2
0
mirror of https://github.com/boostorg/python.git synced 2026-01-27 07:02:15 +00:00
This commit is contained in:
stefanseefeld
2021-03-04 17:00:33 +00:00
parent e2fdcbaa31
commit ec7db68823
158 changed files with 12906 additions and 9965 deletions

View File

@@ -20,6 +20,7 @@
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/language_data.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="top" title="Boost.Python NumPy extension 1.0 documentation" href="../index.html" />
@@ -71,8 +72,8 @@
<p>One of the advantages of the ndarray wrapper is that the same data can be used in both Python and C++ and changes can be made to reflect at both ends.
The from_data method makes this possible.</p>
<p>Like before, first get the necessary headers, setup the namespaces and initialize the Python runtime and numpy module:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="cp">#include &lt;boost/python/numpy.hpp&gt;</span>
<span class="cp">#include &lt;iostream&gt;</span>
<div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="cp">#include</span> <span class="cpf">&lt;boost/python/numpy.hpp&gt;</span><span class="cp"></span>
<span class="cp">#include</span> <span class="cpf">&lt;iostream&gt;</span><span class="cp"></span>
<span class="k">namespace</span> <span class="n">p</span> <span class="o">=</span> <span class="n">boost</span><span class="o">::</span><span class="n">python</span><span class="p">;</span>
<span class="k">namespace</span> <span class="n">np</span> <span class="o">=</span> <span class="n">boost</span><span class="o">::</span><span class="n">python</span><span class="o">::</span><span class="n">numpy</span><span class="p">;</span>
@@ -84,7 +85,7 @@ The from_data method makes this possible.</p>
</pre></div>
</div>
<p>Create an array in C++ , and pass the pointer to it to the from_data method to create an ndarray:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="kt">int</span> <span class="n">arr</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">};</span>
<div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="kt">int</span> <span class="n">arr</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">};</span>
<span class="n">np</span><span class="o">::</span><span class="n">ndarray</span> <span class="n">py_array</span> <span class="o">=</span> <span class="n">np</span><span class="o">::</span><span class="n">from_data</span><span class="p">(</span><span class="n">arr</span><span class="p">,</span> <span class="n">np</span><span class="o">::</span><span class="n">dtype</span><span class="o">::</span><span class="n">get_builtin</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(),</span>
<span class="n">p</span><span class="o">::</span><span class="n">make_tuple</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span>
<span class="n">p</span><span class="o">::</span><span class="n">make_tuple</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">)),</span>
@@ -92,7 +93,7 @@ The from_data method makes this possible.</p>
</pre></div>
</div>
<p>Print the source C++ array, as well as the ndarray, to check if they are the same:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;C++ array :&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
<div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;C++ array :&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">j</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="n">j</span><span class="o">&lt;</span><span class="mi">4</span><span class="p">;</span><span class="n">j</span><span class="o">++</span><span class="p">)</span>
<span class="p">{</span>
<span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">arr</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&lt;&lt;</span> <span class="sc">&#39; &#39;</span><span class="p">;</span>
@@ -102,7 +103,7 @@ The from_data method makes this possible.</p>
</pre></div>
</div>
<p>Now, change an element in the Python ndarray, and check if the value changed correspondingly in the source C++ array:</p>
<div class="highlight-c++"><div class="highlight"><pre><span class="n">py_array</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span>
<div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span><span class="n">py_array</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span>
<span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="s">&quot;Is the change reflected in the C++ array used to create the ndarray ? &quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">j</span> <span class="o">&lt;</span> <span class="mi">5</span><span class="p">;</span> <span class="n">j</span><span class="o">++</span><span class="p">)</span>
<span class="p">{</span>
@@ -111,7 +112,7 @@ The from_data method makes this possible.</p>
</pre></div>
</div>
<p>Next, change an element of the source C++ array and see if it is reflected in the Python ndarray:</p>
<div class="highlight-c++"><div class="highlight"><pre> <span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">8</span><span class="p">;</span>
<div class="highlight-c++ notranslate"><div class="highlight"><pre><span></span> <span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">8</span><span class="p">;</span>
<span class="n">std</span><span class="o">::</span><span class="n">cout</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span>
<span class="o">&lt;&lt;</span> <span class="s">&quot;Is the change reflected in the Python ndarray ?&quot;</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span>
<span class="o">&lt;&lt;</span> <span class="n">p</span><span class="o">::</span><span class="n">extract</span><span class="o">&lt;</span><span class="kt">char</span> <span class="k">const</span> <span class="o">*&gt;</span><span class="p">(</span><span class="n">p</span><span class="o">::</span><span class="n">str</span><span class="p">(</span><span class="n">py_array</span><span class="p">))</span> <span class="o">&lt;&lt;</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>