Files
program_options/src/utf8_codecvt_facet.cpp
Vladimir Prus 9bd7193660 Make program_options compile on IBM compiler.
Patch from Matthias Troyer.


[SVN r26096]
2004-11-03 07:11:45 +00:00

365 lines
11 KiB
C++

/////////1/////////2/////////3/////////4/////////5/////////6/////////7/////////8
// utf8_codecvt_facet.cpp
// Copyright © 2001 Ronald Garcia, Indiana University (garcia@osl.iu.edu)
// Andrew Lumsdaine, Indiana University (lums@osl.iu.edu).
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <cstdlib> // for multi-byte converson routines
#include <cassert>
#define BOOST_PROGRAM_OPTIONS_SOURCE
#include <boost/program_options/detail/utf8_codecvt_facet.hpp>
#include <boost/limits.hpp>
#include <boost/config.hpp>
// If we don't have wstring, then Unicode support
// is not available anyway, so we don't need to even
// compiler this file. This also fixes the problem
// with mingw, which can compile this file, but will
// generate link error when building DLL.
#ifndef BOOST_NO_STD_WSTRING
namespace boost { namespace program_options { namespace detail {
/////////1/////////2/////////3/////////4/////////5/////////6/////////7/////////8
// implementation for wchar_t
// Translate incoming UTF-8 into UCS-4
std::codecvt_base::result utf8_codecvt_facet_wchar_t::do_in(
mbstate_t& state,
const char * from,
const char * from_end,
const char * & from_next,
wchar_t * to,
wchar_t * to_end,
wchar_t * & to_next
) const {
// Basic algorithm: The first octet determines how many
// octets total make up the UCS-4 character. The remaining
// "continuing octets" all begin with "10". To convert, subtract
// the amount that specifies the number of octets from the first
// octet. Subtract 0x80 (1000 0000) from each continuing octet,
// then mash the whole lot together. Note that each continuing
// octet only uses 6 bits as unique values, so only shift by
// multiples of 6 to combine.
while (from != from_end && to != to_end) {
// Error checking on the first octet
if (invalid_leading_octet(*from)){
from_next = from;
to_next = to;
return std::codecvt_base::error;
}
// The first octet is adjusted by a value dependent upon
// the number of "continuing octets" encoding the character
const int cont_octet_count = get_cont_octet_count(*from);
const wchar_t octet1_modifier_table[] = {
0x00, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc
};
// The unsigned char conversion is necessary in case char is
// signed (I learned this the hard way)
wchar_t ucs_result =
(unsigned char)(*from++) - octet1_modifier_table[cont_octet_count];
// Invariants :
// 1) At the start of the loop, 'i' continuing characters have been
// processed
// 2) *from points to the next continuing character to be processed.
int i = 0;
while(i != cont_octet_count && from != from_end) {
// Error checking on continuing characters
if (invalid_continuing_octet(*from)) {
from_next = from;
to_next = to;
return std::codecvt_base::error;
}
ucs_result *= (1 << 6);
// each continuing character has an extra (10xxxxxx)b attached to
// it that must be removed.
ucs_result += (unsigned char)(*from++) - 0x80;
++i;
}
// If the buffer ends with an incomplete unicode character...
if (from == from_end && i != cont_octet_count) {
// rewind "from" to before the current character translation
from_next = from - (i+1);
to_next = to;
return std::codecvt_base::partial;
}
*to++ = ucs_result;
}
from_next = from;
to_next = to;
// Were we done converting or did we run out of destination space?
if(from == from_end) return std::codecvt_base::ok;
else return std::codecvt_base::partial;
}
std::codecvt_base::result utf8_codecvt_facet_wchar_t::do_out(
mbstate_t& state,
const wchar_t * from,
const wchar_t * from_end,
const wchar_t * & from_next,
char * to,
char * to_end,
char * & to_next
) const
{
// RG - consider merging this table with the other one
const wchar_t octet1_modifier_table[] = {
0x00, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc
};
wchar_t max_wchar = std::numeric_limits<wchar_t>::max();
while (from != from_end && to != to_end) {
// Check for invalid UCS-4 character
if (*from > max_wchar) {
from_next = from;
to_next = to;
return std::codecvt_base::error;
}
int cont_octet_count = get_cont_octet_out_count(*from);
// RG - comment this formula better
int shift_exponent = (cont_octet_count) * 6;
// Process the first character
*to++ = octet1_modifier_table[cont_octet_count] +
(unsigned char)(*from / (1 << shift_exponent));
// Process the continuation characters
// Invariants: At the start of the loop:
// 1) 'i' continuing octets have been generated
// 2) '*to' points to the next location to place an octet
// 3) shift_exponent is 6 more than needed for the next octet
int i = 0;
while (i != cont_octet_count && to != to_end) {
shift_exponent -= 6;
*to++ = 0x80 + ((*from / (1 << shift_exponent)) % (1 << 6));
