From 3dda62f8b8d0ba3099b1d674c8697e5715919bce Mon Sep 17 00:00:00 2001 From: Ankit Daftery Date: Fri, 12 Aug 2011 09:26:55 +0000 Subject: [PATCH] Added tutorial for fromdata, i.e. copy free data access --- libs/numpy/doc/Jamfile | 2 +- libs/numpy/doc/fromdata.rst | 51 +++++++++++++++++++++++++++++++++++++ 2 files changed, 52 insertions(+), 1 deletion(-) create mode 100644 libs/numpy/doc/fromdata.rst diff --git a/libs/numpy/doc/Jamfile b/libs/numpy/doc/Jamfile index bf38ffb7..ea99cad1 100644 --- a/libs/numpy/doc/Jamfile +++ b/libs/numpy/doc/Jamfile @@ -6,7 +6,7 @@ project user-config : requirements rst2html ; import docutils ; import path ; -sources = tutorial.rst dtype.rst ndarray.rst ; +sources = tutorial.rst dtype.rst ndarray.rst fromdata.rst ; bases = $(sources:S=) ; # This is a path relative to the html/ subdirectory where the diff --git a/libs/numpy/doc/fromdata.rst b/libs/numpy/doc/fromdata.rst new file mode 100644 index 00000000..2937c78e --- /dev/null +++ b/libs/numpy/doc/fromdata.rst @@ -0,0 +1,51 @@ +How to access data using raw pointers +===================================== + +One of the advantages of the ndarray wrapper is that the same data can be used in both Python and C++ and changes can be made to reflect at both ends. +The from_data method makes this possible. + +Like before, first get the necessary headers, setup the namespaces and initialize the Python runtime and numpy module:: + + #include + #include + + namespace p = boost::python; + namespace np = boost::numpy; + + int main(int argc, char **argv) + { + Py_Initialize(); + np::initialize(); + +Create an array in C++ , and pass the pointer to it to the from_data method to create an ndarray:: + + int arr[] = {1,2,3,4} ; + np::ndarray py_array = np::from_data(arr, np::dtype::get_builtin() , p::make_tuple(4), p::make_tuple(4), p::object()); + +Print the source C++ array, as well as the ndarray, to check if they are the same:: + + std::cout << "C++ array :" << std::endl ; + for (int j=0;j<4;j++) + { + std::cout << arr[j] << ' ' ; + } + std::cout << std::endl << "Python ndarray :" << p::extract(p::str(py_array)) << std::endl; + +Now, change an element in the Python ndarray, and check if the value changed correspondingly in the source C++ array:: + + py_array[1] = 5 ; + std::cout << "Is the change reflected in the C++ array used to create the ndarray ? " << std::endl ; + for (int j = 0;j<4 ; j++) + { + std::cout << arr[j] << ' ' ; + } + +Next, change an element of the source C++ array and see if it is reflected in the Python ndarray:: + + arr[2] = 8 ; + std::cout << std::endl << "Is the change reflected in the Python ndarray ?" << std::endl << p::extract(p::str(py_array)) << std::endl; + +} + +As we can see, the changes are reflected across the ends. This happens because the from_data method passes the C++ array by reference to create the ndarray, and thus uses the same locations for storing data. +