Files
parameter/doc/html/index.html
CromwellEnage 1626f23369 Fix argument composition tutorial documentation
The compose.cpp test program does not use LIBS_PARAMETER_TEST_COMPILE_FAILURE_2 or LIBS_PARAMETER_TEST_COMPILE_FAILURE_3.
2018-11-29 14:30:27 -05:00

2828 lines
103 KiB
HTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator"
content="Docutils 0.7: http://docutils.sourceforge.net/" />
<link rel="stylesheet" href="rst.css" type="text/css" />
<title>The Boost Parameter Library</title>
</head>
<body>
<div class="document" id="the-boost-parameter-library">
<h1 class="title">The Boost Parameter Library</h1>
<p><a class="reference external" href="../../../../index.htm"><img alt="Boost"
src="../../../../boost.png" /></a></p>
<hr class="docutils" />
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field">
<th class="field-name">Abstract:</th>
<td class="field-body">
<p class="first">Use this library to write functions and class templates that
can accept arguments by name:</p>
<pre class="literal-block">
new_window(
&quot;alert&quot;
, <strong>_width=10</strong>
, <strong>_titlebar=false</strong>
);
smart_ptr&lt;
Foo
, <strong>deleter&lt;Deallocate&lt;Foo&gt; &gt;</strong>
, <strong>copy_policy&lt;DeepCopy&gt;</strong>
&gt; p(new Foo);
</pre>
<p class="last">Since named arguments can be passed in any order, they are
especially useful when a function or template has more than one parameter with
a useful default value. The library also supports <em>deduced</em>
parameters: that is to say, parameters whose identity can be deduced from
their types.</p>
</td>
</tr>
</tbody>
</table>
<!-- @jam_prefix.append('''
project test : requirements <include>. <implicit-dependency>/boost//headers ;
''') -->
<!-- @example.prepend('''
#include <boost/parameter.hpp>
namespace test
{
BOOST_PARAMETER_NAME(title)
BOOST_PARAMETER_NAME(width)
BOOST_PARAMETER_NAME(titlebar)
BOOST_PARAMETER_FUNCTION(
(int), new_window, tag, (required (title,*)(width,*)(titlebar,*))
)
{
return 0;
}
BOOST_PARAMETER_TEMPLATE_KEYWORD(deleter)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copy_policy)
template <typename T>
struct Deallocate
{
};
struct DeepCopy
{
};
namespace parameter = boost::parameter;
struct Foo
{
};
template <typename T, typename A0, typename A1>
struct smart_ptr
{
smart_ptr(Foo*);
};
}
using namespace test;
int x =
'''); -->
<!-- @test('compile') -->
<hr class="docutils" />
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field">
<th class="field-name">Authors:</th>
<td class="field-body">David Abrahams, Daniel Wallin</td>
</tr>
<tr class="field">
<th class="field-name">Contact:</th>
<td class="field-body"><a class="reference external"
href="mailto:dave&#64;boost-consulting.com">dave&#64;boost-consulting.com</a>,
<a class="reference external"
href="mailto:daniel&#64;boostpro.com">daniel&#64;boostpro.com</a></td>
</tr>
<tr class="field">
<th class="field-name">organization:</th>
<td class="field-body"><a class="reference external"
href="http://www.boostpro.com/">BoostPro Computing</a></td>
</tr>
<tr class="field">
<th class="field-name">date:</th>
<td class="field-body">$Date: 2005/07/17 19:53:01 $</td>
</tr>
<tr class="field">
<th class="field-name">copyright:</th>
<td class="field-body">Copyright David Abrahams, Daniel Wallin
2005-2009. Distributed under the Boost Software License, Version 1.0. (See
accompanying file LICENSE_1_0.txt or copy at <a class="reference external"
href="http://www.boost.org/LICENSE_1_0.txt"
>http://www.boost.org/LICENSE_1_0.txt</a>)</td>
</tr>
</tbody>
</table>
<hr class="docutils" />
<p>[Note: this tutorial does not cover all details of the library. Please see
also the <a class="reference external" href="reference.html">reference
documentation</a>]</p>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><strong>Table of Contents</strong></p>
<ul class="auto-toc simple">
<li><a class="reference internal" href="#motivation"
id="id22">1&nbsp;&nbsp;&nbsp;Motivation</a>
<ul class="auto-toc">
<li><a class="reference internal" href="#named-function-parameters"
id="id23">1.1&nbsp;&nbsp;&nbsp;Named Function Parameters</a></li>
<li><a class="reference internal" href="#deduced-function-parameters"
id="id24">1.2&nbsp;&nbsp;&nbsp;Deduced Function Parameters</a></li>
<li><a class="reference internal" href="#class-template-parameter-support"
id="id25">1.3&nbsp;&nbsp;&nbsp;Class Template Parameter Support</a></li>
</ul>
</li>
<li><a class="reference internal" href="#tutorial"
id="id26">2&nbsp;&nbsp;&nbsp;Tutorial</a>
<ul class="auto-toc">
<li><a class="reference internal" href="#parameter-enabled-functions"
id="id27">2.1&nbsp;&nbsp;&nbsp;Parameter-Enabled Functions</a></li>
<li><a class="reference internal" href="#parameter-enabled-member-functions"
id="id28">2.2&nbsp;&nbsp;&nbsp;Parameter-Enabled Member Functions</a></li>
<li><a class="reference internal" href="#parameter-enabled-function-call-ops"
id="id29">2.3&nbsp;&nbsp;&nbsp;Parameter-Enabled Function Call
Operators</a></li>
<li><a class="reference internal" href="#parameter-enabled-constructors"
id="id30">2.4&nbsp;&nbsp;&nbsp;Parameter-Enabled Constructors</a></li>
<li><a class="reference internal" href="#parameter-enabled-class-templates"
id="id31">2.5&nbsp;&nbsp;&nbsp;Parameter-Enabled Class Templates</a></li>
</ul>
</li>
<li><a class="reference internal" href="#advanced-topics"
id="id32">3&nbsp;&nbsp;&nbsp;Advanced Topics</a><ul class="auto-toc">
<li><a class="reference internal" href="#fine-grained-name-control"
id="id33">3.1&nbsp;&nbsp;&nbsp;Fine-Grained Name Control</a></li>
<li><a class="reference internal" href="#more-argumentpacks"
id="id34">3.2&nbsp;&nbsp;&nbsp;More
<span class="concept">ArgumentPack</span>s</a></li>
</ul>
</li>
<li><a class="reference internal" href="#best-practices"
id="id35">4&nbsp;&nbsp;&nbsp;Best Practices</a><ul class="auto-toc">
<li><a class="reference internal" href="#keyword-naming"
id="id36">4.1&nbsp;&nbsp;&nbsp;Keyword Naming</a></li>
<li><a class="reference internal" href="#namespaces"
id="id37">4.2&nbsp;&nbsp;&nbsp;Namespaces</a></li>
<li><a class="reference internal" href="#documentation"
id="id38">4.3&nbsp;&nbsp;&nbsp;Documentation</a></li>
</ul>
</li>
<li><a class="reference internal" href="#portability-considerations"
id="id39">5&nbsp;&nbsp;&nbsp;Portability Considerations</a>
<ul class="auto-toc">
<li><a class="reference internal" href="#perfect-forwarding-support"
id="id40">5.1&nbsp;&nbsp;&nbsp;Perfect Forwarding Support</a></li>
<li><a class="reference internal" href="#no-sfinae-support"
id="id41">5.2&nbsp;&nbsp;&nbsp;No SFINAE Support</a></li>
<li><a class="reference internal" href="#no-support-for-result-of"
id="id42">5.3&nbsp;&nbsp;&nbsp;No Support for
<tt class="docutils literal">result_of</tt></a></li>
<li><a class="reference internal"
href="#compiler-can-t-see-references-in-unnamed-namespace"
id="id43">5.4&nbsp;&nbsp;&nbsp;Compiler Can't See References In Unnamed
Namespace</a></li>
</ul>
</li>
<li><a class="reference internal" href="#python-binding"
id="id44">6&nbsp;&nbsp;&nbsp;Python Binding</a></li>
<li><a class="reference internal" href="#reference"
id="id45">7&nbsp;&nbsp;&nbsp;Reference</a></li>
<li><a class="reference internal" href="#glossary"
id="id46">8&nbsp;&nbsp;&nbsp;Glossary</a></li>
<li><a class="reference internal" href="#acknowledgements"
id="id47">9&nbsp;&nbsp;&nbsp;Acknowledgements</a></li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="motivation">
<h1><a class="toc-backref" href="#id22">1&nbsp;&nbsp;&nbsp;Motivation</a></h1>
<p>In C++, <a class="reference internal" href="#arguments">arguments</a> are
normally given meaning by their positions with respect to a
<a class="reference internal" href="#parameter">parameter</a> list: the first
argument passed maps onto the first parameter in a function's definition, and
so on. That protocol is fine when there is at most one parameter with a
default value, but when there are even a few useful defaults, the positional
interface becomes burdensome:</p>
<ul>
<li><div class="first compound">
<p class="compound-first">Since an argument's meaning is given by its
position, we have to choose an (often arbitrary) order for parameters with
default values, making some combinations of defaults unusable:</p>
<pre class="compound-middle literal-block">
window* new_window(
char const* name
, <strong>int border_width = default_border_width</strong>
, bool movable = true
, bool initially_visible = true
);
bool const movability = false;
window* w = new_window(&quot;alert box&quot;, movability);
</pre>
<p class="compound-middle">In the example above we wanted to make an
unmoveable window with a default
<tt class="docutils literal">border_width</tt>, but instead we got a moveable
window with a <tt class="docutils literal">border_width</tt> of zero. To get
the desired effect, we'd need to write:</p>
<pre class="compound-last literal-block">
window* w = new_window(
&quot;alert box&quot;, <strong>default_border_width</strong>, movability
);
</pre>
</div>
</li>
<li><div class="first compound">
<p class="compound-first">It can become difficult for readers to understand
the meaning of arguments at the call site:</p>
<pre class="compound-middle literal-block">
window* w = new_window(&quot;alert&quot;, 1, true, false);
</pre>
<p class="compound-last">Is this window moveable and initially invisible, or
unmoveable and initially visible? The reader needs to remember the order of
arguments to be sure.</p>
</div>
</li>
<li><p class="first">The author of the call may not remember the order of the
arguments either, leading to hard-to-find bugs.</p></li>
</ul>
<!-- @ignore(3) -->
<div class="section" id="named-function-parameters">
<h2><a class="toc-backref" href="#id23">1.1&nbsp;&nbsp;&nbsp;Named Function
Parameters</a></h2>
<div class="compound">
<p class="compound-first">This library addresses the problems outlined above
by associating each parameter name with a keyword object. Now users can
identify arguments by name, rather than by position:</p>
<pre class="compound-last literal-block">
window* w = new_window(
&quot;alert box&quot;
, <strong>movable_=</strong>false
); // OK!
</pre>
</div>
<!-- @ignore() -->
</div>
<div class="section" id="deduced-function-parameters">
<h2><a class="toc-backref" href="#id24">1.2&nbsp;&nbsp;&nbsp;Deduced Function
Parameters</a></h2>
<div class="compound">
<p class="compound-first">A <strong>deduced parameter</strong> can be passed
in any position <em>without</em> supplying an explicit parameter name. It's
not uncommon for a function to have parameters that can be uniquely identified
based on the types of arguments passed. The
<tt class="docutils literal">name</tt> parameter to
<tt class="docutils literal">new_window</tt> is one such example. None of the
other arguments, if valid, can reasonably be converted to a
<tt class="docutils literal">char const*</tt>. With a deduced parameter
interface, we could pass the window name in <em>any</em> argument position
without causing ambiguity:</p>
<pre class="compound-middle literal-block">
window* w = new_window(
movable_=false
, <strong>&quot;alert box&quot;</strong>
); // OK!
window* w = new_window(
<strong>&quot;alert box&quot;</strong>
, movable_=false
); // OK!