++i;
}
// If we filled up the out buffer before encoding the character
if(to == to_end && i != cont_octet_count) {
from_next = from;
to_next = to - (i+1);
return std::codecvt_base::partial;
}
*from++;
}
from_next = from;
to_next = to;
// Were we done or did we run out of destination space
if(from == from_end) return std::codecvt_base::ok;
else return std::codecvt_base::partial;
}
// How many char objects can I process to get <= max_limit
// wchar_t objects?
int utf8_codecvt_facet_wchar_t::do_length(
mbstate_t &,
const char * from,
const char * from_end,
std::size_t max_limit
#if BOOST_WORKAROUND(__IBMCPP__, BOOST_TESTED_AT(600))
) const throw()
#else
) const
#endif
{
// RG - this code is confusing! I need a better way to express it.
// and test cases.
// Invariants:
// 1) last_octet_count has the size of the last measured character
// 2) char_count holds the number of characters shown to fit
// within the bounds so far (no greater than max_limit)
// 3) from_next points to the octet 'last_octet_count' before the
// last measured character.
int last_octet_count=0;
std::size_t char_count = 0;
const char* from_next = from;
// Use "<" because the buffer may represent incomplete characters
while (from_next+last_octet_count <= from_end && char_count <= max_limit) {
from_next += last_octet_count;
last_octet_count = (get_octet_count(*from_next));
++char_count;
}
return from_next-from_end;
}
unsigned int utf8_codecvt_facet_wchar_t::get_octet_count(
unsigned char lead_octet
){
// if the 0-bit (MSB) is 0, then 1 character
if (lead_octet <= 0x7f) return 1;
// Otherwise the count number of consecutive 1 bits starting at MSB
// assert(0xc0 <= lead_octet && lead_octet <= 0xfd);
if (0xc0 <= lead_octet && lead_octet <= 0xdf) return 2;
else if (0xe0 <= lead_octet && lead_octet <= 0xef) return 3;
else if (0xf0 <= lead_octet && lead_octet <= 0xf7) return 4;
else if (0xf8 <= lead_octet && lead_octet <= 0xfb) return 5;
else return 6;
}
}}}
namespace {
template<std::size_t s>
int get_cont_octet_out_count_impl(wchar_t word){
if (word < 0x80) {
return 0;
}
if (word < 0x800) {
return 1;
}
return 2;
}
template<>
int get_cont_octet_out_count_impl<4>(wchar_t word){
if (word < 0x80) {
return 0;
}
if (word < 0x800) {
return 1;
}
if (word < 0x10000) {
return 2;
}
if (word < 0x200000) {
return 3;
}
if (word < 0x4000000) {
return 4;
}
return 5;
}
} // namespace anonymous
namespace boost { namespace program_options { namespace detail {
// How many "continuing octets" will be needed for this word
// == total octets - 1.
int utf8_codecvt_facet_wchar_t::get_cont_octet_out_count(
wchar_t word
) const {
return get_cont_octet_out_count_impl<sizeof(wchar_t)>(word);
}
}}}
#if 0 // not used?
/////////1/////////2/////////3/////////4/////////5/////////6/////////7/////////8
// implementation for char
std::codecvt_base::result utf8_codecvt_facet_char::do_in(
mbstate_t & state,
const char * from,
const char * from_end,
const char * & from_next,
char * to,
char * to_end,
char * & to_next
) const
{
while(from_next < from_end){
wchar_t w;
wchar_t *wnext = & w;
utf8_codecvt_facet_wchar_t::result ucs4_result;
ucs4_result = base_class::do_in(
state,
from, from_end, from_next,
wnext, wnext + 1, wnext
);
if(codecvt_base::ok != ucs4_result)
return ucs4_result;
// if the conversion succeeds.
int length = std::wctomb(to_next, w);
// assert(-1 != length);
to_next += length;
}
return codecvt_base::ok;
}
std::codecvt_base::result utf8_codecvt_facet_char::do_out(
std::mbstate_t & state,
const char * from,
const char * from_end,
const char * & from_next,
char * to,
char * to_end,
char * & to_next
) const
{
while(from_next < from_end){
wchar_t w;
int result = std::mbtowc(&w, from_next, MB_LENGTH_MAX);
// assert(-1 != result);
from_next += result;
utf8_codecvt_facet_wchar_t::result ucs4_result;
const wchar_t *wptr = & w;
ucs4_result = base_class::do_out(
state,
wptr, wptr+1, wptr,
to_next, to_end, to_next
);
if(codecvt_base::ok != ucs4_result)
return ucs4_result;
}
return codecvt_base::ok;
}
// How many bytes objects can I process to get <= max_limit
// char objects?
int utf8_codecvt_facet_char::do_length(
const mbstate_t & initial_state,
const char * from_next,
const char * from_end,
std::size_t max_limit
) const
{
int total_length = 0;
const char *from = from_next;
mbstate_t state = initial_state;
while(from_next < from_end){
wchar_t w;
wchar_t *wnext = & w;
utf8_codecvt_facet_wchar_t::result ucs4_result;
ucs4_result = base_class::do_in(
state,
from_next, from_end, from_next,
wnext, wnext + 1, wnext
);
if(codecvt_base::ok != ucs4_result)
break;
char carray[MB_LENGTH_MAX];
std::size_t count = wctomb(carray, w);
if(count > max_limit)
break;
max_limit -= count;
total_length = from_next - from;
}
return total_length;
}
}
#endif
#endif