2
0
mirror of https://github.com/boostorg/odeint.git synced 2026-02-14 00:52:07 +00:00
Files
odeint/doc/boost_sandbox_numeric_odeint/tutorial/stiff_systems.html
Karsten Ahnert d4579808d2 added docs
2011-07-18 18:29:05 +02:00

176 lines
19 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Stiff systems</title>
<link rel="stylesheet" href="../../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="../../index.html" title="Chapter&#160;1.&#160;boost.sandbox.numeric.odeint">
<link rel="up" href="../tutorial.html" title="Tutorial">
<link rel="prev" href="chaotic_systems_and_lyapunov_exponents.html" title="Chaotic systems and Lyapunov exponents">
<link rel="next" href="special_topics.html" title="Special topics">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr><td valign="top"></td></tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_sandbox_numeric_odeint.tutorial.stiff_systems"></a><a class="link" href="stiff_systems.html" title="Stiff systems">Stiff
systems</a>
</h3></div></div></div>
<p>
An important class of ordinary differential equations are so called stiff
system which are characterized by two or more time scales of different order.
</p>
<p>
what are stiff systems?
</p>
<p>
examples
</p>
<p>
applications
</p>
<p>
To solve stiff systems numerically the Jacobian
</p>
<p>
<span class="emphasis"><em>J = d f<sub>&#8203;i</sub> / d x<sub>&#8203;j</sub></em></span>
</p>
<p>
is needed. Here is the definition of the above example
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dxdt</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">-</span> <span class="number">100.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">1</span> <span class="special">];</span>
<span class="identifier">dxdt</span><span class="special">[</span> <span class="number">1</span> <span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">matrix_type</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span><span class="special">;</span>
<span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">100.0</span><span class="special">;</span>
<span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span>
<span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
<span class="identifier">dfdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
<span class="identifier">dfdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
The state type has to be a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span></code>
and the matrix type must by a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span></code>
since the stiff integrator only accepts these types. With a little trick
you can simply make this functions valid for other state and matrix types,
just templatize the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Matrix</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">Matrix</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
Now you can use <code class="computeroutput"><span class="identifier">stiff_system</span></code>
in combination with <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code> or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">tr1</span><span class="special">::</span><span class="identifier">array</span></code>. In the example the explicit time
derivative of <span class="emphasis"><em>f(x,t)</em></span> is introduced separately in the
Jacobian. If <span class="emphasis"><em>df / dt = 0</em></span> simply fill <code class="computeroutput"><span class="identifier">dfdt</span></code>
with zeros.
</p>
<p>
A well know solver for stiff systems is the so called Rosenbrock method.
It has a step size control and dense output facilities and can be used like
all the other stepper:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">rosenbrock4</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">stepper_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">rosenbrock4_controller</span><span class="special">&lt;</span> <span class="identifier">stepper_type</span> <span class="special">&gt;</span> <span class="identifier">controlled_stepper_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">rosenbrock4_dense_output</span><span class="special">&lt;</span> <span class="identifier">controlled_stepper_type</span> <span class="special">&gt;</span> <span class="identifier">dense_output_type</span><span class="special">;</span>
<span class="identifier">vector_type</span> <span class="identifier">x</span><span class="special">(</span> <span class="number">3</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
<span class="identifier">size_t</span> <span class="identifier">num_of_steps</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">dense_output_type</span><span class="special">()</span> <span class="special">,</span>
<span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">stiff_system_jacobi</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
During the integration 71 steps have been done. Comparing to a classical
Runge-Kutta solver this is a very good result. For example the Dormand-Prince
5 method with step size control and dense output yields 1531 steps.
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">dopri5_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">controlled_error_stepper</span><span class="special">&lt;</span> <span class="identifier">dopri5_type</span> <span class="special">&gt;</span> <span class="identifier">controlled_dopri5_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">dense_output_controlled_explicit_fsal</span><span class="special">&lt;</span> <span class="identifier">controlled_dopri5_type</span> <span class="special">&gt;</span> <span class="identifier">dense_output_dopri5_type</span><span class="special">;</span>
<span class="identifier">vector_type</span> <span class="identifier">x2</span><span class="special">(</span> <span class="number">3</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
<span class="identifier">size_t</span> <span class="identifier">num_of_steps2</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">dense_output_dopri5_type</span><span class="special">()</span> <span class="special">,</span>
<span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x2</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
Note, that we have used <a href="http://www.boost.org/doc/libs/1_46_1/libs/spirit/phoenix/doc/html/index.html" target="_top">Boost.Phoenix</a>
a great functional programming library to create and compose the observer.
</p>
<p>
The full example can be found here: <a href="../../../../examples/stiff_system.cpp" target="_top">../../examples/stiff_system.cpp</a>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2009 -2011 Karsten Ahnert and Mario Mulansky<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
</div>
</body>
</html>