</pre>
<p class="compound-last">Appropriately used, a deduced parameter interface can
free the user of the burden of even remembering the formal parameter
names.</p>
</div>
<!-- @ignore() -->
</div>
<div class="section" id="class-template-parameter-support">
<h2><a class="toc-backref" href="#id25">1.3&nbsp;&nbsp;&nbsp;Class Template
Parameter Support</a></h2>
<div class="compound">
<p class="compound-first">The reasoning we've given for named and deduced
parameter interfaces applies equally well to class templates as it does to
functions. Using the Parameter library, we can create interfaces that allow
template arguments (in this case <tt class="docutils literal">shared</tt> and
<tt class="docutils literal">Client</tt>) to be explicitly named, like
this:</p>
<pre class="compound-middle literal-block">
smart_ptr&lt;
<strong>ownership&lt;shared&gt;</strong>
, <strong>value_type&lt;Client&gt;</strong>
&gt; p;
</pre>
<p class="compound-middle">The syntax for passing named template arguments is
not quite as natural as it is for function arguments (ideally, we'd be able to
write <tt class="docutils literal"><span class="pre">smart_ptr&lt;ownership =
shared, …&gt;</span></tt>). This small syntactic
deficiency makes deduced parameters an especially big win when
used with class templates:</p>
<pre class="compound-last literal-block">
// <em>p and q could be equivalent, given a deduced</em>
// <em>parameter interface.</em>
smart_ptr&lt;<strong>shared</strong>, <strong>Client</strong>&gt; p;
smart_ptr&lt;<strong>Client</strong>, <strong>shared</strong>&gt; q;
</pre>
</div>
<!-- @ignore(2) -->
</div>
</div>
<div class="section" id="tutorial">
<h1><a class="toc-backref" href="#id26">2&nbsp;&nbsp;&nbsp;Tutorial</a></h1>
<p>This tutorial shows all the basics—how to build both named- and
deduced-parameter interfaces to function templates and class templates—and
several more advanced idioms as well.</p>
<div class="section" id="parameter-enabled-functions">
<h2><a class="toc-backref" href="#id27">2.1&nbsp;&nbsp;&nbsp;Parameter-Enabled
Functions</a></h2>
<p>In this section we'll show how the Parameter library can be used to build
an expressive interface to the <a class="reference external"
href="../../../graph/doc/index.html">Boost Graph library</a>'s
<a class="reference external"
href="../../../graph/doc/depth_first_search.html"><tt class="docutils
literal">depth_first_search</tt></a> algorithm.<a class="footnote-reference"
href="#old-interface" id="id3"><sup>1</sup></a></p>
<!-- Revisit this
After laying some groundwork and describing the algorithm's abstract
interface, we'll show you how to build a basic implementation with keyword
support. Then we'll add support for default arguments and we'll gradually
refine the implementation with syntax improvements. Finally we'll show how
to streamline the implementation of named parameter interfaces, improve their
participation in overload resolution, and optimize their runtime efficiency.
-->
<div class="section" id="headers-and-namespaces">
<h3>2.1.1&nbsp;&nbsp;&nbsp;Headers And Namespaces</h3>
<p>Most components of the Parameter library are declared in a header named for
the component. For example,</p>
<pre class="literal-block">
#include &lt;boost/parameter/keyword.hpp&gt;
</pre>
<p>will ensure <tt class="docutils literal"><span
class="pre">boost::parameter::keyword</span></tt> is known to the
compiler. There is also a combined header,
<tt class="docutils literal">boost/parameter.hpp</tt>, that includes most of
the library's components. For the the rest of this tutorial, unless we say
otherwise, you can use the rule above to figure out which header
to <tt class="docutils literal">#include</tt> to access any given component of
the library.</p>
<!-- @example.append('''
using boost::parameter::keyword;
''') -->
<!-- @test('compile') -->
<p>Also, the examples below will also be written as if the namespace alias</p>
<pre class="literal-block">
namespace parameter = boost::parameter;
</pre>
<!-- @ignore() -->
<p>has been declared: we'll write <tt class="docutils literal"><span
class="pre">parameter::xxx</span></tt> instead of
<tt class="docutils literal"><span
class="pre">boost::parameter::xxx</span></tt>.</p>
</div>
<div class="section" id="the-abstract-interface-to-dfs">
<h3>2.1.2&nbsp;&nbsp;&nbsp;The Abstract Interface to
<tt class="docutils literal">depth_first_search</tt></h3>
<p>The Graph library's <tt class="docutils literal">depth_first_search</tt>
algorithm is a generic function accepting from one to four arguments by
reference. If all arguments were required, its signature might be as
follows:</p>
<pre class="literal-block">
template &lt;
typename Graph
, typename DFSVisitor
, typename Index
, typename ColorMap
&gt;
void
depth_first_search(
Graph const&amp; graph
, DFSVisitor visitor
, typename graph_traits&lt;Graph&gt;::vertex_descriptor root_vertex
, IndexMap index_map
, ColorMap&amp; color
);
</pre>
<!-- @ignore() -->
<p>However, most of the parameters have a useful default value, as shown in
the table below.</p>
<table border="1" class="docutils" id="default-expressions">
<span id="parameter-table"></span>
<caption><tt class="docutils literal">depth_first_search</tt>
Parameters</caption>
<colgroup>
<col width="17%" />
<col width="11%" />
<col width="35%" />
<col width="37%" />
</colgroup>
<thead valign="bottom">
<tr><th class="head">Parameter Name</th>
<th class="head">Dataflow</th>
<th class="head">Type</th>
<th class="head">Default Value (if any)</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="docutils literal">graph</tt></td>
<td>in</td>
<td>Model of <a class="reference external"
href="../../../graph/doc/IncidenceGraph.html"><span class="concept">Incidence
Graph</span></a> and <a class="reference external"
href="../../../graph/doc/VertexListGraph.html"><span class="concept">Vertex
List Graph</span></a></td>
<td>none - this argument is required.</td>
</tr>
<tr><td><tt class="docutils literal">visitor</tt></td>
<td>in</td>
<td>Model of <a class="reference external"
href="../../../graph/doc/DFSVisitor.html"><span class="concept">DFS
Visitor</span></a></td>
<td><tt class="docutils literal"><span
class="pre">boost::dfs_visitor&lt;&gt;()</span></tt></td>
</tr>
<tr><td><tt class="docutils literal">root_vertex</tt></td>
<td>in</td>
<td><tt class="docutils literal">graph</tt>'s vertex descriptor type.</td>
<td><tt class="docutils literal"><span
class="pre">*vertices(graph).first</span></tt></td>
</tr>
<tr><td><tt class="docutils literal">index_map</tt></td>
<td>in</td>
<td>Model of <a class="reference external"
href="../../../property_map/doc/ReadablePropertyMap.html"><span
class="concept">Readable Property Map</span></a> with key type :=
<tt class="docutils literal">graph</tt>'s vertex descriptor and value type an
integer type.</td>
<td><tt class="docutils literal"><span class="pre">get(boost::vertex_index,
graph)</span></tt></td>
</tr>
<tr><td><tt class="docutils literal">color_map</tt></td>
<td>in / out</td>
<td>Model of <a class="reference external"
href="../../../property_map/doc/ReadWritePropertyMap.html"><span
class="concept">Read/Write Property Map</span></a> with key type :=
<tt class="docutils literal">graph</tt>'s vertex descriptor type.</td>
<td>an <tt class="docutils literal">iterator_property_map</tt> created from
a <tt class="docutils literal"><span class="pre">std::vector</span></tt> of
<tt class="docutils literal">default_color_type</tt> of size
<tt class="docutils literal">num_vertices(graph)</tt> and using
<tt class="docutils literal">index_map</tt> for the index map.</td>
</tr>
</tbody>
</table>
<p>Don't be intimidated by the information in the second and third columns
above. For the purposes of this exercise, you don't need to understand them
in detail.</p>
</div>
<div class="section" id="defining-the-keywords">
<h3>2.1.3&nbsp;&nbsp;&nbsp;Defining the Keywords</h3>
<p>The point of this exercise is to make it possible to call
<tt class="docutils literal">depth_first_search</tt> with named arguments,
leaving out any arguments for which the default is appropriate:</p>
<pre class="literal-block">
graphs::depth_first_search(g, <strong>color_map_=my_color_map</strong>);
</pre>
<!-- @ignore() -->
<p>To make that syntax legal, there needs to be an object called
<tt class="docutils literal">color_map_</tt>” whose assignment operator can
accept a <tt class="docutils literal">my_color_map</tt> argument. In this
step we'll create one such <strong>keyword object</strong> for each
parameter. Each keyword object will be identified by a unique
<strong>keyword tag type</strong>.</p>
<!-- Revisit this
We're going to define our interface in namespace ``graphs``. Since users need
access to the keyword objects, but not the tag types, we'll define the keyword
objects so they're accessible through ``graphs``, and we'll hide the tag types
away in a nested namespace, ``graphs::tag``. The library provides a
convenient macro for that purpose.
-->
<p>We're going to define our interface in namespace
<tt class="docutils literal">graphs</tt>. The library provides a convenient
macro for defining keyword objects:</p>
<pre class="literal-block">
#include &lt;boost/parameter/name.hpp&gt;
namespace graphs {
BOOST_PARAMETER_NAME(graph) // Note: no semicolon
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
}
</pre>
<!-- @test('compile') -->
<p>The declaration of the <tt class="docutils literal">graph</tt> keyword you
see here is equivalent to:</p>
<pre class="literal-block">
namespace graphs {
namespace tag {
// keyword tag type
struct graph
{
typedef boost::parameter::forward_reference qualifier;
};
}
namespace // unnamed
{
// A reference to the keyword object
boost::parameter::keyword&lt;tag::graph&gt;&amp; _graph
= boost::parameter::keyword&lt;tag::graph&gt;::instance;
}
}
</pre>
<!-- @example.prepend('#include <boost/parameter/keyword.hpp>') -->
<!-- @test('compile') -->
<p>It defines a <em>keyword tag type</em> named
<tt class="docutils literal"><span class="pre">tag::graph</span></tt> and a
<em>keyword object</em> reference named
<tt class="docutils literal">_graph</tt>.</p>
<p>This “fancy dance” involving an unnamed namespace and references is all
done to avoid violating the One Definition Rule (ODR)
<a class="footnote-reference" href="#odr" id="id5"><sup>2</sup></a> when the
named parameter interface is used by function templates that are instantiated
in multiple translation units (MSVC6.x users see <a class="reference internal"
href="#compiler-can-t-see-references-in-unnamed-namespace">this note</a>).</p>
</div>
<div class="section" id="writing-the-function">
<h3>2.1.4&nbsp;&nbsp;&nbsp;Writing the Function</h3>
<p>Now that we have our keywords defined, the function template definition
follows a simple pattern using the
<tt class="docutils literal">BOOST_PARAMETER_FUNCTION</tt> macro:</p>
<pre class="literal-block">
#include &lt;boost/parameter/preprocessor.hpp&gt;
namespace graphs {
BOOST_PARAMETER_FUNCTION(
(void), // 1. parenthesized return type
depth_first_search, // 2. name of the function template
tag, // 3. namespace of tag types
(required (graph, *) ) // 4. one required parameter, and
(optional // four optional parameters,
// with defaults
(visitor, *, boost::dfs_visitor&lt;&gt;())
(root_vertex, *, *vertices(graph).first)
(index_map, *, get(boost::vertex_index,graph))
(color_map, *,
default_color_map(num_vertices(graph), index_map)
)
)
)
{
// ... body of function goes here...
// use graph, visitor, index_map, and color_map
}
}
</pre>
<!-- @example.prepend('''
#include <boost/parameter/name.hpp>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(in(root_vertex))
BOOST_PARAMETER_NAME(in(index_map))
BOOST_PARAMETER_NAME(in_out(color_map))
namespace boost {
template <typename T = int>
struct dfs_visitor
{
};
int vertex_index = 0;
}
''') -->
<!-- @test('compile') -->
<p>The arguments to <tt class="docutils literal">BOOST_PARAMETER_FUNCTION</tt>
are:</p>
<ol class="arabic simple">
<li>The return type of the resulting function template. Parentheses around
the return type prevent any commas it might contain from confusing the
preprocessor, and are always required.</li>
<li>The name of the resulting function template.</li>
<li>The name of a namespace where we can find tag types whose names match the
function's parameter names.</li>
<li>The function signature.</li>
</ol>
</div>
<div class="section" id="function-signatures">
<h3>2.1.5&nbsp;&nbsp;&nbsp;Function Signatures</h3>
<p>Function signatures are described as one or two adjacent parenthesized
terms (a <a class="reference external"
href="../../../preprocessor/doc/index.html">Boost.Preprocessor</a>
<a class="reference external"
href="http://boost-consulting.com/mplbook/preprocessor.html#sequences">
sequence</a>) describing the function's parameters in the order in which
they'd be expected if passed positionally. Any required parameters must come
first, but the <tt class="docutils literal">(required … )</tt> clause can be
omitted when all the parameters are optional.</p>
<div class="section" id="required-parameters">
<h4>2.1.5.1&nbsp;&nbsp;&nbsp;Required Parameters</h4>
<div class="compound">
<p class="compound-first">Required parameters are given first—nested in a
<tt class="docutils literal">(required … )</tt> clause—as a series of
two-element tuples describing each parameter name and any requirements on the
argument type. In this case there is only a single required parameter, so
there's just a single tuple:</p>
<pre class="compound-middle literal-block">
(required <strong>(graph, *)</strong> )
</pre>
<p class="compound-last">Since
<tt class="docutils literal">depth_first_search</tt> doesn't require any
particular type for its <tt class="docutils literal">graph</tt> parameter, we
use an asterix to indicate that any type is allowed. Required parameters must
always precede any optional parameters in a signature, but if there are
<em>no</em> required parameters, the
<tt class="docutils literal">(required … )</tt> clause can be omitted
entirely.</p>
</div>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_FUNCTION((void), f, tag,
''') -->
<!-- @example.append(') {}') -->
<!-- @test('compile') -->
</div>
<div class="section" id="optional-parameters">
<h4>2.1.5.2&nbsp;&nbsp;&nbsp;Optional Parameters</h4>
<div class="compound">
<p class="compound-first">Optional parameters—nested in an
<tt class="docutils literal">(optional … )</tt> clause—are given as a series
of adjacent <em>three</em>-element tuples describing the parameter name, any
requirements on the argument type, <em>and</em> and an expression representing
the parameter's default value:</p>
<pre class="compound-last literal-block">
(optional
<strong>(visitor, *, boost::dfs_visitor&lt;&gt;())
(root_vertex, *, *vertices(graph).first)
(index_map, *, get(boost::vertex_index,graph))
(color_map, *,
default_color_map(num_vertices(graph), index_map)
)</strong>
)
</pre>
</div>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
namespace boost {
int vertex_index = 0;
template <typename T = int>
struct dfs_visitor
{
};
}
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(in(root_vertex))
BOOST_PARAMETER_NAME(in(index_map))
BOOST_PARAMETER_NAME(in_out(color_map))
BOOST_PARAMETER_FUNCTION((void), f, tag,
(required (graph, *))
''') -->
<!-- @example.append(') {}') -->
<!-- @test('compile') -->
</div>
<div class="section" id="handling-out-parameters">
<h4>2.1.5.3&nbsp;&nbsp;&nbsp;Handling “In”, “Out”, “Consume / Move-From”, and
“Forward” Parameters</h4>
<div class="compound">
<p class="compound-first">By default, Boost.Parameter treats all parameters as
if they were <em>forward</em> <a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a>, which functions would take in by rvalue reference and only
<tt class="docutils literal">std::forward</tt> or
<tt class="docutils literal">boost::forward</tt> to other functions. Such
parameters can be <tt class="docutils literal">const</tt> lvalues, mutable
lvalues, <tt class="docutils literal">const</tt> rvalues, or mutable
rvalues. Therefore, the default configuration grants the most flexibility to
user code. However:</p>
<ul>
<li>Users can configure one or more parameters to be <em>in</em>
<a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a>, which can fall into the same categories as <em>forward</em>
<a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a> but are now passed by <tt class="docutils literal">const</tt>
lvalue reference and so must only be read from. Continuing from the previous
example, to indicate that <tt class="docutils literal">root_vertex</tt> and
<tt class="docutils literal">index_map</tt> are read-only, we wrap their names
in <tt class="docutils literal">in(…)</tt>.</li>
<li>Users can configure one or more parameters to be either <em>out</em>
<a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a>, which functions would strictly write to, or <em>in-out</em>
<a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a>, which functions would both read from and write to. Such
parameters can only be mutable lvalues. In the example, to indicate that
<tt class="docutils literal">color_map</tt> is read-write, we wrap its name in
<tt class="docutils literal">in_out(…)</tt>. Note that Boost.Parameter sees
no functional difference between <tt class="docutils literal">out(…)</tt> and
<tt class="docutils literal">in_out(…)</tt>, so you may choose whichever makes
your interfaces more self-documenting.</li>
<li>Users can configure one or more parameters to be <em>consume</em> or
<em>move-from</em> <a class="reference external" href=
"http://www.modernescpp.com/index.php/c-core-guidelines-how-to-pass-function-parameters"
>parameters</a>, which functions would take in by mutable rvalue reference and
<tt class="docutils literal">std::move</tt> or
<tt class="docutils literal">boost::move</tt> as the last access step. Such
parameters can only be mutable rvalues. Boost.Parameter supports wrapping the
corresponding names in <tt class="docutils literal">consume(…)</tt> or
<tt class="docutils literal">move_from(…)</tt>.</li>
</ul>
<pre class="compound-last literal-block">
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(<strong>in(root_vertex)</strong>)
BOOST_PARAMETER_NAME(<strong>in(index_map)</strong>)
BOOST_PARAMETER_NAME(<strong>in_out(color_map)</strong>)
</pre>
<p>In order to see what happens when parameters are bound to arguments that
violate their category constraints, attempt to compile the
<a class="reference external" href="../../test/compose.cpp"
>test/compose.cpp</a> test program with either the
<tt class="docutils literal">LIBS_PARAMETER_TEST_COMPILE_FAILURE_0</tt> macro
or the <tt class="docutils literal">LIBS_PARAMETER_TEST_COMPILE_FAILURE_1</tt>
macro <tt class="docutils literal">#defined</tt>. You should encounter a
compiler error caused by a specific constraint violation.</p>
</div>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
namespace boost {
int vertex_index = 0;
template <typename T = int>
struct dfs_visitor
{
};
}
''') -->
<!-- @example.append('''
BOOST_PARAMETER_FUNCTION((void), f, tag,
(required (graph, *))
(optional
(visitor, *, boost::dfs_visitor&lt;&gt;())
(root_vertex, *, *vertices(graph).first)
(index_map, *, get(boost::vertex_index, graph))
(color_map, *,
default_color_map(num_vertices(graph), index_map)
)
)
)
{
}
''') -->
<!-- @test('compile') -->
</div>
<div class="section" id="positional-arguments">
<h4>2.1.5.4&nbsp;&nbsp;&nbsp;Positional Arguments</h4>
<p>When arguments are passed positionally (without the use of keywords), they
will be mapped onto parameters in the order the parameters are given in the
signature, so for example in this call</p>
<pre class="literal-block">
graphs::depth_first_search(x, y);
</pre>
<!-- @ignore() -->
<p><tt class="docutils literal">x</tt> will always be interpreted as a graph
and <tt class="docutils literal">y</tt> will always be interpreted as a
visitor.</p>
</div>
<div class="section" id="default-expression-evaluation">
<h4>2.1.5.5&nbsp;&nbsp;&nbsp;Default Expression Evaluation</h4>
<div class="compound">
<p class="compound-first">Note that in our example, the value of the graph
parameter is used in the default expressions for
<tt class="docutils literal">root_vertex</tt>,
<tt class="docutils literal">index_map</tt>, and
<tt class="docutils literal">color_map</tt>.</p>
<pre class="compound-middle literal-block">
(required (<strong>graph</strong>, *) )
(optional
(visitor, *, boost::dfs_visitor&lt;&gt;())
(root_vertex, *, *vertices(<strong>graph</strong>).first)
(index_map, *, get(boost::vertex_index,<strong>graph</strong>))
(in_out(color_map), *,
default_color_map(num_vertices(<strong>graph</strong>), index_map)
)
)
</pre>
<!-- @ignore() -->
<p class="compound-last">A default expression is evaluated in the context of
all preceding parameters, so you can use any of their values by name.</p>
</div>
<div class="compound">
<p class="compound-first">A default expression is never evaluated—or even
instantiated—if an actual argument is passed for that parameter. We can
actually demonstrate that with our code so far by replacing the body of
<tt class="docutils literal">depth_first_search</tt> with something that
prints the arguments:</p>
<pre class="compound-middle literal-block">
#include &lt;boost/graph/depth_first_search.hpp&gt; // for dfs_visitor
BOOST_PARAMETER_FUNCTION(
(void), depth_first_search, tag
<em>…signature goes here…</em>
)
{
std::cout &lt;&lt; &quot;graph=&quot; &lt;&lt; graph;
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; &quot;visitor=&quot; &lt;&lt; visitor;
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; &quot;root_vertex=&quot; &lt;&lt; root_vertex;
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; &quot;index_map=&quot; &lt;&lt; index_map;
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; &quot;color_map=&quot; &lt;&lt; color_map;
std::cout &lt;&lt; std::endl;
}
int main()
{
depth_first_search(1, 2, 3, 4, 5);
depth_first_search(
&quot;1&quot;, '2', _color_map = '5',
_index_map = &quot;4&quot;, _root_vertex = &quot;3&quot;
);
}
</pre>
<p class="compound-last">Despite the fact that default expressions such as <tt
class="docutils literal"><span class="pre">vertices(graph).first</span></tt>
are ill-formed for the given <tt class="docutils literal">graph</tt>
arguments, both calls will compile, and each one will print exactly the same
thing.</p>
</div>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
''') -->
<!-- @example.replace_emphasis('''
, (required
(graph, *)
(visitor, *)
(root_vertex, *)
(index_map, *)
(color_map, *)
)
''') -->
<!-- @test('compile') -->
</div>
<div class="section" id="signature-matching-and-overloading">
<h4>2.1.5.6&nbsp;&nbsp;&nbsp;Signature Matching and Overloading</h4>
<p>In fact, the function signature is so general that any call to
<tt class="docutils literal">depth_first_search</tt> with fewer than five
arguments will match our function, provided we pass <em>something</em> for the
required <tt class="docutils literal">graph</tt> parameter. That might not
seem to be a problem at first; after all, if the arguments don't match the
requirements imposed by the implementation of
<tt class="docutils literal">depth_first_search</tt>, a compilation error
will occur later, when its body is instantiated.</p>
<p>There are at least three problems with very general function
signatures.</p>
<ol class="arabic simple">
<li>By the time our <tt class="docutils literal">depth_first_search</tt> is
instantiated, it has been selected as the best matching overload. Some other
<tt class="docutils literal">depth_first_search</tt> overload might've worked
had it been chosen instead. By the time we see a compilation error, there's
no chance to change that decision.</li>
<li>Even if there are no overloads, error messages generated at instantiation
time usually expose users to confusing implementation details. For example,
users might see references to names generated by
<tt class="docutils literal">BOOST_PARAMETER_FUNCTION</tt> such as
<tt class="docutils literal"><span
class="pre">graphs::detail::depth_first_search_with_named_params</span></tt>
(or worse—think of the kinds of errors you get from your STL
implementation when you make a mistake).<a class="footnote-reference"
href="#conceptcpp" id="id7"><sup>4</sup></a></li>
<li>The problems with exposing such permissive function template signatures
have been the subject of much discussion, especially in the presence of
<a class="reference external"
href="http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#225"
>unqualified calls</a>. If all we want is to
avoid unintentional argument-dependent lookup (ADL), we can isolate
<tt class="docutils literal">depth_first_search</tt> in a namespace containing
no types<a class="footnote-reference" href="#using" id="id8"><sup>6</sup></a>,
but suppose we <em>want</em> it to found via ADL?</li>
</ol>
<p>It's usually a good idea to prevent functions from being considered for
overload resolution when the passed argument types aren't appropriate. The
library already does this when the required
<tt class="docutils literal">graph</tt> parameter is not supplied, but we're
not likely to see a depth first search that doesn't take a graph to operate
on. Suppose, instead, that we found a different depth first search algorithm
that could work on graphs that don't model <a class="reference external"
href="../../../graph/doc/IncidenceGraph.html"><span class="concept">Incidence
Graph</span></a>? If we just added a simple overload, it would be
ambiguous:</p>
<pre class="literal-block">
// new overload
BOOST_PARAMETER_FUNCTION(
(void), depth_first_search, (tag), (required (graph,*))( … )
)
{
// new algorithm implementation
}
// ambiguous!
depth_first_search(boost::adjacency_list&lt;&gt;(), 2, &quot;hello&quot;);
</pre>
<!-- @ignore() -->
<div class="section" id="predicate-requirements">
<h5>2.1.5.6.1&nbsp;&nbsp;&nbsp;Predicate Requirements</h5>
<p>We really don't want the compiler to consider the original version of
<tt class="docutils literal">depth_first_search</tt> because the
<tt class="docutils literal">root_vertex</tt> argument,
<tt class="docutils literal">&quot;hello&quot;</tt>, doesn't meet the
<a class="reference internal" href="#parameter-table">requirement</a> that it
match the <tt class="docutils literal">graph</tt> parameter's vertex
descriptor type. Instead, this call should just invoke our new overload. To
take the original <tt class="docutils literal">depth_first_search</tt>
overload out of contention, we first encode this requirement as follows:</p>
<pre class="literal-block">
struct vertex_descriptor_predicate
{
template &lt;typename T, typename Args&gt;
struct apply
: boost::is_convertible&lt;
T
, typename boost::graph_traits&lt;
typename boost::parameter::value_type&lt;
Args
, graphs::graph
&gt;::type
&gt;::vertex_descriptor
&gt;
{
};
};
</pre>
<p>This encoding is an <a class="reference external"
href="../../../mpl/doc/refmanual/metafunction-class.html">MPL
Binary Metafunction Class</a>, a type with a nested
<tt class="docutils literal">apply</tt> metafunction that takes in two
template arguments. For the first template argument, Boost.Parameter will
pass in the type on which we will impose the requirement. For the second
template argument, Boost.Parameter will pass in the entire argument pack,
making it possible to extract the type of each of the other
<tt class="docutils literal">depth_first_search</tt> parameters via the
<tt class="docutils literal">value_type</tt> metafunction and the
corresponding keyword tag type. The result <tt class="docutils literal"
>type</tt> of the <tt class="docutils literal">apply</tt> metafunction will be
equivalent to <tt class="docutils literal">boost::mpl::true_</tt> if
<tt class="docutils literal">T</tt> fulfills our requirement as imposed by the
<tt class="docutils literal">boost::is_convertible</tt> statement; otherwise,
the result will be equivalent to
<tt class="docutils literal">boost::mpl::false_</tt>.</p>
<p>At this point, we can append the name of our metafunction class, in
parentheses, to the appropriate <tt class="docutils literal">*</tt> element of
the function signature.</p>
<pre class="literal-block">
(root_vertex
, *<strong>(vertex_descriptor_predicate)</strong>
, *vertices(graph).first
)
</pre>
<!-- @ignore() -->
<p>Now the original <tt class="docutils literal">depth_first_search</tt> will
only be called when the <tt class="docutils literal">root_vertex</tt> argument
can be converted to the graph's vertex descriptor type, and our example that
<em>was</em> ambiguous will smoothly call the new overload.</p>
<p>We can encode the requirements on other arguments using the same concept;
only the implementation of the nested <tt class="docutils literal">apply</tt>
metafunction needs to be tweaked for each argument. There's no space to give
a complete description of graph library details here, but suffice it to show
that the next few metafunction classes provide the necessary checks.</p>
<pre class="literal-block">
struct graph_predicate
{
template &lt;typename T, typename Args&gt;
struct apply
: boost::mpl::and_&lt;
boost::is_convertible&lt;
typename boost::graph_traits&lt;T&gt;::traversal_category
, boost::incidence_graph_tag
&gt;
, boost::is_convertible&lt;
typename boost::graph_traits&lt;T&gt;::traversal_category
, boost::vertex_list_graph_tag
&gt;
&gt;
{
};
};
struct index_map_predicate
{
template &lt;typename T, typename Args&gt;
struct apply
: boost::mpl::and_&lt;
boost::is_integral&lt;
typename boost::property_traits&lt;T&gt;::value_type
&gt;
, boost::is_same&lt;
typename boost::property_traits&lt;T&gt;::key_type
, typename boost::graph_traits&lt;
typename boost::parameter::value_type&lt;
Args
, graphs::graph
&gt;::type
&gt;::vertex_descriptor
&gt;
&gt;
{
};
};
struct color_map_predicate
{
template &lt;typename T, typename Args&gt;
struct apply
: boost::is_same&lt;
typename boost::property_traits&lt;T&gt;::key_type
, typename boost::graph_traits&lt;
typename boost::parameter::value_type&lt;
Args
, graphs::graph
&gt;::type
&gt;::vertex_descriptor
&gt;
{
};
};
</pre>
<p>Likewise, computing the default value for the <tt class="docutils literal"
>color_map</tt> parameter is no trivial matter, so it's best to factor the
computation out to a separate function template.</p>
<pre class="literal-block">
template &lt;typename Size, typename IndexMap&gt;
boost::iterator_property_map&lt;
std::vector&lt;boost::default_color_type&gt;::iterator
, IndexMap
, boost::default_color_type
, boost::default_color_type&amp;
&gt;&amp;
default_color_map(Size num_vertices, IndexMap const&amp; index_map)
{
static std::vector&lt;boost::default_color_type&gt; colors(num_vertices);
static boost::iterator_property_map&lt;
std::vector&lt;boost::default_color_type&gt;::iterator
, IndexMap
, boost::default_color_type
, boost::default_color_type&amp;
&gt; m(colors.begin(), index_map);
return m;
}
</pre>
<p>The signature encloses each predicate metafunction in parentheses
<em>preceded by an asterix</em>, as follows:</p>
<pre class="literal-block">
BOOST_PARAMETER_FUNCTION((void), depth_first_search, graphs,
(required
(graph, *(<strong>graph_predicate</strong>))
)
(optional
(visitor
, * // not easily checkable
, boost::dfs_visitor&lt;&gt;()
)
(root_vertex
, *(<strong>vertex_descriptor_predicate</strong>)
, *vertices(graph).first
)
(index_map
, *(<strong>index_map_predicate</strong>)
, get(boost::vertex_index, graph)
)
(color_map
, *(<strong>color_map_predicate</strong>)
, default_color_map(num_vertices(graph), index_map)
)
)
)
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/mpl/and.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_same.hpp>
#include <vector>
#include <utility>
BOOST_PARAMETER_NAME((_graph, graphs) graph)
BOOST_PARAMETER_NAME((_visitor, graphs) visitor)
BOOST_PARAMETER_NAME((_root_vertex, graphs) in(root_vertex))
BOOST_PARAMETER_NAME((_index_map, graphs) in(index_map))
BOOST_PARAMETER_NAME((_color_map, graphs) in_out(color_map))
''') -->
<!-- @example.append('''
{
}
int main()
{
typedef boost::adjacency_list<
boost::vecS, boost::vecS, boost::directedS
> G;
enum {u, v, w, x, y, z, N};
typedef std::pair<int, int> E;
E edges[] = {
E(u, v), E(u, x), E(x, v), E(y, x),
E(v, y), E(w, y), E(w,z), E(z, z)
};
G g(edges, edges + sizeof(edges) / sizeof(E), N);
depth_first_search(g);
depth_first_search(g, _root_vertex = static_cast<int>(x));
}
''') -->
<!-- @test('compile') -->
<p>It usually isn't necessary to so completely encode the type requirements on
arguments to generic functions. However, doing so is worth the effort: your
code will be more self-documenting and will often provide a better user
experience. You'll also have an easier transition to the C++20 standard with
<a class="reference external"
href="http://en.cppreference.com/w/cpp/language/constraints">language support
for concepts</a>.</p>
</div>
<div class="section" id="adding-type-requirements">
<h5>2.1.5.6.2&nbsp;&nbsp;&nbsp;More on Type Requirements</h5>
<p>Encoding type requirements onto a function's parameters is essential for
enabling the function to have deduced parameter interface. Let's revisit the
<tt class="docutils literal">new_window</tt> example for a moment:</p>
<pre class="literal-block">
window* w = new_window(
movable_=false
, "alert box"
);
window* w = new_window(
"alert box"
, movable_=false
);
</pre>
<!-- @ignore() -->
<p>The goal this time is to be able to invoke the <tt class="docutils literal"
>new_window</tt> function without specifying the keywords. For each parameter
that has a required type, we can enclose that type in parentheses, then
<em>replace</em> the <tt class="docutils literal">*</tt> element of the
parameter signature:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME((name_, keywords) name)
BOOST_PARAMETER_NAME((movable_, keywords) movable)
BOOST_PARAMETER_FUNCTION((window*), new_window, keywords,
(deduced
(required
(name, <strong>(char const*)</strong>)
(movable, <strong>(bool)</strong>)
)
)
)
{
// ...
}
</pre>
<!-- @ignore() -->
<p>The following statements will now work and are equivalent to each other as
well as the previous statements:</p>
<pre class="literal-block">
window* w = new_window(false, "alert box");
window* w = new_window("alert box", false);
</pre>
<!-- @ignore() -->
</div>
</div>
<div class="section" id="deduced-parameters">
<h4>2.1.5.7&nbsp;&nbsp;&nbsp;Deduced Parameters</h4>
<p>To further illustrate deduced parameter support, consider the example of
the <a class="reference external" href="../../../python/doc/v2/def.html"><tt
class="docutils literal">def</tt></a> function from <a
class="reference external" href="../../../python/doc/index.html"
>Boost.Python</a>. Its signature is roughly as follows:</p>
<pre class="literal-block">
template &lt;
typename Function
, typename KeywordExpression
, typename CallPolicies
&gt;
void
def(
// Required parameters
char const* name, Function func
// Optional, deduced parameters
, char const* docstring = &quot;&quot;
, KeywordExpression keywords = no_keywords()
, CallPolicies policies = default_call_policies()
);
</pre>
<!-- @ignore() -->
<p>Try not to be too distracted by the use of the term “keywords” in
this example: although it means something analogous in Boost.Python
to what it means in the Parameter library, for the purposes of this
exercise you can think of it as being completely different.</p>
<p>When calling <tt class="docutils literal">def</tt>, only two arguments are
required. The association between any additional arguments and their
parameters can be determined by the types of the arguments actually passed, so
the caller is neither required to remember argument positions or explicitly
specify parameter names for those arguments. To generate this interface using
<tt class="docutils literal">BOOST_PARAMETER_FUNCTION</tt>, we need only
enclose the deduced parameters in a
<tt class="docutils literal">(deduced …)</tt> clause, as follows:</p>
<pre class="literal-block">
namespace mpl = boost::mpl;
BOOST_PARAMETER_FUNCTION(
(void), def, tag,
(required (name, (char const*)) (func,*) ) // nondeduced
<strong>(deduced</strong>
(optional
(docstring, (char const*), &quot;&quot;)
(keywords
// see <a class="footnote-reference"
href="#is-keyword-expression" id="id13"><sup>5</sup></a>
, *(is_keyword_expression&lt;mpl::_&gt;)
, no_keywords()
)
(policies
, *(mpl::not_&lt;
mpl::or_&lt;
boost::is_convertible&lt;mpl::_, char const*&gt;
// see <a class="footnote-reference"
href="#is-keyword-expression" id="id14"><sup>5</sup></a>
, is_keyword_expression&lt;mpl::_&gt;
&gt;
&gt;)
, default_call_policies()
)
)
<strong>)</strong>
)
{
<em></em>
}
</pre>
<!-- @example.replace_emphasis('') -->
<!-- @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(func)
BOOST_PARAMETER_NAME(docstring)
BOOST_PARAMETER_NAME(keywords)
BOOST_PARAMETER_NAME(policies)
struct default_call_policies
{
};
struct no_keywords
{
};
struct keywords
{
};
template <typename T>
struct is_keyword_expression
: boost::mpl::false_
{
};
template <>
struct is_keyword_expression<keywords>
: boost::mpl::true_
{
};
default_call_policies some_policies;
void f()
{
}
''') -->
<div class="admonition-syntax-note admonition">
<p class="first admonition-title">Syntax Note</p>
<p class="last">A <tt class="docutils literal">(deduced …)</tt> clause always
contains a <tt class="docutils literal">(required …)</tt> and/or an
<tt class="docutils literal">(optional …)</tt> subclause, and must follow any
<tt class="docutils literal">(required …)</tt> or
<tt class="docutils literal">(optional …)</tt> clauses indicating nondeduced
parameters at the outer level.</p>
</div>
<p>With the declaration above, the following two calls are equivalent:</p>
<pre class="literal-block">
def(
&quot;f&quot;, &amp;f
, <strong>some_policies</strong>
, <strong>&quot;Documentation for f&quot;</strong>
);
def(
&quot;f&quot;, &amp;f
, <strong>&quot;Documentation for f&quot;</strong>
, <strong>some_policies</strong>
);
</pre>
<!-- @example.prepend('''
int main()
{
''') -->
<p>If the user wants to pass a <tt class="docutils literal">policies</tt>
argument that was also, for some reason, convertible to
<tt class="docutils literal">char const*</tt>, she can always specify the
parameter name explicitly, as follows:</p>
<pre class="literal-block">
def(
&quot;f&quot;, &amp;f
, <strong>_policies = some_policies</strong>
, &quot;Documentation for f&quot;
);
</pre>
<!-- @example.append('}') -->
<!-- @test('compile', howmany='all') -->
<p>The <a class="reference external" href="../../test/deduced.cpp"
>test/deduced.cpp</a> and <a class="reference external"
href="../../test/deduced_dependent_predicate.cpp"
>test/deduced_dependent_predicate.cpp</a> test programs demonstrate
additional usage of deduced parameter support.</p>
</div>
</div>
</div>
<div class="section" id="parameter-enabled-member-functions">
<h2><a class="toc-backref" href="#id28">2.2&nbsp;&nbsp;&nbsp;Parameter-Enabled
Member Functions</a></h2>
<p>The <tt class="docutils literal">BOOST_PARAMETER_MEMBER_FUNCTION</tt> and
<tt class="docutils literal">BOOST_PARAMETER_CONST_MEMBER_FUNCTION</tt> macros
accept exactly the same arguments as
<tt class="docutils literal">BOOST_PARAMETER_FUNCTION</tt>, but are designed
to be used within the body of a class:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(arg1)
BOOST_PARAMETER_NAME(arg2)
struct callable2
{
BOOST_PARAMETER_CONST_MEMBER_FUNCTION(
(void), call, tag, (required (arg1,(int))(arg2,(int)))
)
{
std::cout &lt;&lt; arg1 &lt;&lt; &quot;, &quot; &lt;&lt; arg2;
std::cout &lt;&lt; std::endl;
}
};
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
using namespace boost::parameter;
''') -->
<!-- @test('compile') -->
<p>These macros don't directly allow a function's interface to be
separated from its implementation, but you can always forward
arguments on to a separate implementation function:</p>
<pre class="literal-block">
struct callable2
{
BOOST_PARAMETER_CONST_MEMBER_FUNCTION(
(void), call, tag, (required (arg1,(int))(arg2,(int)))
)
{
call_impl(arg1,arg2);
}
private:
void call_impl(int, int); // implemented elsewhere.
};
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(arg1)
BOOST_PARAMETER_NAME(arg2)
using namespace boost::parameter;
''') -->
<!-- @test('compile') -->
<div class="section" id="static-member-functions">
<h3>2.2.1&nbsp;&nbsp;&nbsp;Static Member Functions</h3>
<p>To expose a static member function, simply insert the keyword
<tt class="docutils literal">static</tt>” before the function name:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(arg1)
struct somebody
{
BOOST_PARAMETER_MEMBER_FUNCTION(
(void), <strong>static</strong> f, tag, (optional (arg1,(int),0))
)
{
std::cout &lt;&lt; arg1 &lt;&lt; std::endl;
}
};
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
using namespace boost::parameter;
''') -->
<!-- @test('compile') -->
</div>
</div>
<div class="section" id="function-call-ops">
<h2><a class="toc-backref" href="#id29">2.3&nbsp;&nbsp;&nbsp;Parameter-Enabled
Function Call Operators</a></h2>
<p>The
<tt class="docutils literal">BOOST_PARAMETER_FUNCTION_CALL_OPERATOR</tt> and
<tt class="docutils literal">BOOST_PARAMETER_CONST_FUNCTION_CALL_OPERATOR</tt>
macros accept the same arguments as the
<tt class="docutils literal">BOOST_PARAMETER_MEMBER_FUNCTION</tt> and
<tt class="docutils literal">BOOST_PARAMETER_CONST_MEMBER_FUNCTION</tt>
macros,except for the function name, because these macros allow instances of
the enclosing classes to be treated as function objects:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(first_arg)
BOOST_PARAMETER_NAME(second_arg)
struct callable2
{
BOOST_PARAMETER_CONST_FUNCTION_CALL_OPERATOR(
(void), tag, (required (first_arg,(int))(second_arg,(int)))
)
{
std::cout &lt;&lt; first_arg &lt;&lt; &quot;, &quot;;
std::cout &lt;&lt; second_arg &lt;&lt; std::endl;
}
};
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
using namespace boost::parameter;
''') -->
<!-- @test('compile') -->
</div>
<div class="section" id="parameter-enabled-constructors">
<h2><a class="toc-backref" href="#id30">2.4&nbsp;&nbsp;&nbsp;Parameter-Enabled
Constructors</a></h2>
<p>The lack of a “delegating constructor” feature in C++
(<a class="reference external"
href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf"
>http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf</a>) limits
somewhat the quality of interface this library can provide for defining
parameter-enabled constructors. The usual workaround for a lack of
constructor delegation applies: one must factor the common logic into a base
class.</p>
<p>Let's build a parameter-enabled constructor that simply prints its
arguments. The first step is to write a base class whose constructor accepts
a single argument known as an <a class="reference external"
href="reference.html#argumentpack"><span class="concept"
>ArgumentPack</span></a>: a bundle of references to the actual arguments,
tagged with their keywords. The values of the actual arguments are extracted
from the <span class="concept">ArgumentPack</span> by <em>indexing</em>
it with keyword objects:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
struct myclass_impl
{
template &lt;typename ArgumentPack&gt;
myclass_impl(ArgumentPack const&amp; args)
{
std::cout &lt;&lt; &quot;name = &quot; &lt;&lt; args[_name];
std::cout &lt;&lt; &quot;; index = &quot; &lt;&lt; args[_index | 42];
std::cout &lt;&lt; std::endl;
}
};
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
''') -->
<p>Note that the bitwise or (“<tt class="docutils literal">|</tt>”) operator
has a special meaning when applied to keyword objects that are passed to an
<span class="concept">ArgumentPack</span>'s indexing operator: it is used to
indicate a default value. In this case if there is no
<tt class="docutils literal">index</tt> parameter in the
<span class="concept">ArgumentPack</span>,
<tt class="docutils literal">42</tt> will be used instead.</p>
<p>Now we are ready to write the parameter-enabled constructor interface:</p>
<pre class="literal-block">
struct myclass : myclass_impl
{
BOOST_PARAMETER_CONSTRUCTOR(
myclass, (myclass_impl), tag
, (required (name,*)) (optional (index,*))
) // no semicolon
};
</pre>
<p>Since we have supplied a default value for
<tt class="docutils literal">index</tt> but not for
<tt class="docutils literal">name</tt>, only
<tt class="docutils literal">name</tt> is required. We can exercise our new
interface as follows:</p>
<pre class="literal-block">
myclass x(&quot;bob&quot;, 3); // positional
myclass y(_index = 12, _name = &quot;sally&quot;); // named
myclass z(&quot;june&quot;); // positional/defaulted
</pre>
<!-- @example.wrap('int main() {', '}') -->
<!-- @test('run', howmany='all') -->
<p>For more on <span class="concept">ArgumentPack</span> manipulation, see the
<a class="reference internal" href="#advanced-topics">Advanced Topics</a>
section.</p>
</div>
<div class="section" id="parameter-enabled-class-templates">
<h2><a class="toc-backref" href="#id31">2.5&nbsp;&nbsp;&nbsp;Parameter-Enabled
Class Templates</a></h2>
<p>In this section we'll use Boost.Parameter to build
<a class="reference external" href="../../../python/doc/index.html"
>Boost.Python</a>'s <a class="reference external"
href="http://www.boost.org/libs/python/doc/v2/class.html#class_-spec"
>class_</a> template, whose “signature” is:</p>
<pre class="literal-block">
template &lt;
ValueType, BaseList = bases&lt;&gt;
, HeldType = ValueType, Copyable = void
&gt;
class class_;
</pre>
<!-- @ignore() -->
<p>Only the first argument, <tt class="docutils literal">ValueType</tt>, is
required.</p>
<div class="section" id="named-template-parameters">
<h3>2.5.1&nbsp;&nbsp;&nbsp;Named Template Parameters</h3>
<p>First, we'll build an interface that allows users to pass arguments
positionally or by name:</p>
<pre class="literal-block">
struct B
{
virtual ~B() = 0;
};
struct D : B
{
~D();
};
class_&lt;
<strong>class_type&lt;B&gt;</strong>
, <strong>copyable&lt;boost::noncopyable&gt;</strong>
&gt; …;
class_&lt;
<strong>D</strong>
, <strong>held_type&lt;std::auto_ptr&lt;D&gt; &gt;</strong>
, <strong>base_list&lt;bases&lt;B&gt; &gt;</strong>
&gt; …;
</pre>
<!-- @ignore() -->
<div class="section" id="template-keywords">
<h4>2.5.1.1&nbsp;&nbsp;&nbsp;Template Keywords</h4>
<p>The first step is to define keywords for each template parameter:</p>
<pre class="literal-block">
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
}}
</pre>
<!-- @example.prepend('#include <boost/parameter.hpp>') -->
<!-- @test('compile') -->
<p>The declaration of the <tt class="docutils literal">class_type</tt> keyword
you see here is equivalent to:</p>
<pre class="literal-block">
namespace boost { namespace python {
namespace tag {
struct class_type; // keyword tag type
}
template &lt;typename T&gt;
struct class_type
: parameter::template_keyword&lt;tag::class_type,T&gt;
{
};
}}
</pre>
<!-- @example.prepend('#include <boost/parameter.hpp>') -->
<!-- @test('compile') -->
<p>It defines a keyword tag type named <tt class="docutils literal"
><span class="pre">tag::class_type</span></tt> and a <em>parameter passing
template</em> named <tt class="docutils literal">class_type</tt>.</p>
</div>
<div class="section" id="class-template-skeleton">
<h4>2.5.1.2&nbsp;&nbsp;&nbsp;Class Template Skeleton</h4>
<p>The next step is to define the skeleton of our class template, which has
three optional parameters. Because the user may pass arguments in any order,
we don't know the actual identities of these parameters, so it would be
premature to use descriptive names or write out the actual default values for
any of them. Instead, we'll give them generic names and use the special type
<tt class="docutils literal"><span class="pre">boost::parameter::void_</span
></tt> as a default:</p>
<pre class="literal-block">
namespace boost { namespace python {
template &lt;
typename A0
, typename A1 = boost::parameter::void_
, typename A2 = boost::parameter::void_
, typename A3 = boost::parameter::void_
&gt;
struct class_
{
<em></em>
};
}}
</pre>
<!-- @example.prepend('#include <boost/parameter.hpp>') -->
<!-- @example.replace_emphasis('') -->
<!-- @test('compile') -->
</div>
<div class="section" id="class-template-signatures">
<h4>2.5.1.3&nbsp;&nbsp;&nbsp;Class Template Signatures</h4>
<p>Next, we need to build a type, known as a <a class="reference external"
href="reference.html#parameterspec"><span class="concept">ParameterSpec</span
></a>, describing the “signature” of <tt class="docutils literal"
><span class="pre">boost::python::class_</span></tt>. A
<a class="reference external" href="reference.html#parameterspec"
><span class="concept">ParameterSpec</span></a> enumerates the required and
optional parameters in their positional order, along with any type
requirements (note that it does <em>not</em> specify defaults -- those will be
dealt with separately):</p>
<pre class="literal-block">
namespace boost { namespace python {
using boost::mpl::_;
typedef parameter::parameters&lt;
required&lt;tag::class_type, boost::is_class&lt;_&gt; &gt;
, parameter::optional&lt;tag::base_list, mpl::is_sequence&lt;_&gt; &gt;
, parameter::optional&lt;tag::held_type&gt;
, parameter::optional&lt;tag::copyable&gt;
&gt; class_signature;
}}
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/mpl/is_sequence.hpp>
#include <boost/noncopyable.hpp>
#include <boost/type_traits/is_class.hpp>
#include <memory>
using namespace boost::parameter;
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
template <typename B = int>
struct bases
{
};
}}
''') -->
</div>
<div class="section" id="argument-packs-and-parameter-extraction">
<span id="binding-intro"></span><h4>2.5.1.4&nbsp;&nbsp;&nbsp;Argument Packs
and Parameter Extraction</h4>
<p>Next, within the body of <tt class="docutils literal">class_</tt>, we use
the <span class="concept">ParameterSpec</span>'s nested
<tt class="docutils literal">::bind&lt;&gt;</tt> template to bundle the
actual arguments into an <a class="reference external"
href="reference.html#argumentpack"><span class="concept">ArgumentPack</span
></a> type, and then use the library's
<tt class="docutils literal">value_type&lt;&gt;</tt> metafunction to
extract “logical parameters”. <tt class="docutils literal">value_type&lt;
&gt;</tt> is a lot like <tt class="docutils literal">binding&lt;&gt;</tt>,
but no reference is added to the actual argument type. Note that defaults are
specified by passing it an optional third argument:</p>
<pre class="literal-block">
namespace boost { namespace python {
template &lt;
typename A0
, typename A1 = boost::parameter::void_
, typename A2 = boost::parameter::void_
, typename A3 = boost::parameter::void_
&gt;
struct class_
{
// Create ArgumentPack
typedef typename class_signature::template bind&lt;
A0, A1, A2, A3
&gt;::type args;
// Extract first logical parameter.
typedef typename parameter::value_type&lt;
args, tag::class_type
&gt;::type class_type;
typedef typename parameter::value_type&lt;
args, tag::base_list, bases&lt;&gt;
&gt;::type base_list;
typedef typename parameter::value_type&lt;
args, tag::held_type, class_type
&gt;::type held_type;
typedef typename parameter::value_type&lt;
args, tag::copyable, void
&gt;::type copyable;
};
}}
</pre>
</div>
</div>
<div class="section" id="exercising-the-code-so-far">
<h3>2.5.2&nbsp;&nbsp;&nbsp;Exercising the Code So Far</h3>
<div class="compound">
<p class="compound-first">Revisiting our original examples,</p>
<pre class="compound-middle literal-block">
typedef boost::python::class_&lt;
class_type&lt;B&gt;, copyable&lt;boost::noncopyable&gt;
&gt; c1;
typedef boost::python::class_&lt;
D
, held_type&lt;std::auto_ptr&lt;D&gt; &gt;
, base_list&lt;bases&lt;B&gt; &gt;
&gt; c2;
</pre>
<!-- @example.prepend('''
using boost::python::class_type;
using boost::python::copyable;
using boost::python::held_type;
using boost::python::base_list;
using boost::python::bases;
struct B
{
};
struct D
{
};
''') -->
<p class="compound-middle">we can now examine the intended parameters:</p>
<pre class="compound-last literal-block">
BOOST_MPL_ASSERT((boost::is_same&lt;c1::class_type, B&gt;));
BOOST_MPL_ASSERT((boost::is_same&lt;c1::base_list, bases&lt;&gt; &gt;));
BOOST_MPL_ASSERT((boost::is_same&lt;c1::held_type, B&gt;));
BOOST_MPL_ASSERT((
boost::is_same&lt;c1::copyable, boost::noncopyable&gt;
));
BOOST_MPL_ASSERT((boost::is_same&lt;c2::class_type, D&gt;));
BOOST_MPL_ASSERT((boost::is_same&lt;c2::base_list, bases&lt;B&gt; &gt;));
BOOST_MPL_ASSERT((
boost::is_same&lt;c2::held_type, std::auto_ptr&lt;D&gt; &gt;
));
BOOST_MPL_ASSERT((boost::is_same&lt;c2::copyable, void&gt;));
</pre>
</div>
<!-- @test('compile', howmany='all') -->
</div>
<div class="section" id="deduced-template-parameters">
<h3>2.5.3&nbsp;&nbsp;&nbsp;Deduced Template Parameters</h3>
<p>To apply a deduced parameter interface here, we need only make the type
requirements a bit tighter so the <tt class="docutils literal">held_type</tt>
and <tt class="docutils literal">copyable</tt> parameters can be crisply
distinguished from the others. <a class="reference external"
href="../../../python/doc/index.html">Boost.Python</a> does this by requiring
that <tt class="docutils literal">base_list</tt> be a specialization of its
<tt class="docutils literal">bases&lt;&gt;</tt> template (as opposed to
being any old MPL sequence) and by requiring that
<tt class="docutils literal">copyable</tt>, if explicitly supplied, be
<tt class="docutils literal"
><span class="pre">boost::noncopyable</span></tt>. One easy way of
identifying specializations of <tt class="docutils literal">bases&lt;
&gt;</tt> is to derive them all from the same class, as an implementation
detail:</p>
<pre class="literal-block">
namespace boost { namespace python {
namespace detail {
struct bases_base
{
};
}
template &lt;
typename A0 = void, typename A1 = void, typename A2 = void <em></em>
&gt;
struct bases <strong>: detail::bases_base</strong>
{
};
}}
</pre>
<!-- @example.replace_emphasis('') -->
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/mpl/is_sequence.hpp>
#include <boost/noncopyable.hpp>
#include <memory>
using namespace boost::parameter;
using boost::mpl::_;
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
}}
''') -->
<p>Now we can rewrite our signature to make all three optional parameters
deducible:</p>
<pre class="literal-block">
typedef parameter::parameters&lt;
required&lt;tag::class_type, is_class&lt;_&gt; &gt;
, parameter::optional&lt;
deduced&lt;tag::base_list&gt;
, is_base_and_derived&lt;detail::bases_base,_&gt;
&gt;
, parameter::optional&lt;
deduced&lt;tag::held_type&gt;
, mpl::not_&lt;
mpl::or_&lt;
is_base_and_derived&lt;detail::bases_base,_&gt;
, is_same&lt;noncopyable,_&gt;
&gt;
&gt;
&gt;
, parameter::optional&lt;
deduced&lt;tag::copyable&gt;
, is_same&lt;noncopyable,_&gt;
&gt;
&gt; class_signature;
</pre>
<!-- @example.prepend('''
#include <boost/type_traits/is_class.hpp>
namespace boost { namespace python {
''') -->
<!-- @example.append('''
template <
typename A0
, typename A1 = boost::parameter::void_
, typename A2 = boost::parameter::void_
, typename A3 = boost::parameter::void_
>
struct class_
{
// Create ArgumentPack
typedef typename class_signature::template bind<
A0, A1, A2, A3
>::type args;
// Extract first logical parameter.
typedef typename parameter::value_type<
args, tag::class_type
>::type class_type;
typedef typename parameter::value_type<
args, tag::base_list, bases<>
>::type base_list;
typedef typename parameter::value_type<
args, tag::held_type, class_type
>::type held_type;
typedef typename parameter::value_type<
args, tag::copyable, void
>::type copyable;
};
}}
''') -->
<p>It may seem like we've added a great deal of complexity, but the benefits
to our users are greater. Our original examples can now be written without
explicit parameter names:</p>
<pre class="literal-block">
typedef boost::python::class_&lt;
<strong>B</strong>
, <strong>boost::noncopyable</strong>
&gt; c1;
typedef boost::python::class_&lt;
<strong>D</strong>
, <strong>std::auto_ptr&lt;D&gt;</strong>
, <strong>bases&lt;B&gt;</strong>
&gt; c2;
</pre>
<!-- @example.prepend('''
struct B
{
};
struct D
{
};
using boost::python::bases;
''') -->
<!-- @example.append('''
BOOST_MPL_ASSERT((boost::is_same<c1::class_type, B>));
BOOST_MPL_ASSERT((boost::is_same<c1::base_list, bases<> >));
BOOST_MPL_ASSERT((boost::is_same<c1::held_type, B>));
BOOST_MPL_ASSERT((
boost::is_same<c1::copyable, boost::noncopyable>
));
BOOST_MPL_ASSERT((boost::is_same<c2::class_type, D>));
BOOST_MPL_ASSERT((boost::is_same<c2::base_list, bases<B> >));
BOOST_MPL_ASSERT((
boost::is_same<c2::held_type, std::auto_ptr<D> >
));
BOOST_MPL_ASSERT((boost::is_same<c2::copyable, void>));
''') -->
<!-- @test('compile', howmany='all') -->
</div>
</div>
</div>
<div class="section" id="advanced-topics">
<h1><a class="toc-backref" href="#id32">3&nbsp;&nbsp;&nbsp;Advanced
Topics</a></h1>
<p>At this point, you should have a good grasp of the basics. In this section
we'll cover some more esoteric uses of the library.</p>
<div class="section" id="fine-grained-name-control">
<h2><a class="toc-backref" href="#id33">3.1&nbsp;&nbsp;&nbsp;Fine-Grained Name
Control</a></h2>
<p>If you don't like the leading-underscore naming convention used to refer to
keyword objects, or you need the name <tt class="docutils literal">tag</tt>
for something other than the keyword type namespace, there's another way to
use <tt class="docutils literal">BOOST_PARAMETER_NAME</tt>:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(
<strong>(</strong>
<em>object-name</em>
<strong>,</strong> <em>tag-namespace</em>
<strong>)</strong>
<em>parameter-name</em>
)
</pre>
<!-- @ignore() -->
<p>Here is a usage example:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(
(
<strong>pass_foo</strong>, <strong>keywords</strong>
) <strong>foo</strong>
)
BOOST_PARAMETER_FUNCTION(
(int), f,
<strong>keywords</strong>, (required (<strong>foo</strong>, *))
)
{
return <strong>foo</strong> + 1;
}
int x = f(<strong>pass_foo</strong> = 41);
</pre>
<!-- @example.prepend('#include <boost/parameter.hpp>') -->
<!-- @example.append('''
int main()
{
return 0;
}
''') -->
<!-- @test('run') -->
<p>Before you use this more verbose form, however, please read the section on
<a class="reference internal" href="#keyword-naming">best practices for
keyword object naming</a>.</p>
</div>
<div class="section" id="more-argumentpacks">
<h2><a class="toc-backref" href="#id34">3.2&nbsp;&nbsp;&nbsp;More
<span class="concept">ArgumentPack</span>s</a></h2>
<p>We've already seen <span class="concept">ArgumentPack</span>s when we
looked at <a class="reference internal" href="#parameter-enabled-constructors"
>parameter-enabled constructors</a> and <a class="reference internal"
href="#binding-intro">class templates</a>. As you might have guessed,
<span class="concept">ArgumentPack</span>s actually lie at the heart of
everything this library does; in this section we'll examine ways to build and
manipulate them more effectively.</p>
<div class="section" id="building-argumentpacks">
<h3>3.2.1&nbsp;&nbsp;&nbsp;Building
<span class="concept">ArgumentPack</span>s</h3>
<p>The simplest <span class="concept">ArgumentPack</span> is the result of
assigning into a keyword object:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(index)
template &lt;typename ArgumentPack&gt;
int print_index(ArgumentPack const&amp; args)
{
std::cout &lt;&lt; &quot;index = &quot; &lt;&lt; args[_index];
std::cout &lt;&lt; std::endl;
return 0;
}
int x = print_index(_index = 3); // prints &quot;index = 3&quot;
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
''') -->
<p>Also, <span class="concept">ArgumentPack</span>s can be composed using the
comma operator. The extra parentheses below are used to prevent the compiler
from seeing two separate arguments to
<tt class="docutils literal">print_name_and_index</tt>:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(name)
template &lt;typename ArgumentPack&gt;
int print_name_and_index(ArgumentPack const&amp; args)
{
std::cout &lt;&lt; &quot;name = &quot; &lt;&lt; args[_name];
std::cout &lt;&lt; &quot;; &quot;;
return print_index(args);
}
int y = print_name_and_index((_index = 3, _name = &quot;jones&quot;));
</pre>
<p>The <a class="reference external" href="../../test/compose.cpp"
>test/compose.cpp</a> test program shows more examples of this feature.</p>
<p>To build an <span class="concept">ArgumentPack</span> with positional
arguments, we can use a <a class="reference external"
href="reference.html#parameterspec"><span class="concept">ParameterSpec</span
></a>. As introduced described in the section on
<a class="reference internal" href="#class-template-signatures">Class Template
Signatures</a>, a <span class="concept">ParameterSpec</span> describes the
positional order of parameters and any associated type requirements. Just as
we can build an <span class="concept">ArgumentPack</span> <em>type</em> with
its nested <tt class="docutils literal">::bind&lt;&gt;</tt> template, we
can build an <span class="concept">ArgumentPack</span> <em>object</em> by
invoking its function call operator:</p>
<pre class="literal-block">
parameter::parameters&lt;
required&lt;tag::name, is_convertible&lt;_,char const*&gt; &gt;
, optional&lt;tag::index, is_convertible&lt;_,int&gt; &gt;
&gt; spec;
char const sam[] = &quot;sam&quot;;
int twelve = 12;
int z0 = print_name_and_index(
<strong>spec(</strong>sam, twelve<strong>)</strong>
);
int z1 = print_name_and_index(
<strong>spec(</strong>_index=12, _name=&quot;sam&quot;<strong>)</strong>
);
</pre>
<!-- @example.prepend('''
namespace parameter = boost::parameter;
using parameter::required;
using parameter::optional;
using boost::is_convertible;
using boost::mpl::_;
''') -->
<!-- @example.append('''
int main()
{
return 0;
}
''') -->
<!-- @test('run', howmany='all') -->
</div>
<div class="section" id="extracting-parameter-types">
<h3>3.2.2&nbsp;&nbsp;&nbsp;Extracting Parameter Types</h3>
<p>If we want to know the types of the arguments passed to
<tt class="docutils literal">print_name_and_index</tt>, we have a couple of
options. The simplest and least error-prone approach is to forward them to a
function template and allow <em>it</em> to do type deduction:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
template &lt;typename Name, typename Index&gt;
int deduce_arg_types_impl(Name&amp;&amp; name, Index&amp;&amp; index)
{
// we know the types
Name&amp;&amp; n2 = boost::forward&lt;Name&gt;(name);
Index&amp;&amp; i2 = boost::forward&lt;Index&gt;(index);
return index;
}
template &lt;typename ArgumentPack&gt;
int deduce_arg_types(ArgumentPack const&amp; args)
{
return deduce_arg_types_impl(args[_name], args[_index | 42]);
}
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
''') -->
<!-- @example.append('''
#include <boost/core/lightweight_test.hpp>
int main()
{
int a1 = deduce_arg_types((_name = "foo"));
int a2 = deduce_arg_types((_name = "foo", _index = 3));
BOOST_TEST_EQ(a1, 42);
BOOST_TEST_EQ(a2, 3);
return boost::report_errors();
}
''') -->
<!-- @test('run') -->
<p>Occasionally one needs to deduce argument types without an extra layer of
function call. For example, suppose we wanted to return twice the value of
the <tt class="docutils literal">index</tt> parameter? In that case we can
use the <tt class="docutils literal">value_type&lt;&gt;</tt> metafunction
introduced
<a class="reference internal" href="#binding-intro">earlier</a>:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(index)
template &lt;typename ArgumentPack&gt;
typename boost::parameter::value_type&lt;ArgumentPack,tag::index,int&gt;::type
twice_index(ArgumentPack const&amp; args)
{
return 2 * args[_index | 42];
}
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
''') -->
<!-- @example.append('''
#include <boost/core/lightweight_test.hpp>
int main()
{
int six = twice_index(_index = 3);
BOOST_TEST_EQ(six, 6);
return boost::report_errors();
}
''') -->
<!-- @test('run', howmany='all') -->
<p>Note that if we had used <tt class="docutils literal">binding&lt;
&gt;</tt> rather than <tt class="docutils literal">value_type&lt;&gt;</tt>,
we would end up returning a reference to the temporary created in the
<tt class="docutils literal">2 * …</tt> expression.</p>
</div>
<div class="section" id="lazy-default-computation">
<h3>3.2.3&nbsp;&nbsp;&nbsp;Lazy Default Computation</h3>
<p>When a default value is expensive to compute, it would be preferable to
avoid it until we're sure it's absolutely necessary. <tt
class="docutils literal">BOOST_PARAMETER_FUNCTION</tt> takes care of that
problem for us, but when using <span class="concept"
>ArgumentPack</span>s explicitly, we need a tool other than
<tt class="docutils literal">operator|</tt>:</p>
<pre class="literal-block">
BOOST_PARAMETER_NAME(s1)
BOOST_PARAMETER_NAME(s2)
BOOST_PARAMETER_NAME(s3)
template &lt;typename ArgumentPack&gt;
std::string f(ArgumentPack const&amp; args)
{
std::string const&amp; s1 = args[_s1];
std::string const&amp; s2 = args[_s2];
typename parameter::binding&lt;
ArgumentPack,tag::s3,std::string
&gt;::type s3 = args[_s3 | (s1 + s2)]; // always constructs s1 + s2
return s3;
}
std::string x = f((
_s1=&quot;hello,&quot;, _s2=&quot; world&quot;, _s3=&quot;hi world&quot;
));
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <string>
namespace parameter = boost::parameter;
''') -->
<!-- @example.append('''
int main()
{
return 0;
}
''') -->
<!-- @test('run') -->
<p>In the example above, the string <tt class="docutils literal">&quot;hello,
world&quot;</tt> is constructed despite the fact that the user passed us a
value for <tt class="docutils literal">s3</tt>. To remedy that, we can
compute the default value <em>lazily</em> (that is, only on demand), by using
<tt class="docutils literal"><span class="pre">boost::bind()</span></tt> to
create a function object.</p>
<!-- danielw: I'm leaving the text below in the source, because we might -->
<!-- want to change back to it after 1.34, and if I remove it now we -->
<!-- might forget about it. -->
<!-- by combining the logical-or (“``||``”) operator -->
<!-- with a function object built by the Boost Lambda_ library: [#bind]_ -->
<pre class="literal-block">
typename parameter::binding&lt;
ArgumentPack, tag::s3, std::string
&gt;::type s3 = args[
_s3 <strong>|| boost::bind(
std::plus&lt;std::string&gt;(), boost::ref(s1), boost::ref(s2)
)</strong>
];
</pre>
<!-- @example.prepend('''
#include <boost/bind.hpp>
#include <boost/ref.hpp>
#include <boost/parameter.hpp>
#include <string>
#include <functional>
namespace parameter = boost::parameter;
BOOST_PARAMETER_NAME(s1)
BOOST_PARAMETER_NAME(s2)
BOOST_PARAMETER_NAME(s3)
template <typename ArgumentPack>
std::string f(ArgumentPack const& args)
{
std::string const& s1 = args[_s1];
std::string const& s2 = args[_s2];
''') -->
<!-- @example.append('''
return s3;
}
std::string x = f((_s1="hello,", _s2=" world", _s3="hi world"));
int main()
{
return 0;
}
''') -->
<!-- @test('run') -->
<!-- .. _Lambda: ../../../lambda/index.html -->
<div class="sidebar">
<p class="first sidebar-title">Mnemonics</p>
<p class="last">To remember the difference between
<tt class="docutils literal">|</tt> and <tt class="docutils literal">||</tt>,
recall that <tt class="docutils literal">||</tt> normally uses short-circuit
evaluation: its second argument is only evaluated if its first argument is
<tt class="docutils literal">false</tt>. Similarly, in
<tt class="docutils literal"><span class="pre">color_map[param ||
f]</span></tt>, <tt class="docutils literal">f</tt> is only invoked if no
<tt class="docutils literal">color_map</tt> argument was supplied.</p>
</div>
<p>The expression <tt class="docutils literal"><span class="pre"
>bind(std::plus&lt;std::string&gt;(),</span> ref(s1), ref(s2))</tt> yields a
<em>function object</em> that, when invoked, adds the two strings
together. That function will only be invoked if no
<tt class="docutils literal">s3</tt> argument is supplied by the caller.</p>
<!-- The expression ``lambda::var(s1) + lambda::var(s2)`` yields a -->
<!-- *function object* that, when invoked, adds the two strings -->
<!-- together. That function will only be invoked if no ``s3`` argument -->
<!-- is supplied by the caller. -->
</div>
</div>
</div>
<div class="section" id="best-practices">
<h1><a class="toc-backref" href="#id35">4&nbsp;&nbsp;&nbsp;Best
Practices</a></h1>
<p>By now you should have a fairly good idea of how to use the Parameter
library. This section points out a few more-marginal issues that will help
you use the library more effectively.</p>
<div class="section" id="keyword-naming">
<h2><a class="toc-backref" href="#id36">4.1&nbsp;&nbsp;&nbsp;Keyword
Naming</a></h2>
<p><tt class="docutils literal">BOOST_PARAMETER_NAME</tt> prepends a leading
underscore to the names of all our keyword objects in order to avoid the
following usually-silent bug:</p>
<pre class="literal-block">
namespace people
{
namespace tag
{
struct name
{
typedef boost::parameter::forward_reference qualifier;
};
struct age
{
typedef boost::parameter::forward_reference qualifier;
};
}
namespace // unnamed
{
boost::parameter::keyword&lt;tag::name&gt;&amp; <strong>name</strong>
= boost::parameter::keyword&lt;tag::name&gt;::instance;
boost::parameter::keyword&lt;tag::age&gt;&amp; <strong>age</strong>
= boost::parameter::keyword&lt;tag::age&gt;::instance;
}
BOOST_PARAMETER_FUNCTION(
(void), g, tag, (optional (name, *, &quot;bob&quot;)(age, *, 42))
)
{
std::cout &lt;&lt; name &lt;&lt; &quot;:&quot; &lt;&lt; age;
}
void f(int age)
{
<span class="vellipsis">.
.
.</span>
g(<strong>age</strong> = 3); // whoops!
}
}
</pre>
<!-- @ignore() -->
<p>Although in the case above, the user was trying to pass the value
<tt class="docutils literal">3</tt> as the
<tt class="docutils literal">age</tt> parameter to
<tt class="docutils literal">g</tt>, what happened instead was that
<tt class="docutils literal">f</tt>'s <tt class="docutils literal">age</tt>
argument got reassigned the value 3, and was then passed as a positional
argument to <tt class="docutils literal">g</tt>. Since
<tt class="docutils literal">g</tt>'s first positional parameter is
<tt class="docutils literal">name</tt>, the default value for
<tt class="docutils literal">age</tt> is used, and g prints
<tt class="docutils literal">3:42</tt>. Our leading underscore naming
convention makes this problem less likely to occur.</p>
<p>In this particular case, the problem could have been detected if f's
<tt class="docutils literal">age</tt> parameter had been made
<tt class="docutils literal">const</tt>, which is always a good idea whenever
possible. Finally, we recommend that you use an enclosing namespace for all
your code, but particularly for names with leading underscores. If we were to
leave out the <tt class="docutils literal">people</tt> namespace above, names
in the global namespace beginning with leading underscores—which are reserved
to your C++ compiler—might become irretrievably ambiguous with those in our
unnamed namespace.</p>
</div>
<div class="section" id="namespaces">
<h2><a class="toc-backref"
href="#id37">4.2&nbsp;&nbsp;&nbsp;Namespaces</a></h2>
<p>In our examples we've always declared keyword objects in (an unnamed
namespace within) the same namespace as the Boost.Parameter-enabled functions
using those keywords:</p>
<pre class="literal-block">
namespace lib {
<strong>BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)</strong>
BOOST_PARAMETER_FUNCTION(
(int), f, tag,
(optional (name,*,&quot;bob&quot;)(index,(int),1))
)
{
std::cout &lt;&lt; name &lt;&lt; &quot;:&quot; &lt;&lt; index;
std::cout &lt;&lt; std::endl;
return index;
}
}
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
''') -->
<!-- @namespace_setup = str(example) -->
<!-- @ignore() -->
<p>Users of these functions have a few choices:</p>
<ol class="arabic simple">
<li>Full qualification:</li>
</ol>
<blockquote>
<pre class="literal-block">
int x = <strong>lib::</strong>f(
<strong>lib::</strong>_name = &quot;jill&quot;
, <strong>lib::</strong>_index = 1
);
</pre>
<p>This approach is more verbose than many users would like.</p>
</blockquote>
<!-- @example.prepend(namespace_setup) -->
<!-- @example.append('int main() { return 0; }') -->
<!-- @test('run') -->
<ol class="arabic simple" start="2">
<li>Make keyword objects available through <em>using-declarations</em>:</li>
</ol>
<blockquote>
<pre class="literal-block">
<strong>using lib::_name;
using lib::_index;</strong>
int x = lib::f(_name = &quot;jill&quot;, _index = 1);
</pre>
<p>This version is much better at the actual call site, but the
<em>using-declarations</em> themselves can be verbose and hard to manage.</p>
</blockquote>
<!-- @example.prepend(namespace_setup) -->
<!-- @example.append('int main() { return 0; }') -->
<!-- @test('run') -->
<ol class="arabic simple" start="3">
<li>Bring in the entire namespace with a <em>using-directive</em>:</li>
</ol>
<blockquote>
<pre class="literal-block">
<strong>using namespace lib;</strong>
int x = <strong>f</strong>(_name = &quot;jill&quot;, _index = 3);
</pre>
<p>This option is convenient, but it indiscriminately makes the
<em>entire</em> contents of <tt class="docutils literal">lib</tt> available
without qualification.</p>
</blockquote>
<!-- @example.prepend(namespace_setup) -->
<!-- @example.append('int main() { return 0; }') -->
<!-- @test('run') -->
<p>If we add an additional namespace around keyword declarations,
though, we can give users more control:</p>
<pre class="literal-block">
namespace lib {
<strong>namespace keywords {</strong>
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
<strong>}</strong>
BOOST_PARAMETER_FUNCTION(
(int), f, <strong>keywords::</strong>tag,
(optional (name,*,&quot;bob&quot;)(index,(int),1))
)
{
std::cout &lt;&lt; name &lt;&lt; &quot;:&quot; &lt;&lt; index;
std::cout &lt;&lt; std::endl;
return index;
}
}
</pre>
<!-- @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''') -->
<p>Now users need only a single <em>using-directive</em> to bring in just the
names of all keywords associated with
<tt class="docutils literal">lib</tt>:</p>
<pre class="literal-block">
<strong>using namespace lib::keywords;</strong>
int y = lib::f(_name = &quot;bob&quot;, _index = 2);
</pre>
<!-- @example.append('int main() { return 0; }') -->
<!-- @test('run', howmany='all') -->
</div>
<div class="section" id="documentation">
<h2><a class="toc-backref"
href="#id38">4.3&nbsp;&nbsp;&nbsp;Documentation</a></h2>
<p>The interface idioms enabled by Boost.Parameter are completely new
(to C++), and as such are not served by pre-existing documentation
conventions.</p>
<div class="note">
<p class="first admonition-title">Note</p>
<p class="last">This space is empty because we haven't settled on any best
practices yet. We'd be very pleased to link to your documentation if you've
got a style that you think is worth sharing.</p>
</div>
</div>
</div>
<div class="section" id="portability-considerations">
<h1><a class="toc-backref" href="#id39">5&nbsp;&nbsp;&nbsp;Portability
Considerations</a></h1>
<p>Use the <a class="reference external"
href="http://www.boost.org/regression/release/user/parameter.html">regression
test results</a> for the latest Boost release of the Parameter library to see
how it fares on your favorite compiler. Additionally, you may need to be
aware of the following issues and workarounds for particular compilers.</p>
<div class="section" id="perfect-forwarding-support">
<h2><a class="toc-backref" href="#id40">5.1&nbsp;&nbsp;&nbsp;Perfect
Forwarding Support</a></h2>
<p>If your compiler supports <a class="reference external" href=
"http://www.justsoftwaresolutions.co.uk/cplusplus/rvalue_references_and_perfect_forwarding.html"
>perfect forwarding</a>, then the Parameter library will
<tt class="docutils literal">#define</tt> the macro
<a class="reference external"
href="reference.html#boost-parameter-has-perfect-forwarding"
><tt class="docutils literal">BOOST_PARAMETER_HAS_PERFECT_FORWARDING</tt></a>
unless you disable it manually. If your compiler does not provide this
support, then <tt class="docutils literal"
>parameter::parameters::operator()</tt> will treat rvalue references as lvalue
const references to work around the <a class="reference external"
href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm"
>forwarding problem</a>, so in certain cases you must wrap
<a class="reference external" href="../../../core/doc/html/core/ref.html"
><tt class="docutils literal">boost::ref</tt></a> or
<a class="reference external"
href="http://en.cppreference.com/w/cpp/utility/functional/ref"
><tt class="docutils literal">std::ref</tt></a> around any arguments that will
be bound to out parameters. The <a class="reference external"
href="../../test/evaluate_category.cpp">test/evaluate_category.cpp</a> and
<a class="reference external"
href="../../test/preprocessor_eval_category.cpp"
>test/preprocessor_eval_category.cpp</a> test programs demonstrate this
support.</p>
</div>
<div class="section" id="no-sfinae-support">
<h2><a class="toc-backref" href="#id41">5.2&nbsp;&nbsp;&nbsp;No SFINAE
Support</a></h2>
<p>Some older compilers don't support SFINAE. If your compiler meets
that criterion, then Boost headers will
<tt class="docutils literal">#define</tt> the preprocessor symbol
<tt class="docutils literal">BOOST_NO_SFINAE</tt>, and parameter-enabled
functions won't be removed from the overload set based on their
signatures.</p>
</div>
<div class="section" id="no-support-for-result-of">
<h2><a class="toc-backref" href="#id42">5.3&nbsp;&nbsp;&nbsp;No Support
for</a> <a class="reference external"
href="../../../utility/utility.htm#result_of"
><tt class="docutils literal">result_of</tt></a></h2>
<p><a class="reference internal" href="#lazy-default-computation">Lazy default
computation</a> relies on the <tt class="docutils literal">result_of</tt>
class template to compute the types of default arguments given the type of the
function object that constructs them. On compilers that don't support
<tt class="docutils literal">result_of</tt>,
<tt class="docutils literal">BOOST_NO_RESULT_OF</tt> will be
<tt class="docutils literal">#define</tt>d, and the compiler will expect the
function object to contain a nested type name,
<tt class="docutils literal">result_type</tt>, that indicates its return type
when invoked without arguments. To use an ordinary function as a default
generator on those compilers, you'll need to wrap it in a class that provides
<tt class="docutils literal">result_type</tt> as a
<tt class="docutils literal">typedef</tt> and invokes the function via its
<tt class="docutils literal">operator()</tt>.</p>
<!-- Can't Declare |ParameterSpec| via ``typedef``
=============================================
In principle you can declare a |ParameterSpec| as a ``typedef``
for a specialization of ``parameters<…>``, but Microsoft Visual C++
6.x has been seen to choke on that usage. The workaround is to use
inheritance and declare your |ParameterSpec| as a class:
.. parsed-literal::
**struct dfs_parameters
:** parameter::parameters<
tag::graph, tag::visitor, tag::root_vertex
, tag::index_map, tag::color_map
> **{};**
Default Arguments Unsupported on Nested Templates
=================================================
As of this writing, Borland compilers don't support the use of
default template arguments on member class templates. As a result,
you have to supply ``BOOST_PARAMETER_MAX_ARITY`` arguments to every
use of ``parameters<…>::match``. Since the actual defaults used
are unspecified, the workaround is to use
|BOOST_PARAMETER_MATCH|_ to declare default arguments for SFINAE.
.. |BOOST_PARAMETER_MATCH| replace:: ``BOOST_PARAMETER_MATCH`` -->
</div>
<div class="section" id="compiler-can-t-see-references-in-unnamed-namespace">
<h2><a class="toc-backref" href="#id43">5.3&nbsp;&nbsp;&nbsp;Compiler Can't
See References In Unnamed Namespace</a></h2>
<p>If you use Microsoft Visual C++ 6.x, you may find that the compiler has
trouble finding your keyword objects. This problem has been observed, but
only on this one compiler, and it disappeared as the test code evolved, so we
suggest you use it only as a last resort rather than as a preventative
measure. The solution is to add <em>using-declarations</em> to force the
names to be available in the enclosing namespace without qualification:</p>
<pre class="literal-block">
namespace graphs {
using graphs::graph;
using graphs::visitor;
using graphs::root_vertex;
using graphs::index_map;
using graphs::color_map;
}
</pre>
</div>
</div>
<div class="section" id="python-binding">
<h1><a class="toc-backref" href="#id44">6&nbsp;&nbsp;&nbsp;Python
Binding</a></h1>
<p>Follow <a class="reference external"
href="../../../parameter_python/doc/html/index.html">this link</a> for
documentation on how to expose Boost.Parameter-enabled functions to Python
with <a class="reference external" href="../../../python/doc/index.html"
>Boost.Python</a>.</p>
</div>
<div class="section" id="reference">
<h1><a class="toc-backref" href="#id45">7&nbsp;&nbsp;&nbsp;Reference</a></h1>
<p>Follow <a class="reference external" href="reference.html">this link</a> to
the Boost.Parameter reference documentation.</p>
</div>
<div class="section" id="glossary">
<h1><a class="toc-backref" href="#id46">8&nbsp;&nbsp;&nbsp;Glossary</a></h1>
<table class="docutils field-list" frame="void" id="arguments" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field">
<th class="field-name" colspan="2">Argument (or “actual argument”):</th>
</tr>
<tr>
<td>&nbsp;</td>
<td class="field-body">
<p>the value actually passed to a function or class template</p>
</td>
</tr>
</tbody>
</table>
<table class="docutils field-list" frame="void" id="parameter" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field">
<th class="field-name" colspan="2">Parameter (or “formal parameter”):</th>
</tr>
<tr>
<td>&nbsp;</td>
<td class="field-body">
<p class="first">the name used to refer to an argument
within a function or class template. For example, the value of
<tt class="docutils literal">f</tt>'s <em>parameter</em>
<tt class="docutils literal">x</tt> is given by the <em>argument</em>
<tt class="docutils literal">3</tt>:</p>
<pre class="last literal-block">
int f(int x) { return x + 1; }
int y = f(3);
</pre>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="acknowledgements">
<h1><a class="toc-backref" href="#id47"
>9&nbsp;&nbsp;&nbsp;Acknowledgements</a></h1>
<p>The authors would like to thank all the Boosters who participated in the
review of this library and its documentation, most especially our review
manager, Doug Gregor.</p>
<hr class="docutils" />
<table class="docutils footnote" frame="void" id="old-interface" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[1]</a></td><td>As of
Boost 1.33.0 the Graph library was still using an
<a class="reference external" href="../../../graph/doc/bgl_named_params.html"
>older named parameter mechanism</a>, but there are plans to change it to use
Boost.Parameter (this library) in an upcoming release, while keeping the old
interface available for backward-compatibility.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="odr" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[2]</a></td><td>The
<strong>One Definition Rule</strong> says that any given entity in a C++
program must have the same definition in all translation units (object files)
that make up a program.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="vertex-descriptor"
rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[3]</td><td>If you're not familiar with the Boost Graph
Library, don't worry about the meaning of any Graph-library-specific details
you encounter. In this case you could replace all mentions of vertex
descriptor types with <tt class="docutils literal">int</tt> in the text, and
your understanding of the Parameter library wouldn't suffer.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="conceptcpp" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[4]</a></td><td>This
is a major motivation behind <a class="reference external"
href="http://en.cppreference.com/w/cpp/language/constraints"
>C++20 constraints</a>.</td></tr>
</tbody>
</table>
<!-- .. [#bind] The Lambda library is known not to work on `some -->
<!-- less-conformant compilers`__. When using one of those you could -->
<!-- use `Boost.Bind`_ to generate the function object:: -->
<!-- boost::bind(std::plus<std::string>(),s1,s2) -->
<table class="docutils footnote" frame="void" id="is-keyword-expression"
rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr>
<td class="label">[5]</td>
<td><em>(<a class="fn-backref" href="#id13">1</a>, <a class="fn-backref"
href="#id14">2</a>)</em> Here we're assuming there's a predicate metafunction
<tt class="docutils literal">is_keyword_expression</tt> that can be used to
identify models of Boost.Python's KeywordExpression concept.</td>
</tr>
</tbody>
</table>
<!-- .. __ http://www.boost.org/regression/release/user/lambda.html -->
<table class="docutils footnote" frame="void" id="using" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr>
<td class="label"><a class="fn-backref" href="#id8">[6]</a></td>
<td><p class="first">You can always give the illusion that the function lives
in an outer namespace by applying a <em>using-declaration</em>:</p>
<pre class="last literal-block">
namespace foo_overloads {
// foo declarations here
void foo() { ... }
...
}
using foo_overloads::foo;
</pre>
<p>This technique for avoiding unintentional argument-dependent lookup is due
to Herb Sutter.</p>
</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="sfinae" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr>
<td class="label">[7]</td>
<td>This capability depends on your compiler's support for
SFINAE. <strong>SFINAE</strong>: <strong>S</strong>ubstitution
<strong>F</strong>ailure <strong>I</strong>s <strong>N</strong>ot
<strong>A</strong>n <strong>E</strong>rror. If type substitution during the
instantiation of a function template results in an invalid type, no
compilation error is emitted; instead the overload is removed from the
overload set. By producing an invalid type in the function signature
depending on the result of some condition, we can decide whether or not an
overload is considered during overload resolution. The technique is
formalized in the <a class="reference external"
href="../../../core/doc/html/core/enable_if.html"><tt class="docutils literal"
>enable_if</tt></a> utility. Most recent compilers support SFINAE; on
compilers that don't support it, the Boost config library will
<tt class="docutils literal">#define</tt> the symbol
<tt class="docutils literal">BOOST_NO_SFINAE</tt>. See
<a class="reference external"
href="http://www.semantics.org/once_weakly/w02_SFINAE.pdf"
>http://www.semantics.org/once_weakly/w02_SFINAE.pdf</a> for more information
on SFINAE.</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="footer">
<hr class="footer" />
Generated on: 2011-11-08 21:40 UTC. Generated by <a
class="reference external" href="http://docutils.sourceforge.net/"
>Docutils</a> from <a class="reference external"
href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>