Return the array's data-type descriptor object.
dtype get_dtype() const;
/// @brief Return the object that owns the array's data, or None if the array owns its own data.
object get_base() const;
/// @brief Set the object that owns the array's data. Use with care.
void set_base(object const & base);
/// @brief Return the shape of the array as an array of integers (length == get_nd()).
Py_intptr_t const * get_shape() const { return get_struct()->shape; }
/// @brief Return the stride of the array as an array of integers (length == get_nd()).
Py_intptr_t const * get_strides() const { return get_struct()->strides; }
/// @brief Return the number of array dimensions.
int const get_nd() const { return get_struct()->nd; }
/// @brief Return the array flags.
bitflag const get_flags() const;
/// @brief Reverse the dimensions of the array.
ndarray transpose() const;
/// @brief Eliminate any unit-sized dimensions.
ndarray squeeze() const;
/**
* @brief If the array contains only a single element, return it as an array scalar; otherwise return
* the array.
*
* @internal This is simply a call to PyArray_Return();
*/
object scalarize() const;
};
/**
* @brief Construct a new array with the given shape and data type, with data initialized to zero.
*/
ndarray zeros(tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
/**
* @brief Construct a new array with the given shape and data type, with data left uninitialized.
*/
ndarray empty(tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
/**
* @brief Construct a new array from an arbitrary Python sequence.
*
* @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
*/
ndarray array(object const & obj);
ndarray array(object const & obj, dtype const & dt);
namespace detail {
ndarray from_data_impl(
void * data,
dtype const & dt,
std::vector<Py_intptr_t> const & shape,
std::vector<Py_intptr_t> const & strides,
object const & owner,
bool writeable
);
template <typename Container>
ndarray from_data_impl(
void * data,
dtype const & dt,
Container shape,
Container strides,
object const & owner,
bool writeable,
typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL
) {
std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
return from_data_impl(data, dt, shape_, strides_, owner, writeable);
}
ndarray from_data_impl(
void * data,
dtype const & dt,
object const & shape,
object const & strides,
object const & owner,
bool writeable
);
} // namespace boost::python::numpy::detail
/**
* @brief Construct a new ndarray object from a raw pointer.
*
* @param[in] data Raw pointer to the first element of the array.
* @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
* @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
* @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
* @param[in] owner An arbitray Python object that owns that data pointer. The array object will
* keep a reference to the object, and decrement it's reference count when the
* array goes out of scope. Pass None at your own peril.
*
* @todo Should probably take ranges of iterators rather than actual container objects.
*/
template <typename Container>
inline ndarray from_data(
void * data,
dtype const & dt,
Container shape,
Container strides,
object const & owner
) {
return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
}
/**
* @brief Construct a new ndarray object from a raw pointer.
*
* @param[in] data Raw pointer to the first element of the array.
* @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
* @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
* @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
* @param[in] owner An arbitray Python object that owns that data pointer. The array object will
* keep a reference to the object, and decrement it's reference count when the
* array goes out of scope. Pass None at your own peril.
*
* This overload takes a const void pointer and sets the "writeable" flag of the array to false.
*
* @todo Should probably take ranges of iterators rather than actual container objects.
*/
template <typename Container>
inline ndarray from_data(
void const * data,
dtype const & dt,
Container shape,
Container strides,
object const & owner
) {
return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
}
/**
* @brief Transform an arbitrary object into a numpy array with the given requirements.
*
* @param[in] obj An arbitrary python object to convert. Arrays that meet the requirements
* will be passed through directly.
* @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
* @param[in] nd_min Minimum number of dimensions.
* @param[in] nd_max Maximum number of dimensions.
* @param[in] flags Bitwise OR of flags specifying additional requirements.
*/
ndarray from_object(object const & obj, dtype const & dt,
int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
inline ndarray from_object(object const & obj, dtype const & dt,
int nd, ndarray::bitflag flags=ndarray::NONE) {
return from_object(obj, dt, nd, nd, flags);
}
inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE) {
return from_object(obj, dt, 0, 0, flags);
}
ndarray from_object(object const & obj, int nd_min, int nd_max,
ndarray::bitflag flags=ndarray::NONE);
inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE) {
return from_object(obj, nd, nd, flags);
}
inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE) {
return from_object(obj, 0, 0, flags);
}
inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) {
return ndarray::bitflag(int(a) | int(b));
}
inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b) {
return ndarray::bitflag(int(a) & int(b));
}
} // namespace boost::python::numpy
namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::ndarray);
} // namespace boost::python::converter
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,27 @@
#ifndef BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
/**
* @file boost/python/numpy/numpy_object_mgr_traits.hpp
* @brief Macro that specializes object_manager_traits by requiring a
* source-file implementation of get_pytype().
*/
#define NUMPY_OBJECT_MANAGER_TRAITS(manager) \
template <> \
struct object_manager_traits<manager> { \
BOOST_STATIC_CONSTANT(bool, is_specialized = true); \
static inline python::detail::new_reference adopt(PyObject* x) { \
return python::detail::new_reference(python::pytype_check((PyTypeObject*)get_pytype(), x)); \
} \
static bool check(PyObject* x) { \
return ::PyObject_IsInstance(x, (PyObject*)get_pytype()); \
} \
static manager* checked_downcast(PyObject* x) { \
return python::downcast<manager>((checked_downcast_impl)(x, (PyTypeObject*)get_pytype())); \
} \
static PyTypeObject const * get_pytype(); \
}
#endif // !BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED

View File

@@ -0,0 +1,55 @@
#ifndef BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
/**
* @file boost/python/numpy/scalars.hpp
* @brief Object managers for array scalars (currently only numpy.void is implemented).
*/
#include <boost/python.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
#include <boost/python/numpy/dtype.hpp>
namespace boost { namespace python {
namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for numpy.void.
*
* @todo This could have a lot more functionality.
*/
class void_ : public object {
static python::detail::new_reference convert(object_cref arg, bool align);
public:
/**
* @brief Construct a new array scalar with the given size and void dtype.
*
* Data is initialized to zero. One can create a standalone scalar object
* with a certain dtype "dt" with:
* @code
* void_ scalar = void_(dt.get_itemsize()).view(dt);
* @endcode
*/
explicit void_(Py_ssize_t size);
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(void_, object);
/// @brief Return a view of the scalar with the given dtype.
void_ view(dtype const & dt) const;
/// @brief Copy the scalar (deep for all non-object fields).
void_ copy() const;
};
} // namespace boost::python::numpy
namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::void_);
} // namespace boost::python::converter
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED

View File

@@ -0,0 +1,193 @@
#ifndef BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
#define BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
/**
* @file boost/python/numpy/ufunc.hpp
* @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
*/
#include <boost/python.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
#include <boost/python/numpy/dtype.hpp>
#include <boost/python/numpy/ndarray.hpp>
namespace boost { namespace python {
namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
*
* multi_iter is a Python object, but a very low-level one. It should generally only be used
* in loops of the form:
* @code
* while (iter.not_done()) {
* ...
* iter.next();
* }
* @endcode
*
* @todo I can't tell if this type is exposed in Python anywhere; if it is, we should use that name.
* It's more dangerous than most object managers, however - maybe it actually belongs in
* a detail namespace?
*/
class multi_iter : public object {
public:
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
/// @brief Increment the iterator.
void next();
/// @brief Check if the iterator is at its end.
bool not_done() const;
/// @brief Return a pointer to the element of the nth broadcasted array.
char * get_data(int n) const;
/// @brief Return the number of dimensions of the broadcasted array expression.
int const get_nd() const;
/// @brief Return the shape of the broadcasted array expression as an array of integers.
Py_intptr_t const * get_shape() const;
/// @brief Return the shape of the broadcasted array expression in the nth dimension.
Py_intptr_t const shape(int n) const;
};
/// @brief Construct a multi_iter over a single sequence or scalar object.
multi_iter make_multi_iter(object const & a1);
/// @brief Construct a multi_iter by broadcasting two objects.
multi_iter make_multi_iter(object const & a1, object const & a2);
/// @brief Construct a multi_iter by broadcasting three objects.
multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
/**
* @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
* Python object.
*
* Typical usage looks like this:
* @code
* struct TimesPI {
* typedef double argument_type;
* typedef double result_type;
* double operator()(double input) const { return input * M_PI; }
* };
*
* BOOST_PYTHON_MODULE(example) {
* class_< TimesPI >("TimesPI")
* .def("__call__", unary_ufunc<TimesPI>::make())
* ;
* }
* @endcode
*
*/
template <typename TUnaryFunctor,
typename TArgument=typename TUnaryFunctor::argument_type,
typename TResult=typename TUnaryFunctor::result_type>
struct unary_ufunc {
/**
* @brief A C++ function with object arguments that broadcasts its arguments before
* passing them to the underlying C++ functor.
*/
static object call(TUnaryFunctor & self, object const & input, object const & output) {
dtype in_dtype = dtype::get_builtin<TArgument>();
dtype out_dtype = dtype::get_builtin<TResult>();
ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
ndarray out_array = (output != object()) ?
from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
: zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
multi_iter iter = make_multi_iter(in_array, out_array);
while (iter.not_done()) {
TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
*result = self(*argument);
iter.next();
}
return out_array.scalarize();
}
/**
* @brief Construct a boost.python function object from call() with reasonable keyword names.
*
* Users will often want to specify their own keyword names with the same signature, but this
* is a convenient shortcut.
*/
static object make() {
return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
}
};
/**
* @brief Helps wrap a C++ functor taking a pair of scalar arguments as a broadcasting ufunc-like
* Python object.
*
* Typical usage looks like this:
* @code
* struct CosSum {
* typedef double first_argument_type;
* typedef double second_argument_type;
* typedef double result_type;
* double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
* };
*
* BOOST_PYTHON_MODULE(example) {
* class_< CosSum >("CosSum")
* .def("__call__", binary_ufunc<CosSum>::make())
* ;
* }
* @endcode
*
*/
template <typename TBinaryFunctor,
typename TArgument1=typename TBinaryFunctor::first_argument_type,
typename TArgument2=typename TBinaryFunctor::second_argument_type,
typename TResult=typename TBinaryFunctor::result_type>
struct binary_ufunc {
static object call(TBinaryFunctor & self, object const & input1, object const & input2,
object const & output)
{
dtype in1_dtype = dtype::get_builtin<TArgument1>();
dtype in2_dtype = dtype::get_builtin<TArgument2>();
dtype out_dtype = dtype::get_builtin<TResult>();
ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
multi_iter iter = make_multi_iter(in1_array, in2_array);
ndarray out_array = (output != object()) ?
from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
: zeros(iter.get_nd(), iter.get_shape(), out_dtype);
iter = make_multi_iter(in1_array, in2_array, out_array);
while (iter.not_done()) {
TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
*result = self(*argument1, *argument2);
iter.next();
}
return out_array.scalarize();
}
static object make() {
return make_function(
call, default_call_policies(),
(arg("input1"), arg("input2"), arg("output")=object())
);
}
};
} // namespace boost::python::numpy
namespace converter {
NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::multi_iter);
} // namespace boost::python::converter
}} // namespace boost::python
#endif // !BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED